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اܳأ݄ܹ٭۰. واܳٺޚٴ٭گ؇ت ل۰ اܳٷޙݠ اৎ৊ڰ؇۱ࡗࡲ ༇ံد ؕ݁ ݁ٺۜݠك، ۬༥ި݁ روًިت و਍ಾڰ٭ڍ ુળ༲واܳٺ ّݱ݄ࡗࡲ ا๤དྷৎ৊وع ۱ڍا ૭૏ٺܝލژ
਍ಱ؇ڢݷ პაႰ ݁ފ؇راّ۬. وෛູޚ٭ޔ وّިܳ٭ڎ ،ّ۬ఈః༟؇وّڰ اෂීوًިت Ⴄ၍රඞت ۰༥ڍஓ஁و اৎ৊أٷ٭۰، ا৙৑ݿ؇ݿ٭۰ واည৊ܝިَ؇ت ا৙৑َޙ۰݄ ཯ྥٷ؇ول

ඔ൹ً اܳٺႤၽ݁ܭ ዻዧذ ሒᇭ ؇ஓ୾ ይዧٺٷڰ٭ڍ، اܳأ݄ܹ٭۰ ೞ಻ިا੊اࠍ ሒᇭ و౫ౖదت ؇ዛኔأدا ݆݁ ይዧٺۜگݑ اෂීوًިّ؇ت ۱ڍه Ⴄ၍؇ො੼ة ألݯً؇ اܳٺگݠߌߵ
وا෠੼ଫଊܳ٭؇ت. ا৙৑ۏ۳ݞة

Abstract

This project explores the design, control, and implementation of a mobile manipulator
robot, integrating theoretical concepts and practical applications. It covers the essential
systems and components involved, the modeling of the robot’s movements and interac-
tions, and the generation and planning of its trajectories. The report also addresses the
simulation of these robots to validate their performance and discusses practical imple-
mentation aspects, including hardware and software integration.

Résumé

Ce projet explore la conception, le contrôle et la mise en uvre d’un robot manipulateur
mobile, intégrant des concepts théoriques et des applications pratiques. Il couvre les sys-
tèmes et composants essentiels impliqués, la modélisation des mouvements et interactions
du robot, ainsi que la génération et la planification de ses trajectoires. Le rapport aborde
également la simulation de ces robots pour valider leur performance et discute des aspects
pratiques de la mise en uvre, y compris l’intégration matérielle et logicielle.
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General Introduction

The control of mobile manipulator robots integrates complex systems involving vari-
ous disciplines of robotics, control theory, and software engineering. This project re-
port presents a comprehensive exploration of the essential aspects of mobile manipulator
robots, organized into several core domains.
The discussion begins with an exploration of core concepts in robotic control, addressing
essential control strategies. The report progresses to command and control strategies
tailored to mobile robots, manipulator arms, and mobile manipulators.
Next, the focus shifts to modeling, addressing the kinematic modeling of robotic systems.
Special attention is given to mobile robots, particularly those utilizing Mecanum wheels,
with a detailed analysis of kinematic constraints and motion approximation techniques.
For robotic arms, the discussion includes Denavit-Hartenberg parameters and kinematic
modeling, encompassing forward and inverse kinematics, essential for accurate robotic
motion planning.
The report then examines trajectory generation and planning, specifically polynomial-
based trajectory generation, such as cubic and quintic polynomials, which are crucial for
smooth and precise robot movements. It also includes an in-depth study of pathfinding
algorithms, such as Dijkstra’s and A*.
Simulation provides insights into the simulation of robotic systems using advanced tools
like MATLAB and GAZEBO. This includes methodologies for simulating both manip-
ulator arms and mobile robots, essential for validating theoretical models and control
strategies in virtual environments.
Implementation aspects cover practical considerations for implementing robotic control
systems. This includes the use of platforms such as Raspberry Pi and Arduino, com-
munication protocols, and the integration of OpenCV for computer vision tasks. The
discussion also explores various graphical user interfaces designed for controlling robot
manipulators and mobile systems, pathfinding visualization, QR code detection, and real-
time system integration.
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Chapter 1

Robotics : Systems and Components

Robotics, a field at the intersection of engineering and computer science, has evolved sig-
nificantly over the decades. The historical development of robotics showcases a journey
from rudimentary mechanical devices to sophisticated autonomous systems. Early robots
were primarily mechanical constructs with limited functionality, often used in repetitive
industrial tasks. Over time, advancements in electronics, computing, and artificial in-
telligence have transformed robots into versatile machines capable of complex behaviors
and interactions.
The definition and classification of robots encompass a broad spectrum of types, includ-
ing mobile robots, manipulator arms, and mobile manipulator robots. Mobile robots are
designed to move and navigate through various environments, leveraging sensors and con-
trol algorithms to perform tasks autonomously. Manipulator arms, on the other hand, are
robotic systems with articulated joints and end-effectors used for tasks requiring precise
manipulation and control. Mobile manipulator robots combine the attributes of mobile
robots and manipulator arms, offering a unique capability to navigate and manipulate
objects within their environment.
Command and control systems play a pivotal role in the functionality of robots. These
systems are essential for interpreting sensor data, executing control algorithms, and co-
ordinating robotic actions. The importance of command and control is evident in diverse
applications such as industrial automation, where robots perform repetitive tasks with
high precision; service robots that assist in domestic and healthcare settings; autonomous
vehicles navigating complex traffic scenarios; and medical robotics enhancing surgical pre-
cision.
This chapter aims to introduce fundamental concepts in robotics command and control,
exploring the integration of hardware, software, and theoretical frameworks. It provides
a comprehensive overview of the principles underlying robotic systems, control architec-
tures, sensor integration, and advanced strategies for mobile robots, manipulator arms,
and mobile manipulators.
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1.1 Theoretical Foundations of Robotic Control

Control theory forms the backbone of robotic systems, providing the principles and tech-
niques necessary for managing and directing robot behaviors. Fundamental control prin-
ciples include feedback, feedforward, and hybrid controls. Feedback control involves
continuously adjusting the system based on the difference between desired and actual
outputs, ensuring stability and accuracy. Feedforward control anticipates system changes
and adjusts commands proactively to improve performance. Hybrid controls combine
both feedback and feedforward mechanisms to leverage the strengths of each approach.
Key concepts in control theory relevant to robotics are stability, controllability, and ob-
servability. Stability ensures that the robot’s behavior remains predictable and within
acceptable bounds. Controllability refers to the ability to direct the robot’s state through
input controls, while observability involves the capacity to infer the internal state of the
robot from external measurements. These principles are crucial for designing robust and
reliable robotic systems.

1.2 Command Architectures in Robotics

1.2.1 Centralized and Decentralized Control

Robotic systems can be designed with centralized or decentralized control architectures,
each with distinct advantages and applications. Centralized control involves a single,
central unit making decisions and issuing commands to all robot components. This ap-
proach simplifies coordination and management but may become a bottleneck in complex
systems [1]. In contrast, decentralized control distributes decision-making across multiple
units, enhancing robustness and scalability. Centralized control is often used in industrial
robots where precise, synchronized movements are required, while decentralized control
is common in swarm robotics, where individual robots operate autonomously and coor-
dinate through local interactions.

1.2.2 Real-time Control Systems

Real-time control systems are critical for ensuring that robots respond promptly to envi-
ronmental changes and achieve desired behaviors. Essential requirements for real-time op-
erations include deterministic timing, low latency, and high reliability [2]. Techniques for
ensuring real-time performance involve using dedicated real-time operating systems, op-
timizing control algorithms, and implementing efficient communication protocols. These
systems are crucial for applications requiring immediate responses, such as autonomous
driving and robotic surgery.
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1.2.3 Adaptive and Predictive Control

Adaptive control strategies enable robots to handle uncertainties and variations in their
operating environment. These strategies adjust control parameters in real-time based on
observed changes, ensuring optimal performance under varying conditions. Model Predic-
tive Control (MPC) is a sophisticated technique that uses a model of the robot to predict
future states and optimize control inputs accordingly [3]. MPC is particularly useful for
managing complex constraints and achieving precise control in dynamic environments.

1.3 Sensor Integration and Data Fusion

1.3.1 Types of Sensors in Robotics

Sensors are vital for robots to perceive and interact with their surroundings [4]. Common
sensors include vision sensors (cameras), proximity sensors (ultrasonic, infrared), tactile
sensors (force/torque sensors), and others. Each sensor type provides specific information
crucial for robot functionality. Sensor accuracy and calibration are essential for reliable
operation, as inaccuracies can lead to errors in perception and control.

1.3.2 Sensor Fusion Techniques

Sensor fusion involves combining data from multiple sensors to create a comprehensive
understanding of the robot’s environment. Techniques such as Kalman filtering [5] and
particle filtering [6] are used to integrate sensor data, improving accuracy and robustness.
Applications of sensor fusion include localization and navigation, where combined sensor
inputs help estimate the robot’s position and trajectory more precisely.

1.3.3 State Estimation

State estimation is a key component of robotic control, enabling robots to infer their
internal states based on sensor measurements [7]. Filters such as the Kalman filter are
commonly used to estimate states and predict future positions. Practical examples in-
clude mobile robots using state estimation for precise navigation and manipulator arms
using it for accurate positioning.
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1.4 Command and Control Strategies for Mobile Robots

1.4.1 Path Planning and Navigation

Path planning involves determining an optimal path for a mobile robot to follow from
a starting point to a goal. Algorithms such as A*, Dijkstra, and Rapidly-exploring
Random Trees (RRT) are commonly used for this purpose. Navigation strategies include
localization, which involves determining the robot’s position, mapping, which creates a
representation of the environment, and Simultaneous Localization and Mapping (SLAM),
which integrates both localization and mapping.

1.4.2 Motion Control

Motion control strategies manage the movement of mobile robots, ensuring they follow
planned paths and respond to environmental changes. Techniques such as PID control,
Model Predictive Control (MPC), and fuzzy logic control are used to regulate robot
motion. Challenges in motion control include dealing with nonholonomic constraints and
avoiding obstacles, which require advanced algorithms and sensor integration.

1.4.3 Communication and Coordination in Multi-Robot Sys-
tems

Multi-robot systems involve multiple robots working together to achieve a common goal.
Communication protocols and strategies are essential for coordinating actions and shar-
ing information among robots. Distributed control and decentralized decision-making
enable robots to collaborate effectively, with each robot making decisions based on local
information and interactions.

1.5 Command and Control Strategies for Manipula-
tor Arms

1.5.1 Kinematic Control

Kinematic control focuses on the precise movement of manipulator arms. Forward kine-
matics involves calculating the end-effector’s position based on joint parameters, while
inverse kinematics determines the necessary joint angles to achieve a desired end-effector
position.
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1.5.2 Dynamic Control

Dynamic control addresses the forces and torques involved in manipulator arm move-
ments. Computed Torque Control involves calculating the required torques to achieve
desired motions, compensating for dynamic effects. Impedance Control allows manipu-
lators to adapt to external forces, providing flexibility in dynamic environments. Hybrid
Position/Force Control combines position and force control strategies, offering precise
control in tasks requiring both positional accuracy and force application.

1.5.3 Motion Planning

Motion planning for manipulator arms involves generating collision-free trajectories. Al-
gorithms such as Probabilistic Roadmap (PRM) and Rapidly-exploring Random Trees
(RRT) are used to explore feasible paths and avoid obstacles. These techniques ensure
that manipulator arms can move effectively and safely within their workspace.

1.5.4 Safety and Human-Robot Interaction

Safety and human-robot interaction are critical aspects of manipulator arm operation.
Force/torque limits prevent excessive forces that could damage the robot or its environ-
ment. Collision detection techniques identify potential collisions and allow for real-time
adjustments. Human-Robot Interaction (HRI) frameworks are designed to enhance col-
laboration between humans and robots, focusing on safety and ergonomic considerations.

1.6 Command and Control Strategies for Mobile Ma-
nipulator Robots

1.6.1 Integration of Mobile and Manipulator Systems

Integrating mobile bases with manipulator arms presents unique challenges, such as coor-
dinating movements and managing complex interactions between mobility and manipula-
tion. Coordinated control strategies ensure that mobile manipulators operate effectively,
balancing mobility with manipulation tasks.

1.6.2 Motion Planning in Dynamic Environments

Motion planning for mobile manipulators in dynamic environments involves adapting to
changing conditions and obstacles. Real-time obstacle avoidance and path replanning
techniques are employed to ensure safe and efficient operation.
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1.6.3 Applications of Mobile Manipulators

Mobile manipulators have diverse applications in industries, services, and research. Case
studies illustrate their use in tasks such as automated material handling, service robotics,
and scientific research. Future trends and challenges include enhancing capabilities, im-
proving integration, and addressing complex operational scenarios.

1.7 Programming and Software Tools

1.7.1 Programming Robots in C, Python, and MATLAB

The programming of robotic systems often involves a combination of C++, Python, and
MATLAB, each contributing distinct advantages to the development process. C++ is
renowned for its high performance and efficiency, making it ideal for real-time control
and systems requiring fine-grained hardware access. Its low-level programming capa-
bilities facilitate precise management of resources and high-speed execution, crucial for
performance-critical applications. In contrast, Python excels in rapid development and
prototyping due to its simplicity and extensive libraries. It offers a high level of abstrac-
tion, allowing for quick development of algorithms and integration with various frame-
works, such as OpenCV for computer vision. Pythons ease of use and readability also
accelerate the development cycle and facilitate testing and debugging. MATLAB comple-
ments these languages with its robust mathematical and computational tools, providing
a powerful environment for algorithm development and data analysis. MATLABs abil-
ity to handle complex mathematical operations and its integrated development environ-
ment support rapid prototyping and optimization of robotic algorithms. By leveraging
the strengths of C++, Python, and MATLAB together, developers can achieve a bal-
anced approach, combining efficient real-time performance with rapid development and
advanced mathematical analysis to create well-rounded and optimized robotic systems.
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Figure 1.1: Robotic System Programming and Development Workspace

1.7.2 Robot Operating Systems (ROS)

Robot Operating System (ROS) is a crucial framework in modern robotics, offering a
robust infrastructure for developing and managing robotic software. ROS simplifies the
integration of various software components by providing a standardized framework for
communication. It organizes robotic systems into modular units known as nodes, which
communicate via topics and services. Topics enable nodes to publish and subscribe to data
streams asynchronously, while services facilitate synchronous communication through
request-response interactions. This modularity and communication efficiency streamline
the development of complex robotic applications, allowing for scalable and maintainable
software architectures.

Figure 1.2: ROS-Compatible Robots and Devices
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1.7.3 Simulation and Testing

Simulation and testing are indispensable in the development of robotic systems, offering
tools to validate designs and algorithms before physical deployment. Gazebo and MAT-
LAB/Simulink are prominent simulation platforms that provide realistic environments
for testing robotic systems. Gazebo integrates with ROS to simulate dynamic interac-
tions with the environment, while MATLAB/Simulink offers a comprehensive suite for
modeling, simulating, and analyzing robotic systems. These tools enable engineers to
perform extensive testing under various scenarios, mitigating risks and reducing costs
associated with physical prototyping. The ability to simulate complex interactions and
conditions is crucial for optimizing robotic performance and ensuring reliability.

1.7.4 Real-time Programming

Real-time programming is essential for applications requiring precise and timely control,
such as robotics. Ensuring real-time performance involves addressing challenges related to
concurrency and timing. Techniques such as task scheduling, interrupt handling, and real-
time operating systems (RTOS) are employed to manage the execution of concurrent tasks
and maintain stringent timing constraints. Effective real-time programming is critical for
applications where delays or jitter can impact system performance, such as in autonomous
navigation or real-time control of robotic arms.

1.8 Electronic Components in Command and Con-
trol Systems

1.8.1 Sensors and Actuators

Sensors and actuators form the core of robotic systems, providing essential data and per-
forming actions based on control commands. Various types of sensors, including encoders,
Inertial Measurement Units (IMUs), cameras, and Light Detection and Ranging (LIDAR)
systems, are utilized to perceive the robot’s environment and its own state. Encoders
measure rotational positions and velocities, IMUs provide orientation and acceleration
data, cameras capture visual information, and LIDAR systems enable detailed distance
measurements. Actuators, including DC motors, servo motors, stepper motors, and hy-
draulic actuators, execute movements and control mechanisms. Each actuator type offers
different capabilities in terms of precision, range, and force, making them suitable for
diverse applications in robotics.
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1.8.2 Power Management in Robotic Systems

Power management is a critical aspect of robotic system design, influencing both perfor-
mance and operational efficiency. The selection of power supplies for mobile robots and
manipulators must account for factors such as voltage, current, and battery life. Battery
management systems play a pivotal role in monitoring and optimizing battery perfor-
mance, ensuring that energy consumption is efficiently managed. Energy-efficient design
strategies, including the use of low-power components and regenerative braking systems,
contribute to extending operational time and reducing overall energy consumption.

1.8.3 Interface Electronics and Signal Conditioning

Interface electronics and signal conditioning are fundamental for ensuring accurate com-
munication between sensors, actuators, and control systems. Signal conditioning circuits
are employed to enhance sensor signals, improving accuracy and reliability. These circuits
may include amplification, filtering, and analog-to-digital conversion (ADC) components.
Communication interfaces, such as digital-to-analog converters (DACs) and various com-
munication protocols, facilitate data exchange between electronic components and control
systems. Proper design and implementation of these interfaces are essential for maintain-
ing signal integrity and ensuring seamless integration of various system components.

1.9 Advantages of Command and Control in Mobile
Manipulator Robots in Industry

The application of command and control systems in mobile manipulator robots offers
numerous advantages within industrial settings. These robots combine mobility with
versatile manipulation capabilities, enhancing their utility across a range of tasks. The
integration of advanced command and control systems enables precise and adaptive op-
eration, allowing for dynamic adjustments in response to varying conditions and tasks.
This adaptability contributes to increased productivity and efficiency, as robots can per-
form complex tasks with minimal human intervention. Moreover, the ability to integrate
various sensors and actuators within a unified control framework enhances the robot’s
capability to interact with its environment and execute intricate operations. The deploy-
ment of mobile manipulator robots equipped with sophisticated command and control
systems not only improves operational flexibility but also reduces the need for manual
labor, leading to significant cost savings and enhanced safety in industrial environments.

10



Chapter 2

Modeling

Modeling in robotics is essential for developing and operating robotic systems. It involves
creating mathematical representations of a robot’s structure and behavior, which helps
predict its motion and interactions with the environment. Effective modeling allows engi-
neers to analyze designs, implement control algorithms, and ensure reliable performance
in real-world applications. As technology advances, models have become more complex,
requiring sophisticated techniques to handle various operational scenarios.
In this chapter, we focus on modeling mobile manipulator robots, particularly their kine-
matics. Kinematics examines the geometric and spatial relationships between different
robot components without considering the forces involved (dynamics). By studying kine-
matics, we can understand how these robots move and interact with their surroundings.
This knowledge is crucial for designing, controlling, and optimizing mobile manipulator
systems.

2.1 Robot Mobile

The kinematics of a four-wheeled robot equipped with Mecanum wheels involves a unique
design that facilitates omnidirectional movement. This robot is positioned on two parallel
axles, with its center of mass denoted as point C. Each Mecanum wheel allows for lateral
movement, thanks to its angled rollers, enhancing the robot’s maneuverability. The
distance from the robot’s center of mass C to each wheel axle is represented by ρ, while
the spacing between the centers of the wheels is 2l. In a fixed coordinate system XOY ,
the robot’s position is defined by the coordinates xc and yc. Additionally, the angle ψ
describes the orientation of the robot’s longitudinal axis in relation to the OX axis. The
wheels rotate at angles φi, which are measured relative to axes that are perpendicular
to their respective planes and intersect at their centers Figure (2.1). This configuration
enables precise control over both translational and rotational movements, allowing the
robot to navigate through complex environments with agility and precision [8].
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Figure 2.1: Four wheeled mobile robot with Mecanum wheels

2.1.1 Model of a Mecanum Wheel

A Mecanum wheel is an omni-directional wheel designed to enable a vehicle to move in
any direction by combining the motion from multiple wheels Figure (2.2). This wheel
is modeled as a thin disk of radius R, which assumes that the rollers, fixed around the
circumference of the wheel, are small compared to the wheels diameter. Each roller is
mounted at an angle δ with respect to the plane of the wheel, typically δ = 45◦. This
configuration allows the wheel to roll in various directions while minimizing slip.
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Figure 2.2: Mecanum Wheel Omni-Directional Movement

To model the Mecanum wheel’s behavior, we define several key variables: VP as the
velocity of the contact point P with the ground, VK as the velocity of the wheels center
K, ω as the angular velocity of the wheel, and r as the vector from the center K to the
contact point P Figure(2.3).

Figure 2.3: Model of a Mecanum Wheel

The velocity of point P can be expressed as the sum of the translational velocity of the
wheels center and the rotational contribution, i.e.,

VP = VK + ω × r. (2.1)

Since the wheel operates without slip, the velocity at the contact point must be orthogonal
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to the axis of the rollers. Let γ be the unit vector along the rollers axis. The no-slip
condition is therefore given by

VP · γ = 0, (2.2)

implying that the component of the velocity VP along γ is zero. Substituting VP into
this condition results in

(VK + ω × r) · γ = 0. (2.3)

Expanding this expression, we get

VK · γ + (ω × r) · γ = 0. (2.4)

The term (ω×r)·γ can be simplified considering that γ is perpendicular to the tangential
direction of the wheel. Given the angle δ between the roller axis γ and the radial direction
r, and assuming that the angular velocity ω is aligned along the axis perpendicular to
the wheels plane, the magnitude of the component of VK along γ can be related to the
angular velocity φ̇ of the wheel.
Finally, substituting the contribution of ω × r, which is −Rφ̇ cos δ, into the no-slip con-
dition yields the final expression

VK · γ = Rφ̇ cos δ (2.5)

This equation establishes a direct relationship between the velocity of the wheels center,
the wheels angular velocity, and the angle δ between the roller axis and the plane of the
wheel.

2.1.2 Kinematic Constraint Equations

In the context of analyzing the kinematics of a robot with Mecanum wheels, we start
with the fundamental kinematic constraint that describes the rolling without slipping
condition. This constraint is initially defined by Equation (2.5).
For simplification, we assume that the angle δ is set to π

4
. This is a common assumption

for Mecanum wheels, where the rollers are typically oriented at 45◦ to the wheel axis.Thus,
the equation reduces to:

VK · γ =
R√
2
φ̇ (2.6)

Let VC denote the velocity of the center of mass of the robot, and let ri be the vector
from the center of mass to the center of the i-th wheel. The velocity of the wheel is given
by:

VKi
= VC + Ω× ri i = 1, . . . , 4, (2.7)

where Ω is the angular velocity of the robot. Substituting VKi
into the kinematic con-

straint equation, we obtain:
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(VC + Ω× ri) · γi =
R√
2
φ̇i i = 1, . . . , 4, (2.8)

Expanding Ω× ri as (ri × γi) · Ω, we rewrite the constraint as:

VC · γi + (ri × γi) · Ω =
R√
2
φ̇i i = 1, . . . , 4, (2.9)

Introduce a robot-attached coordinate system ξηζ, where the ξ axis is aligned with the
longitudinal axis, η with the lateral axis, and ζ is vertical. Denote VCξ and VCη as the
projections of the velocity of the center of mass onto the ξ and η axes, respectively.
Substituting into the constraint equations, we have:

VCξγiξ + VCηγiη + (riξγiη − riηγiξ)ψ̇ =
R√
2
φ̇i i = 1, . . . , 4, (2.10)

For Mecanum wheels, the components are:

γ1ξ = γ4ξ =
1√
2
, γ1η = γ4η = −

1√
2

γ2ξ = γ3ξ =
1√
2
, γ2η = γ3η =

1√
2

r1ξ = r2ξ = ρ, r1η = r3η = l

r3ξ = r4ξ = −ρ, r2η = r4η = −l

(2.11)

Substituting these values into the constraint equations yields:

VCξ − VCη − (ρ+ l)ψ̇ = Rφ̇1

VCξ + VCη + (ρ+ l)ψ̇ = Rφ̇2

VCξ + VCη − (ρ+ l)ψ̇ = Rφ̇3

VCξ − VCη + (ρ+ l)ψ̇ = Rφ̇4

(2.12)

Solving these for VCξ, VCη, and ψ̇ gives:

VCξ =
R

2
(φ̇1 + φ̇2) (2.13)

VCη =
R

2
(φ̇3 − φ̇1) (2.14)

ψ̇ =
R

2(ρ+ l)
(φ̇2 − φ̇3) (2.15)

φ̇1 + φ̇2 = φ̇3 + φ̇4 (2.16)

The velocities of the center of mass in the fixed reference frame are related to VCξ and
VCη as follows:

VCξ = ẋc cosψ + ẏc sinψ (2.17)
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VCη = −ẋc sinψ + ẏc cosψ (2.18)

which can be inverted to:
ẋc = VCξ cosψ − VCη sinψ (2.19)

ẏc = VCξ sinψ + VCη cosψ (2.20)

Substituting VCξ and VCη from Equation (2.13) and (2.14) into the expressions for ẋc and
ẏc, we obtain:

ẋc =
R√
2
cos

(
ψ − π

4

)
φ̇1 +

R

2
(cosψφ̇2 − sinψφ̇3) (2.21)

ẏc =
R√
2
sin

(
ψ − π

4

)
φ̇1 +

R

2
(sinψφ̇2 + cosψφ̇3) (2.22)

Integrating the remaining equations from Equation (2.15) and (2.16), we have:

ψ =
R

2(ρ+ l)
(φ̇2 − φ̇3) + C1 (2.23)

φ4 = φ1 + φ2 − φ3 + C2 (2.24)

where C1 and C2 are integration constants. Thus, the system exhibits two holonomic
constraints (constraints that can be expressed in terms of the system’s configuration
variables), allowing us to eliminate the generalized coordinates ψ and φ4. Using these
constraints, the velocities of the center of mass can be expressed as:

ẋc = a1φ̇1 + a2φ̇2 + a3φ̇3 (2.25)

ẏc = b1φ̇1 + b2φ̇2 + b3φ̇3 (2.26)

where the coefficients are:

a1 =
R√
2
cos

(
ψ − π

4

)
, b1 =

R√
2
sin

(
ψ − π

4

)
a2 =

R

2
cosψ, b2 =

R

2
sinψ

a3 = −
R

2
sinψ, b3 =

R

2
cosψ

(2.27)

Skew-Symmetric Quantities
Skew-symmetric quantities are used to analyze non-holonomic constraints in mechanical
systems. These constraints describe the relationship between the system’s velocities and
generalized coordinates, helping determine whether the constraints are integrable (holo-
nomic) or not (non-holonomic).
Calculation of αij

The skew-symmetric quantities αij are computed from the coefficients ai, which relate
Cartesian velocities to generalized velocities. The formula for αij is:
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αij =
∂ai
∂φj

− ∂aj
∂φi

Here, ∂ai
∂φj

represents the partial derivative of the coefficient ai with respect to the gener-
alized coordinate φj, and ∂aj

∂φi
is the partial derivative of the coefficient aj with respect to

φi. The skew-symmetric property ensures that αij = −αji.
Calculation of βij
Similarly, the skew-symmetric quantities βij are derived from the coefficients bi. The
formula for βij is:

βij =
∂bi
∂φj

− ∂bj
∂φi

In this case, ∂bi
∂φj

is the partial derivative of the coefficient bi with respect to φj, and ∂bj
∂φi

is
the partial derivative of bj with respect to φi. The skew-symmetric property here ensures
that βij = −βji.

The presence of non-zero values in αij and βij indicates non-holonomic constraints, which
impose restrictions on velocities rather than just positions. Understanding and calculating
these skew-symmetric quantities are crucial for analyzing the dynamics and constraints
of mechanical systems.

To confirm that these constraints are non-holonomic (constraints that are dependent on
velocities and cannot be integrated into positional constraints), we calculate the non-zero
skew-symmetric quantities αij and βij, which are given by:

α12 = −
R2

2
√
2
sin

(
ψ − π

4

)
β12 =

R2

2
√
2
sin

(
ψ +

π

4

)
α13 =

R2

2
√
2
sin

(
ψ − π

4

)
β13 = −

R2

2
√
2
sin

(
ψ +

π

4

)
α23 =

R2

2
√
2
sin

(
ψ +

π

4

)
β23 =

R2

2
√
2
sin

(
ψ − π

4

) (2.28)

2.1.3 Techniques for Approximating Equations of Motion

In analyzing the kinematic constraints and deriving the equations of motion for a robot
equipped with Mecanum wheels, we start by considering the system of linear equations
that relate the wheel velocities φ̇i to the robot’s chassis velocities VCξ, VCη and angular
velocity ψ̇. The kinematic constraints can be expressed as

φ̇ = JV, (2.29)

where:

• φ̇ is a 4× 1 vector of wheel velocities,
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• J is a 4× 3 matrix,

• V is a 3× 1 vector of chassis velocities.

Specifically, the vectors and matrix are defined as follows:

φ̇ =


φ̇1

φ̇2

φ̇3

φ̇4

 , V =

 VCξ

VCη

(ρ+ l)ψ̇

 , J =
1

R


1 −1 −1
1 1 1

1 1 −1
1 −1 1

 . (2.30)

Since the system is overdetermined with four equations for three unknowns, it does not
have a solution for arbitrary values of φ̇1, φ̇2, φ̇3, and φ̇4. For the system to have a solution,
the equations must be linearly dependent, leading to the compatibility condition:

φ̇1 + φ̇2 = φ̇3 + φ̇4. (2.31)

This ensures that the wheel velocities are consistent and do not conflict with each other.
To find an approximate solution, we use the pseudoinverse of the matrix J . Premultiply-
ing the original equation by the transpose JT gives:

JT φ̇ = JTJV. (2.32)

The matrix JTJ is invertible, and its inverse is used to solve for V :

V = (JTJ)−1JT φ̇. (2.33)

Here, J+ = (JTJ)−1JT is the pseudoinverse of J . The specific form of the pseudoinverse
for our matrix J is:

J+ =
R

4

 1 1 1 1

−1 1 1 −1
−1 1 −1 1

 . (2.34)

Using the pseudoinverse, we find the chassis velocities as follows:

VCξ =
R

4
(φ̇1 + φ̇2 + φ̇3 + φ̇4),

VCη =
R

4
(−φ̇1 + φ̇2 + φ̇3 − φ̇4),

ψ̇ =
R

4(ρ+ l)
(−φ̇1 + φ̇2 − φ̇3 + φ̇4).

(2.35)

These equations provide a solution that minimizes the sum of the squared discrepancies
between the left and right sides of the original kinematic equations.
If the compatibility condition Equation (2.1.3) is satisfied, the exact solution to the
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kinematic equations can be expressed as:

VCξ =
R

2
(φ̇1 + φ̇2),

VCη =
R

4
(−φ̇1 + φ̇2 + φ̇3 − φ̇4),

ψ̇ =
R

2(ρ+ l)
(φ̇2 − φ̇3).

(2.36)

This approach of using the pseudoinverse to solve an overdetermined system is widely
adopted in robotics and other fields, as it provides a way to find the best possible solution
when an exact solution is not feasible due to more constraints than degrees of freedom.
The pseudoinverse method ensures that the calculated chassis velocities VCξ, VCη and ψ̇

adhere to the kinematic constraints imposed by the Mecanum wheels, ensuring accurate
and effective control of the robot’s motion.

2.2 Robotic Arm

The first phase is that of modeling the robot on which the project is based, so as to get
the Denavit Hartenberg parameter table.
We are using robot arm that is depicted in Figure (2.4).
This arm has a similar kinematic configuration as some of the industrial manipulators.
The Arm is made out of plastic and has six servo motors as actuators.
This robot contains six main parts:

• The base that enables rotation of the robot around vertical axis

• The shoulder is the second link of manipulator, it controls vertical and forward/back-
ward movements of manipulator

• The elbow controls the movement in the same axes as shoulder

• The wrist vertical movement controls arms attack angle at which are objects picked
up,

• The wrist rotation that handles the rotation of the gripper around the X axis

• The gripper is the part of arm that interacts with its surroundings this particular
one has jaws for picking and moving objects
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Figure 2.4: Main Components of the Robot Manipulator

The robot manipulator is a functional robotic arm that can be controlled using Arduino
technology. It is versatile and can be configured in various ways to perform different
tasks, including object manipulation. Users have the flexibility to assemble the robot in
numerous configurations Figure (2.5).
Here are a few examples:

Figure 2.5: Robot Manipulator with Multitude Ways

The robot manipulator can also carry various objects on the end of its arm Figure (2.6).
For example, the robot can be used:

• With a camera to follow a subject,

• By setting up a phone or tablet to track movement during a video conference,

• With a solar panel to follow the sun.
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Figure 2.6: Robot arm with different object

2.2.1 Denavit-Hartenberg parameters

Denavit-Hartenberg (DH) parameters, also referred to as Denavit-Hartenberg parameters,
consist of four parameters that are essential in mechanical engineering for defining a
specific convention for linking reference frames to the links of a spatial kinematic chain
or robot manipulator. This convention was introduced by Jacques Denavit and Richard
Hartenberg in 1955 [9].
The DH convention defines the following parameters:

• θi: The rotation around the z-axis.

• di: The sliding motion along the z-axis.

• αi: The angle measured around the X axis.

• ri: The distance measured along the X axis.

Figure 2.7: Standard DH Parameters

The Denavit-Hartenberg (D-H) convention provides a systematic method for representing
the geometric configuration of robotic arms. By defining the relationship between adja-
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cent links through a set of parameters, namely the link length, link twist, link offset, and
joint angle, we can effectively describe the kinematic structure of a robotic manipulator.
The table (2.1) outlines the D-H parameters for the robotic arm under consideration,
facilitating the analysis of its movement and the computation of its forward and inverse
kinematics.

Joint α (◦) d (mm) a (mm) θ (◦)
1 -90 L0+L1=70 0 θ1
2 0 0 L2=-125 θ2+90
3 0 0 L3=-125 θ3
4 90 0 0 θ4-90
5 0 L4+L5=190 0 θ5

Table 2.1: D-H parameters table

2.3 Kinematic Modeling of Manipulator arm

Forward and inverse kinematics are fundamental concepts in robotics, integral to con-
trolling and predicting the movements of robotic systems. Forward kinematics involves
determining the position and orientation of a robot’s end-effector (such as a hand or
tool) based on given joint parameters, such as angles or displacements. This process is
relatively straightforward, relying on the known configuration of the robot’s joints and
links to compute the resulting spatial position through a series of transformations.
In contrast, inverse kinematics is more complex and involves calculating the necessary
joint parameters to achieve a desired position and orientation of the end-effector. This
requires solving potentially nonlinear equations and often necessitates iterative methods
or optimization techniques due to the possibility of multiple or no solutions [10]. Both
forward and inverse kinematics are crucial for precise robotic motion control, enabling
tasks ranging from simple pick-and-place operations to complex manipulations in dynamic
environments.
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Figure 2.8: Joint Position Configuration in Robotic Manipulation

Table (2.2) compares forward and inverse kinematics in robotics. Forward kinematics
involves calculating the position and orientation of the end-effector based on given joint
variables (θ or d). In contrast, inverse kinematics requires determining the joint variables
needed to achieve a desired position and orientation of the end-effector.

Forward Kinematics Inverse Kinematics
Given Joint Variables q (θ or d) Position and orientation of end-effector, p

Required Position and orientation of end-effector, p Joint Variables q (θ or d) to get p
p = f(q_1, q_2, . . . , q_n) = f(q) q = f(p)

Table 2.2: Comparison of Forward and Inverse Kinematics in Robotics

2.3.1 Forward Kinematics

Forward kinematics is a crucial technique in robotics and computer graphics used to
determine the position and orientation of a robot’s end effector or a character’s limb
based on given joint parameters. By knowing the lengths and angles of each joint and
link in a kinematic chain, forward kinematics employs mathematical models to calculate
the final position of each segment. This process is essential for ensuring accurate and
predictable movements in robotic systems, enabling tasks such as picking and placing ob-
jects, navigating through spaces, and performing complex manipulations. Understanding
forward kinematics is fundamental for designing and controlling robotic mechanisms and
animated figures [1].
The process involves defining transformation matrices for each joint ([Xi]) and link ([Zi])
along the robotic arm. The joint transformation matrices account for both rotational and
translational motion at each joint, while the link transformation matrices represent the
translation along each link. By multiplying these matrices in the proper order, from the
base to the end effector, we obtain the overall transformation matrix ([A]), which encap-
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sulates the cumulative effect of all joint motions and link translations. This equation,

[A] = [Z1][X1][Z2][X2] . . . [Xn−1][Zn], (2.37)

provides a concise way to express the relationship between joint variables and the end
effector’s position and orientation.
To achieve this, we use a series of transformations that describe how each link in the
robot relates to its previous link. These transformations are typically represented using
homogeneous transformation matrices. The link transformation from frame i−1 to frame
i, denoted as i−1Ai, can be constructed using four basic transformations: translation along
the Z-axis by di, rotation around the Z-axis by θi, translation along the X-axis by ai,
and rotation around the X-axis by αi. This can be expressed as:

i−1Ai = TransZi
(di) RotZi

(θi) TransXi
(ai) RotXi

(αi), (2.38)

where TransZi
(di) represents the translation along the Z-axis by di,

TransZi
(di) =


1 0 0 0

0 1 0 0

0 0 1 di
0 0 0 1

 , (2.39)

RotZi
(θi) represents the rotation around the Z-axis by θi,

RotZi
(θi) =


cos θi − sin θi 0 0

sin θi cos θi 0 0

0 0 1 0

0 0 0 1

 , (2.40)

TransXi
(ai) represents the translation along the X-axis by ai,

TransXi
(ai) =


1 0 0 ai
0 1 0 0

0 0 1 0

0 0 0 1

 , (2.41)

and RotXi
(αi) represents the rotation around the X-axis by αi,

RotXi
(αi) =


1 0 0 0

0 cosαi − sinαi 0

0 sinαi cosαi 0

0 0 0 1

 . (2.42)
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Combining these four transformations into a single homogeneous transformation matrix
i−1Ai, we get:

i−1Ai =


cos θi − sin θi cosαi sin θi sinαi ai cos θi
sin θi cos θi cosαi − cos θi sinαi ai sin θi
0 sinαi cosαi di
0 0 0 1

 . (2.43)

This matrix i−1Ai describes the position and orientation of link i with respect to link
i − 1. By sequentially multiplying these matrices from the base to the end-effector, the
overall transformation matrix is obtained, which describes the end-effector’s position and
orientation relative to the base frame.
The final product of this procedure for robot manipulator can be seen in Figure (2.9)

Figure 2.9: Geometric Representation of the Robotic Arm for Inverse Kinematics

Homogeneous transformation matrices for each robot link are determined using Denavit-
Hartenberg (D-H) parameters, as specified in Equation (2.43). These matrices represent
the relationship between consecutive links and are computedfor accurate position and
orientation modeling.
For Link 1, the transformation matrix is given by:

A1 =


cos(θ1) 0 − sin(θ1) 0

sin(θ1) 0 cos(θ1) 0

0 −1 0 70

0 0 0 1

 (2.44)

For Link 2, the transformation matrix is given by:

A2 =


cos(θ2 +

π
2
) − sin(θ2 +

π
2
) 0 −125 cos(θ2 + π

2
)

sin(θ2 +
π
2
) cos(θ2 +

π
2
) 0 −125 sin(θ2 + π

2
)

0 0 1 0

0 0 0 1

 (2.45)
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For Link 3, the transformation matrix is given by:

A3 =


cos(θ3) − sin(θ3) 0 −125 cos(θ3)
sin(θ3) cos(θ3) 0 −125 sin(θ3)

0 0 1 0

0 0 0 1

 (2.46)

For Link 4, the transformation matrix is given by:

A4 =


cos(θ4 − π

2
) 0 sin(θ4 − π

2
) 0

sin(θ4 − π
2
) 0 − cos(θ4 − π

2
) 0

0 1 0 0

0 0 0 1

 (2.47)

For Link 5, the transformation matrix is given by:

A5 =


cos(θ5) − sin(θ5) 0 0

sin(θ5) cos(θ5) 0 0

0 0 1 190

0 0 0 1

 (2.48)

The total transformation from the base to the end effector is obtained by multiplying the
individual transformation matrices:

T = A1 · A2 · A3 · A4 · A5 (2.49)

2.3.2 Inverse Kinematics

The geometric representation of a robot arm involves describing the arm’s structure in
terms of its physical components and their spatial relationships. This includes the arm’s
links (rigid segments) and joints (points of rotation or translation). This representation
is crucial for solving the inverse kinematics problem, which involves determining the nec-
essary joint parameters to achieve a desired position and orientation of the robot’s end
effector (the tool or hand attached to the end of the arm) [1].
In order to effectively compute the inverse kinematics for our robotic arm, a clear geo-
metric representation is essential. The Figure(2.10) illustrates the robotic arm’s configu-
ration, detailing the various joints and linkages that define its movement.
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Figure 2.10: Geometric representation of the robot arm for inverse kinematics

To solve the inverse kinematics problem for a robotic arm with the given parameters
l1 = 12.5, l2 = 12.5, and l3 = 6, we start by expressing the end-effector coordinates
(x3, y3) in terms of the joint angles θ1, θ2, and θ3. The equations for these coordinates
are given by:

{
x3 = l1 cos(θ1) + l2 cos(θ1 + θ2) + l3 cos(θ1 + θ2 + θ3)

y3 = l1 sin(θ1) + l2 sin(θ1 + θ2) + l3 sin(θ1 + θ2 + θ3)
(2.50)

and the orientation of the end-effector is defined as:

φ = θ1 + θ2 + θ3 (2.51)

Given the values of x3, y3, and φ, the first step is to calculate the coordinates of the
elbow joint (x2, y2). This can be done using the equations:

{
x2 = x3 − l3 cos(φ)
y2 = y3 − l3 sin(φ)

(2.52)

Next, we calculate δ, which is the squared distance from the origin to the elbow joint:

δ = x22 + y22 (2.53)
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To find θ2, we use the cosine rule for triangles, which gives us:

cos(θ2) =
x22 + y22 − l21 − l22

2l1l2
(2.54)

The angle θ2 can then be determined by:

θ2 = arctan 2
(√

1− cos2(θ2), cos(θ2)
)

(2.55)

We then move on to calculate θ1 by using the coordinates of the elbow joint and the
lengths of the links. From the equations of x2 and y2:{

x2 = l1 cos(θ1) + l2 cos(θ1 + θ2)

y2 = l1 sin(θ1) + l2 sin(θ1 + θ2)
(2.56)

By substituting and rearranging, we obtain:

{
x2 = cos(θ1)(l1 + l2 cos(θ2))− sin(θ1)(l2 sin(θ2))

y2 = sin(θ1)(l1 + l2 cos(θ2)) + cos(θ1)(l2 sin(θ2))
(2.57)

These lead to the expressions for cos(θ1) and sin(θ1):

cos(θ1) =
(l1 + l2 cos(θ2))x2 + l2 sin(θ2)y2

x22 + y22
(2.58)

sin(θ1) =
(l1 + l2 cos(θ2))y2 − l2 sin(θ2)x2

x22 + y22
(2.59)

Finally, we calculate θ1 using:

θ1 = arctan 2 (sin(θ1), cos(θ1)) (2.60)

Once θ1 and θ2 are known, θ3 can be determined straightforwardly from the equation:

θ3 = φ− θ1 − θ2 (2.61)

This completes the inverse kinematics solution for the given robotic arm.
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Chapter 3

Trajectory Generation and Planning

Trajectory planning is a crucial aspect of robotics, encompassing the process of deter-
mining a path or sequence of movements for a robot to follow in order to accomplish
a specific task. This involves both mobile robots, which navigate through an environ-
ment, and robotic arms, which manipulate objects with precision. For mobile robots,
trajectory planning ensures efficient and collision-free movement from one location to
another, factoring in the robot’s dynamics and environmental constraints. In the context
of robotic arms, trajectory planning focuses on the smooth and accurate movement of
the end-effector to perform tasks such as picking, placing, and assembling.
This chapter integrating advanced algorithms and control strategies, trajectory planning
enables robots to operate

3.1 Cubic Polynomial Trajectory

Cubic polynomials are a method of moving the tool from its initial position to the desired
position in a definite amount of time. It is a third-degree polynomial equation that is
formulated as illustrated in Equation (3.1).

θ(t) = a0 + a1t+ a2t
2 + a3t

3 (3.1)

The velocity and the acceleration profile along the trajectory of human gait are generated
based on Equation (3.3) and Equation (3.3).

θ̇(t) = a1 + 2a2t+ 3a3t
2 (3.2)

θ̈(t) = 2a2 + 6a3t (3.3)

Furthermore, acceleration profile of cubic polynomials varies with time linearly but it is
continuous. Thus, the trajectory does not require infinite accelerations.
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The cubic polynomial trajectory can be represented as:

θ(t) = a0 + a1t+ a2t
2 + a3t

3

To find the coefficients a0 through a3, we impose the boundary conditions:

θ(0) = θin θ(T ) = θf

θ̇(0) = 0 θ̇(T ) = 0

To find the coefficients a0, a1, a2, and a3, we utilize the following constraints:

1. At t = 0:
θ(0) = a0 = θin

θ̇(0) = a1 = 0

2. At t = T :
θ(T ) = a0 + a1T + a2T

2 + a3T
3 = θf

θ̇(T ) = a1 + 2a2T + 3a3T
2 = 0

Solving for a2 and a3 yields:

a3 =
2(θf − θin)

T 3

a2 = −
3a3T

2

Finally, substituting a0 = θin and a1 = 0, we obtain the complete trajectory equation.
The complete trajectory equation is given by:

θ(t) = θin −
3(θf − θin)

T 3
· t3 + 2 · (θf − θin)

T 2
· t2

For example Figure 3.1 shows cubic trajectory with q0 = 10, qf = 20, t0=0, tf =1 and
V0 = 0, Vf =0. The corresponding angle, velocity and acceleration curves are given in
Figures 3.1.
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Figure 3.1: Cubic Polynomial Trajectory

3.2 Quintic Polynomial Trajectory

A cubic trajectory produces discontinuities in the acceleration but continuous positions
and velocities at the start and finish points, as shown in Figure 3.1. The term "jerk" refers
to the derivative of acceleration. An abrupt jolt caused by a discontinuity in acceleration
might activate vibration modes in the manipulator and lower tracking accuracy.
To ensure precise control, it may be necessary to define limitations not only on the position
and velocity but also on the acceleration. In such instances, a total of six constraints are
imposed, encompassing the initial and final configurations, velocities, and accelerations.
Consequently, a fifth order polynomial is essential.
The quintic polynomial equation is a fifth-degree polynomial equation which is formulated
as shown in Equation (3.4). The quintic polynomial equation can be used to represent
angular position profile of hip, knee and ankle joints.

θ(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 (3.4)

By differentiating Equation (3.4), the velocity profile is obtained as shown in Equation
(3.5).

θ̇(t) = a1 + 2a2t+ 3a3t
2 + 4a4t

3 + 5a5t
4 (3.5)
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By differentiating Equation (3.5), the acceleration profile is obtained based on Equation
(3.6).

θ̈(t) = 2a2 + 6a3t+ 12a4t
2 + 20a5t

3 (3.6)

To plan a quintic polynomial trajectory satisfying the given boundary conditions, we can
define the trajectory as shown in Equation (3.4).

θ(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5

To find the coefficients a0 through a5, we impose the boundary conditions:
Quintic polynomial trajectory planning involves designing a path such that the initial
and final positions are set to specific values, while ensuring that both the velocities and
accelerations at these points start and end at zero.

θ(0) = θin θ(T ) = θf

θ̇(0) = 0 θ̇(T ) = 0

θ̈(0) = 0 θ̈(T ) = 0

Let’s solve these step by step:

a0 = θin

a1 = 0

a2 = 0

a3 =
10(θf − θin)

T 3

a4 = −
15(θf − θin)

T 4

a5 =
6(θf − θin)

T 5

Therefore, the quintic polynomial trajectory satisfying the given boundary conditions is:

θ(t) = θin +
10(θf − θin)

T 3
t3 − 15(θf − θin)

T 4
t4 +

6(θf − θin)

T 5
t5

This trajectory ensures that the initial and final positions, velocities, and accelerations
are all zero.
Figure 3.2 shows a quintic polynomial trajectory with q(0) = 0, q(2) = 40 with zero
initial and final velocities and accelerations.
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Figure 3.2: Quintic Polynomial Trajectory

Comparison of cubic and quintic polynomial trajectories

The following table 3.1 offers a concise comparison between cubic and quintic polynomial
trajectories, two common mathematical models used in various fields. By examining their
differences in degree, smoothness, boundary conditions, computational complexity, and
accuracy, we can better understand their distinct characteristics and applications. This
comparison serves as a helpful reference for researchers, engineers, and mathematicians
seeking to choose the most appropriate polynomial trajectory for their specific needs and
constraints.

Aspect Cubic Polynomial
Trajectory

Quintic Polynomial
Trajectory

Degree of
Polynomial

Third-degree
(ax3 + bx2 + cx+ d)

Fifth-degree (ax5 +
bx4 + cx3 + dx2 + ex+ f)

Smoothness Less smooth Smoother
Boundary
Conditions

Fewer boundary
conditions required

More boundary
conditions required

Computational
Complexity

Lower Higher

Accuracy Less accurate More accurate

Table 3.1: Comparison of cubic and quintic polynomial trajectories
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3.3 Dijkstra’s Algorithm and A* Algorithm

In the field of robotics, motion planning is a critical challenge, particularly in navigating
robots through complex environments. Two of the most prominent algorithms used for
pathfinding in robot motion planning are Dijkstra’s Algorithm and the A* Algorithm.
These algorithms form the backbone of many navigation systems, enabling robots to de-
termine the most efficient path from a start point to a goal point, while avoiding obstacles
and optimizing various criteria, such as distance, time, or energy consumption. Under-
standing these algorithms is essential for developing advanced robotic systems capable of
autonomous navigation.

3.3.1 History

The development of pathfinding algorithms has significantly influenced the field of robotics
and artificial intelligence. This section provides a historical perspective on both Dijkstra’s
Algorithm and the A* Algorithm, tracing their origins, key developments, and impact on
technology.

Dijkstra’s Algorithm

Dijkstra’s Algorithm, named after the Dutch computer scientist Edsger W. Dijkstra, was
first introduced in 1956 and later published in 1959. The algorithm was initially conceived
as a method for finding the shortest path in a graph, a common problem in various
fields such as transportation, telecommunication, and network routing [11]. Dijkstras
inspiration for the algorithm stemmed from a need to find the shortest route in a city, and
his solution has since become one of the most widely used algorithms in computer science.
Over the decades, Dijkstras Algorithm has found applications in numerous domains,
including robotics, where it is utilized for motion planning and navigation in grid-based
environments. A picture of Edsger W. Dijkstra is shown in Figure (3.3).

Figure 3.3: Edsger Wybe Dijkstra
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A* Algorithm

The A* Algorithm, developed by Peter Hart, Nils Nilsson, and Bertram Raphael in
1968, extended the principles of Dijkstra’s Algorithm by incorporating heuristic tech-
niques to improve search efficiency [12]. A* gained prominence through its application
in Shakey the Robot, an early autonomous robot developed at the Stanford Research
Institute. Shakey’s successful navigation capabilities showcased A*’s ability to handle
complex environments and dynamic scenarios effectively. The implementation of A* in
Shakey demonstrated the algorithms practical value in real-world robotics [13]. A notable
image of Shakey the Robot is shown in Figure (3.4).

Figure 3.4: Shakey the Robot

3.3.2 Description

Understanding how Dijkstra’s and A* algorithms function is crucial for their effective
implementation in robotics. This section describes the operational principles of both
algorithms, highlighting their methodologies and distinguishing features.

Dijkstra’s Algorithm

Dijkstras Algorithm is a graph-based approach that solves the single-source shortest path
problem for a graph with non-negative edge weights. The algorithm works by system-
atically exploring all possible paths from the start node to all other nodes, selecting the
path with the smallest cumulative distance at each step. It maintains a priority queue
to keep track of the shortest known distances to each node and updates these distances
as it discovers shorter paths. The algorithm guarantees finding the shortest path to the
goal node by the time it reaches it. However, this exhaustive search process can be
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computationally expensive, especially in large graphs, making it less efficient in certain
applications like real-time robotics [14].

A* Algorithm

The A* Algorithm builds upon the principles of Dijkstras Algorithm by introducing a
heuristic function that estimates the cost from a given node to the goal. This heuristic
guides the search process, allowing the algorithm to prioritize exploring paths that appear
to lead closer to the goal. A* maintains two main functions: the cost from the start node
to the current node (known as the "g" value) and the estimated cost from the current node
to the goal (known as the "h" value). The sum of these two values, known as the "f" value,
is used to determine the order in which nodes are explored. By balancing exploration
and goal-directed search, A* often finds the shortest path more quickly than Dijkstras
Algorithm, particularly in environments where the heuristic is well-chosen [15].

3.3.3 Pseudocode

In this section, we present the pseudocode for Dijkstra’s Algorithm and the A* Algorithm.
Pseudocode serves as a high-level representation of the algorithmic steps, providing a
clear and concise way to understand the core logic and operations without delving into
specific programming syntax. For each algorithm, the pseudocode outlines the essential
steps and decision-making processes involved in finding the shortest path in a graph. This
approach helps in grasping the underlying principles and mechanisms before implementing
the algorithms in actual code.

Dijkstra’s Algorithm

Dijkstra’s Algorithm is a fundamental technique used to find the shortest path from a
starting node to all other nodes in a weighted graph. The algorithm initializes distances
to all nodes as infinity, except for the starting node, which is set to zero. Using a priority
queue to explore nodes with the smallest known distance first, it iteratively updates the
shortest known distances to each node based on the weights of the edges. This process
continues until all reachable nodes have their shortest distances determined. The result
is a mapping of each node to its minimum distance from the start node.
The pseudocode for Dijkstras Algorithm is as follows:
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Algorithm 1 Dijkstra’s Algorithm
function Dijkstra(Graph, start)

dist ← map with default value Infinity
dist[start] ← 0
priority_queue ← priority queue containing start with priority 0

while priority_queue is not empty do
u ← node in priority_queue with smallest distance
remove u from priority_queue
for each neighbor v of u do

alt ← dist[u] + weight(u, v)
if alt < dist[v] then

dist[v] ← alt
add v to priority_queue with priority alt

end if
end for

end while
return dist =0

A* Algorithm

The A* Algorithm is an efficient pathfinding technique that combines elements of Dijk-
stra’s Algorithm with heuristic-based approaches to find the shortest path from a starting
node to a goal node. It maintains a priority queue of nodes to explore, prioritizing those
with the lowest estimated total cost, which is the sum of the cost from the start node to
the current node and a heuristic estimate of the cost to the goal. During each iteration,
the algorithm evaluates neighboring nodes, updating their scores and path information if
a shorter path is found. The process continues until the goal node is reached, at which
point the optimal path is reconstructed. If the open set is exhausted without finding the
goal, the algorithm reports failure.
The pseudocode for the A* Algorithm is as follows:
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Algorithm 2 A* Algorithm
function A*(Graph, start, goal)

open_set ← priority queue containing start with priority 0
came_from ← map with default value undefined
g_score ← map with default value Infinity
g_score[start] ← 0
f_score ← map with default value Infinity
f_score[start] ← heuristic(start, goal)

while open_set is not empty do
current ← node in open_set with lowest f_score
if current == goal then

return reconstruct_path(came_from, goal)
end if
remove current from open_set
for each neighbor in neighbors(current) do

tentative_g_score ← g_score[current] + distance(current, neighbor)
if tentative_g_score < g_score[neighbor] then

came_from[neighbor] ← current
g_score[neighbor] ← tentative_g_score
f_score[neighbor] ← g_score[neighbor] + heuristic(neighbor, goal)
if neighbor not in open_set then

add neighbor to open_set with priority f_score[neighbor]
end if

end if
end for

end while
return failure =0

3.3.4 Comparison

While both Dijkstras Algorithm and A* Algorithm are widely used for pathfinding in
robotics, they differ significantly in their approach and efficiency. Dijkstras Algorithm
guarantees the shortest path by exploring all possible routes, which can be computation-
ally expensive, especially in large environments. It is particularly well-suited for scenarios
where all paths need to be explored, such as in network routing. However, its lack of
heuristic guidance makes it less efficient for real-time applications in robotics [16].
The A* Algorithm, on the other hand, incorporates heuristic estimates that guide the
search process, making it faster in many cases. This makes A* more suitable for dynamic
environments where quick decision-making is crucial. The efficiency of A* is heavily de-
pendent on the quality of the heuristic function; a well-designed heuristic can significantly
reduce the search space, while a poorly chosen one can lead to suboptimal performance.
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Chapter 4

Simulation

MATLAB is an essential tool in the field of robotics, offering a comprehensive environ-
ment for the simulation, modeling, and control of robotic systems. It provides a range
of toolboxes and libraries, such as the Robotics System Toolbox and Simulink, which fa-
cilitate the development and testing of complex robotic algorithms. MATLAB supports
various aspects of robotics, including kinematic and dynamic modeling, path planning,
control system design, and sensor integration. Its capabilities extend to 3D visualization,
enabling detailed simulations of robotic movements and interactions within different en-
vironments. Furthermore, MATLAB’s machine learning and AI toolboxes empower the
development of intelligent robotic systems capable of tasks like object recognition and
autonomous decision-making. Practical applications of MATLAB in robotics include
simulations for mobile robots, robotic arms, UAVs, and AUVs, showcasing its versatility.
The integration of high-level programming, extensive documentation, and advanced vi-
sualization tools makes MATLAB a powerful and user-friendly platform for pushing the
boundaries of robotics research and development.

4.1 Simulation of Robotic Manipulator Arm Using
MATLAB

The simulation of robotic manipulator arms using MATLAB is essential for analyzing
and optimizing robotic systems prior to physical testing. MATLAB provides a robust
platform for modeling, simulating, and analyzing robotic manipulators through tools like
Simulink and Simscape Multibody. This approach allows engineers to create accurate
digital models of robotic arms, evaluate their performance, and refine control algorithms
within a virtual environment. The use of MATLAB in simulation enhances design ef-
ficiency, reduces prototyping costs, and supports the development of effective control
strategies, making it a crucial tool in modern robotics engineering.

The provided MATLAB script (4.1) is utilized for modeling and simulating a robotic
manipulator using the Robotics Toolbox, with the Denavit-Hartenberg (DH) convention
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employed for kinematic modeling. Initially, the script defines the physical dimensions of
the robot’s links through the parameters L1, L2, L3, and L4.
The code constructs a series of ‘Link‘ objects, each representing a segment of the robotic
arm. These objects are parameterized by joint angles (θ), link offsets (d), link lengths
(a), and link twists (α) according to the DH parameters. For instance, the first link is
specified with a zero joint angle, a link offset of L1, and a twist of −π/2. The subsequent
links are parameterized similarly, reflecting the robot’s kinematic structure and joint con-
figurations.
A ‘SerialLink‘ object, named ’Braccio’, is created to represent the complete robotic arm
as a series of these defined links. The ‘teach()‘ method is invoked on this object, launching
an interactive graphical user interface Figure (4.1). This GUI facilitates the visualization
and manipulation of the robot’s joint angles, thereby aiding in the analysis and study of
the robot’s kinematic behavior. This script serves as a foundational tool for exploring
robotic arm kinematics in both educational and research contexts [17].
c l e a r a l l ; c l o s e a l l ; c l c ;

% Def ine the l eng th s o f the robot arm segments
L1=70;
L2=125;
L3=125;
L4=190;

% Def ine the robot l i n k s us ing the Link c l a s s
% L = Link ( [ theta d a alpha ] ) − Denavit−Hartenberg parameters
L(1 ) = Link ( [ 0 L1 0 −pi / 2 ] )
L(2 ) = Link ( [0+( p i /2) 0 −L2 0 ] )
L(3 ) = Link ( [ 0 0 −L3 0 ] )
L(4 ) = Link ([0 −( p i /2) 0 0 p i / 2 ] )
L(5 ) = Link ( [ 0 L4 0 0 ] )

Rob=S e r i a l L i n k (L) ; % Create the S e r i a l L i n k ob j e c t
Rob . name = ’ Robot_Manipulator ’ % Set the name o f the robot
Rob . teach ( ) % V i s u a l i z e and i n t e r a c t with the robot

Listing 4.1: Defining and Visualizing a Robotic Arm in MATLAB
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Figure 4.1: Manipulating Robot Arm with the teach() GUI

The MATLAB GUI for robotic manipulators offers a comprehensive tool for performing
and visualizing kinematic calculations. This interface, created with MATLAB’s GUIDE,
integrates buttons, text fields, and graphical plots to enable users to input joint angles
and target positions, observing the robot’s movements in real-time.
In forward kinematics, the GUI calculates the position of the robot’s end-effector based
on user-defined joint angles. It converts these angles from degrees to radians and utilizes
the Denavit-Hartenberg parameters to model the robot’s links. The trajectory of the
end-effector is computed using a quintic polynomial function, which smooths the motion
by controlling acceleration and deceleration.
The equation, given by q(t)=10
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, ensures continuous and
smooth movement. These calculations are implemented in the GUI using the Robot.fkine
method, a MATLAB function that computes the forward kinematics by generating the
homogeneous transformation matrix for the end-effector. This matrix encodes the posi-
tion and orientation of the end-effector relative to the robot’s base frame, which is then
visualized in a 3D plot, providing a dynamic representation of the robot’s trajectory.
Inverse kinematics, on the other hand, determines the necessary joint angles to achieve a
specified end-effector position. The GUI retrieves the target position, and a similar quin-
tic polynomial trajectory is used to interpolate between an initial and target position.
Intermediate positions are calculated using linear interpolation, and the corresponding
joint angles are computed using the Robot.ikine method. This function iteratively solves
for the joint angles that minimize the error between the desired and actual positions of
the end-effector, considering the robot’s constraints. These joint angles are then applied
to the robot model in the GUI, updating the visualization as the robot moves toward the
target position.
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As shown in Figure (4.2), the MATLAB GUI provides an interactive platform for robotic
arm control and trajectory planning.

Figure 4.2: MATLAB GUI for Robotic Arm Kinematics and Quintic Polynomial Trajec-
tory Planning

The MATLAB GUI for the robotic arm kinematics, which illustrates the implementation
of a Quintic Polynomial Trajectory for the joint angles (0ř -90ř 0ř 90ř 0ř), is depicted in
Figure (4.3).

Figure 4.3: MATLAB GUI for Quintic Polynomial Trajectory Execution in Robotic Arm
with Joint Angle Sequence (0ř -90ř 0ř 90ř 0ř)

Modeling and simulating a robotic arm using MATLAB Simscape Multibody and Solid-
Works involves a systematic approach that combines mechanical design with dynamic
analysis [18]. The process begins with creating a detailed 3D model of the robotic arm
in SolidWorks, including all necessary components such as links, joints, and actuators,
with precise dimensions and constraints. Once the design is complete, the SolidWorks
model is exported as an XML or STEP file. In MATLAB, this file is imported using
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the smimport(filename.xml)command in the MATLAB command window, which au-
tomatically generates the associated Simulink program for the assembly. This facilitates
a seamless transition from SolidWorks to MATLAB.

Figure 4.4: Robot Manipulator Multi Body

The Simulink model is constructed using Simscape Multibody blocks that replicate the
mechanical structure of the robotic arm. Dynamics such as masses, inertias, and joint
limits are defined to simulate physical interactions. Forward and inverse kinematics
algorithms are implemented in MATLAB code and integrated into the Simulink model to
control the arms movements, with PID controllers or other strategies employed to ensure
accurate trajectory following.
The simulation is then executed, and results are visualized using Simulink scopes and
MATLAB graphs, allowing for the comparison of actual performance with the desired
trajectory. This approach enables thorough analysis and adjustment of the robotic arms
performance, ensuring precise simulation and control.

Figure 4.5: Robot Manipulator Arm 3D Multi Body

To illustrate the application of quintic polynomial trajectories in robotic manipulator sim-
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ulations, consider moving the arm from an initial position (0◦, 0◦, 0◦, 0◦, 0◦, 0◦) to a final
position (−90◦, 45◦, 45◦, 45◦, 0◦, 45◦). The trajectory is defined by a quintic polynomial,
which ensures smooth and continuous motion between these positions. This polynomial
trajectory specifies initial and final positions, velocities, and accelerations, allowing for a
precise and smooth transition.In the Simulink model, this trajectory is implemented to
compute the required joint angles over time. The resulting motion is then analyzed to
ensure that the manipulator follows the desired path accurately and smoothly.

Figure 4.6: Robot Manipulator Arm Multi Body With Quintic Polynomial Trajectories

Figure 4.7: Robot Manipulator Arm 3D Multi Body With Quintic Polynomial Trajecto-
ries

In robotics, inverse kinematics is used to compute the joint angles required for a robot
to achieve a target position and orientation of its end-effector. In Simulink and MAT-
LAB’s Simscape Multibody, this process is modeled through a combination of tools.
The Signal Editor defines the desired motion, while Coordinate Transformation blocks
handle frame conversions. The Inverse Kinematics block calculates the necessary joint
movements, and the Robot Manipulator block simulates these actions in real-time. Addi-
tional blocks, such as Get Transform and Coordinate Transformation Conversion, ensure
precise visualization of the robot’s motion in various coordinate frames. This approach
allows for accurate simulation and control of robotic systems in dynamic environments,
as illustrated in Figure (4.8).
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Figure 4.8: Inverse Kinematics Control of a Robot Arm in Simulink using Simscape
Multibody

This example highlights the effectiveness of inverse kinematics for achieving complex
manipulative tasks and validating the robotic arms performance in a simulated setting,
as shown in Figure (4.9).

Figure 4.9: Inverse Kinematics Control of a Robot Arm in Simulink using Simscape
Multibody

4.2 Simulation of Robotic Manipulator Arm Using
GAZEBO

Robot Operating System (ROS) has emerged as a pivotal framework in the field of
robotics, providing a flexible and modular platform for developing complex robotic sys-
tems. ROS is not an operating system in the traditional sense but rather a middleware
that facilitates communication between various components of a robotic system, such
as sensors, actuators, and control algorithms. This modularity allows for the reuse of
code across different projects and supports the integration of diverse hardware and soft-
ware components. With its extensive library of tools and packages, ROS has become
the de facto standard for both research and industrial applications, enabling the rapid
prototyping and deployment of sophisticated robotic systems.
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Figure 4.10: ROS : Emblem of Robotics Operating System

MoveIt is a versatile framework in the ROS (Robot Operating System) ecosystem, de-
signed to simplify motion planning, manipulation, and perception for robotic systems. It
supports robots with multiple degrees of freedom, such as robotic arms and mobile ma-
nipulators. MoveIt offers advanced motion planning algorithms for generating collision-
free trajectories, integrated with real-time perception to adapt to dynamic environments.
Its modular architecture allows for customization, and it includes tools for inverse and
forward kinematics. Additionally, MoveIt supports simulation environments for testing
robotic motions before real-world deployment, making it valuable in both research and
industry.

Figure 4.11: MoveIt : Symbol of Robotics Motion Plannin

Complementing ROS is the Gazebo 3D simulator, a powerful tool for simulating and
testing robotic systems in a virtual environment. Gazebo offers a high-fidelity simulation
environment that replicates the physical properties of the real world, including dynamics,
kinematics, and sensor feedback. This allows researchers and developers to test and
validate their algorithms and designs before deploying them on physical robots, thus
reducing the risk of hardware damage and optimizing the development process. The
integration of Gazebo with ROS provides a seamless workflow, where the same ROS code
can be used both in simulation and on real hardware, facilitating a smooth transition
from development to deployment.
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Figure 4.12: Gazebo : Symbol of Robotics Simulation Environment

To model and analyze a robotic arm within the Gazebo simulation environment, one
must first develop a detailed 3D representation of the robotic arm using CAD software
such as SolidWorks or Blender. This model should encompass all critical components,
including links, joints, and actuators, each accurately defined with precise dimensions,
mass properties, and motion constraints. Following the completion of the model, it is
exported in a format compatible with Gazebo, typically as a URDF (Unified Robot De-
scription Format) file.
Subsequently, the URDF model is imported into Gazebo, where it is configured for sim-
ulation. This involves setting up the environment to accurately reflect the robotic arm’s
dynamics by adjusting physics parameters such as gravity, friction, and collision prop-
erties. Gazebos advanced physics engine facilitates a realistic representation of these
dynamics, enabling detailed evaluation of the robotic arms behavior under various con-
ditions [19].
The general layout of a link tag is shown in Figure (4.13)

Figure 4.13: Overall Structure of a Link Tag

Integration with ROS (Robot Operating System) further enhances the simulation pro-
cess. ROS provides robust tools for controlling the robotic arm, visualizing the simulation,
and collecting performance data. This integration supports the testing of complex con-
trol strategies, including inverse kinematics and path planning algorithms, within the
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simulated environment. Such comprehensive simulation enables researchers to refine and
validate the robotic arms design and functionality, mitigating potential issues before phys-
ical implementation and ensuring optimal performance in practical applications. Once
the URDF file of the robotic arm is loaded into Gazebo, the next step is to launch and
visualize the model in the simulation environment. This involves initializing the Gazebo
world and launching it using a ROS launch file, which includes both the Gazebo world
and the URDF model. The launch file defines key parameters such as the robot’s initial
position and environment settings.
Once Gazebo is running, the robotic arm will be visible, and its components can be
visualized and controlled. ROS nodes can be launched to manage joint movements, sen-
sor feedback, and task execution, enabling real-time interaction with the arm. Gazebo
also offers tools for monitoring joint states and forces, making it ideal for testing robotic
systems.

Figure 4.14: Robotic Arm Deployment and Visualization in Gazebo ROS

To simulate pick-and-place operations using ROS (Robot Operating System), MoveIt,
and Gazebo, several key components are integrated to enable autonomous object manip-
ulation. The pick operation involves identifying and grasping an object, such as a red
block, using a robotic arm in a simulated environment.

Figure 4.15: Visualization of Robotic Arm Interacting with Red Block in Gazebo ROS
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Utilizing ROS and MoveIt, the robot arm is capable of identifying and picking up the
red block from various positions. The arm can approach the block either from above
or from the side, depending on its location. The process begins with the ROS MoveIt
framework, which plans the motion trajectory for the arm. The trajectory planning
involves calculating the optimal path to reach the block while avoiding any obstacles.
Once the path is determined, the Gazebo simulation environment executes the planned
motion, allowing the Braccio arm to successfully grasp the red block. This simulation
demonstrates the effectiveness of ROS and MoveIt in performing precise and adaptable
pick operations, showcasing the potential for advanced robotic.

Figure 4.16: Execution of Red Block Pickup by Robot Arm with ROS and MoveIt

4.3 Simulation of Robotic Mobile Using MATLAB

In this section, we delve into the implementation of forward and inverse kinematics for
a mobile robot equipped with Mecanum wheels. The robot’s movement capabilities are
modeled using parameters such as wheel radius, wheelbase (the distance between the
front and rear wheels), and track width (the distance between the left and right wheels).
We present two approaches: forward kinematics and inverse kinematics.
The robot’s initial position is defined by the coordinates [x0, y0] and the orientation θ0,
where x0 and y0 specify its location on the Cartesian plane, and θ0 represents its angular
orientation relative to a fixed reference axis. These parameters serve as the starting point
for analyzing the robot’s movement in subsequent time steps. Figure (4.17) illustrates
the robot’s initial configuration, where the position is represented as [x, y, θ] = [0, 0, 0],
indicating that the robot starts at the origin with zero orientation.
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Figure 4.17: Initial position and orientation of the robot at [x0, y0, θ0].

The first simulation demonstrates forward kinematics for a four-wheel Mecanum robot.
This method computes the robots motion based on known wheel speeds. By inputting
these speeds, the model calculates the robots linear and angular velocities in the global
coordinate system. The robots position (x, y) and orientation θ are updated at each time
step, and its trajectory is visualized in real time on a 2D plane. This simulation illustrates
the robot’s omnidirectional mobility resulting from different wheel speeds.
As illustrated in Figure (4.18), two examples of wheel speed configurations are shown:

(a) Wheel speeds: [0.5; 0.5; 0.5; 0.5] (b) Wheel speeds: [1; 0; 0; 1]

Figure 4.18: Forward Kinematics and Path Visualization of a Four-Wheel Mecanum
Robot with Wheel Speeds

The second simulation focuses on inverse kinematics. Rather than specifying wheel
speeds, this approach starts with a desired velocity, including linear velocities in the
x and y directions and an angular velocity around the z-axis. The inverse kinematics
model then calculates the wheel speeds required to achieve these desired velocities. The
robots position and orientation are updated accordingly, and the resulting path is vi-
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sualized similarly to the forward kinematics simulation. This approach emphasizes the
precision of inverse kinematics in controlling robot movement based on specific velocity
goals.
Figure (4.19) demonstrates two examples of how different desired body speeds affect the
resulting wheel speeds for a four-wheeled Mecanum robot:

(a) Desired body speeds: [0; 0.2; 0] (b) Desired body speeds: [0.5; 0.5; 0.5]

Figure 4.19: Inverse Kinematics and Path Visualization for a Four-Wheel Mecanum
Robot with Reference Velocities

Together, these simulations highlight the kinematic capabilities of Mecanum-wheeled
robots from different angles. Forward kinematics allows for motion prediction based on
wheel speeds, while inverse kinematics determines the wheel speeds needed for a desired
motion. These methods complement each other in robot control systems, showcasing the
Mecanum wheels versatility and precision in providing omnidirectional movement.

4.4 Simulation of Direct Command Control for Mo-
bile Robotics

This simulation controls a mobile robot by adjusting the speed and direction of its motors
to determine the robot’s overall speed and position. It incorporates real-world factors
like motor speed and direction, with added perturbations to simulate disturbances such
as friction or uneven surfaces.
Int the Figure (4.20) we can see all the simulink blocks used for the simulation.
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Figure 4.20: Simulation of Direct Command Control

4.4.1 Key Components

• Motor Speed and Direction Control: The simulation uses motor speed inputs
and directional commands (forward, sideways, diagonal, or rotational) to control
the robots movement. Each motor follows specific commands to achieve the desired
motion.
In the Figure (4.21) we can see the interface used to insert the motors speed and
directions.

Figure 4.21: Input of Desired Speed Parameters

• Real-world Conventions: To accurately reflect real-world behavior:

– Wheel Diameter: The robots speed is calculated based on the wheel diam-
eter. Larger wheels result in higher speeds for the same rotational velocity.

– Rad/deg Conversion: Motor control is performed in radians per second,
but commands are often given in degrees, requiring conversion.
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4.4.2 Simulation Features

• Perturbations: Unexpected speed changes simulate real-world disturbances, test-
ing the robustness of the control algorithms and the robots ability to stay on course.

• Simplified Dynamics: This simulation focuses on controlling motor speeds and
directions without detailed multibody dynamics.

4.4.3 Manual Command Process

The simulation replicates a manual control system (HMI), allowing the operator to issue
direct movement commands:

• Forward: All wheels move at the same speed.

• Sideways: Wheels are adjusted for lateral movement.

• Rotation (CW/CCW): Opposite wheel directions rotate the robot.

The simulation calculates the robots speed and position based on these commands, while
also showing how the robot reacts to any disturbances during the process but it is not
automated because it needs a control system which made us to make the robot position
control simulation.

4.5 Simulation of Position Control for Mecanum-Wheeled
Mobile Robots

In this simulation of a mecanum-wheeled mobile robots position control using Simulink
and Simscape Multibody, we focus on controlling the robot’s position with a closed-loop
control system that integrates various subsystems for accurate and realistic feedback.
In the Figure (4.22) we find the simulation including the Simulink blocks.

Figure 4.22: Position Control System Architecture of a Mecanum-Wheeled Mobile Robot
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4.5.1 Detailed Simulation Setup

Position and Speed Control Loop

PID Controller for Position Control: At the core of the position control is a PD
(Proportional-Derivative) controller. The input to this controller is the error between the
robot’s current position and the desired target position (X, Y, and orientation). This
error is then processed to generate the required velocity commands (linear and angular
velocities) for the robot.
In the Figure (4.23) we can see the mask used to insert the desired position.

Figure 4.23: Input of Desired Position Parameters

Inverse Kinematics Block: Once the velocity command is calculated, the inverse
kinematics block converts the robots required velocities into individual wheel speeds. This
is crucial in a mecanum-wheeled robot because each wheel has a different velocity vector
to achieve omnidirectional movement. The inverse kinematics equations are implemented
as gain matrices to simplify the transformation between robot velocities and motor speeds.

Motor Control Subsystem

Internal Control for Motors: The desired wheel speeds calculated from the inverse
kinematics are fed into the motor control block. Each motor has its own system, which
ensures the motor’s speed tracks the desired speed accurately.
Saturation Block: A saturation block is placed after the motor control to limit the mo-
tor speed within a realistic range. This is important because real motors have maximum
speed limits that must be respected in the simulation to make it realistic.
Forward Kinematics Block: The actual motor speeds are then converted back into
robot velocities using forward kinematics. This ensures that the feedback loop provides
the actual velocities, which are used to update the robots position.
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Simscape Multibody for Physical Simulation

The Simscape Multibody model represents the physical system of the robot. It consists
of:

• Robot Body and Mecanum Wheels: The body of the robot is modeled as a
rigid solid connected to the wheels using revolute joints. Each wheel is driven by a
motor, and its rotation is captured and fed back into the Simulink control system.

Figure 4.24: 3D Representation of the Robotic System

• World Reference and Planar Ground: The robot operates on a planar sur-
face within a defined world reference. This planar surface constrains the robots
movement to the XY plane while allowing rotation around the Z-axis (theta).

Figure 4.25: Planar and Reference Simulation Overview

• Physical Properties: The wheels and the body are defined with their physical
properties such as mass, inertia, and dimensions. These parameters influence the
dynamics of the robot in the simulation, ensuring realistic interaction between the
robot and the environment.

4.5.2 Simulation Results and Visualization

Scope Values for Speeds and Positions

The simulation provides real-time feedback in the form of speed and position plots using
Simulink Scopes.
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Position Results (X, Y, Theta): The scope displays the actual position (X, Y) and
orientation (Theta) of the robot. As the simulation progresses, these values change,
indicating how the robot approaches the desired final position. The scope allows us to
see how well the PD controller manages the position error, showing convergence toward
the target position over time.
Speed Results (Vx, Vy, Omega): Another scope displays the robot’s linear velocities
in the X and Y directions (Vx, Vy) and the angular velocity (Omega). These speed values
are obtained from the forward kinematics and reflect the real-time velocity of the robot.
The graph shows how the robot accelerates and decelerates as it adjusts its movement
toward the target.
in the next Figure (4.26) we observe an example of the results captured by the position
and speed scoops.

(a) Variation in Position (b) Variation in Speed

Figure 4.26: Scoop Results Analysis Example

Perturbation and Feedback Behavior

During the simulation, perturbations are introduced, which cause temporary deviations
in the robots speed and position. The controllers response to these perturbations is also
captured by the scopes, showing how quickly and effectively the system corrects these
disturbances.

Simulation Visualization

The simulations mechanical visualization using Simscape Multibody provides a 3D view
of the robot as it moves across the plane. This visualization shows how the robot’s body
and wheels interact with the environment, providing a clear visual representation of the
robot’s movement.
Position Variation in the Visualization: As the robot moves from its initial position
to the target, the visualization updates in real-time, showing the changes in the robots
orientation and trajectory. This visual feedback confirms the results observed in the
scopes, demonstrating that the robot’s position changes according to the input commands
and the feedback from the system. In the following Figure (4.27) we can observe the
position changement of the 3D model vehicle between it’s initial and final position.
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(a) Starting Position (b) Ending Position

Figure 4.27: 3D Model Visualization

4.5.3 Observations

Convergence to Final Position: The position control system ensures that the robot
converges toward the final desired position with minimal overshoot and steady-state error.
The PD controller plays a critical role in ensuring smooth transitions, especially during
the deceleration phase when the robot approaches the target.
Velocity Profile: The velocity profiles in the scope show how the robot accelerates and
decelerates in response to position errors. The control system prevents large spikes in
velocity, ensuring that the robot moves smoothly without changing the speed brutally.
Perturbation Response: When perturbations are introduced, the system responds
quickly, correcting any deviations in speed or position. This demonstrates the robustness
of the control loop, which uses feedback from the physical model to maintain control even
in the presence of disturbances.

4.5.4 Conclusion

The simulation of the mecanum-wheeled robot’s position control using Simulink and
Simscape Multibody provides a highly realistic model for testing and validating control
strategies. The combination of a PD controller, kinematic transformations, motor control
with feedback, and a detailed physical model ensures that the simulation closely replicates
real-world robot behavior. The results observed from the scopes and the visual simulation
confirm that the control system effectively manages the robot’s movement, compensating
for disturbances while maintaining accurate trajectory control.
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Chapter 5

Implementation Aspects

Python and Arduino play complementary roles in the field of robotics, leveraging their
unique strengths to create sophisticated and efficient robotic systems. Python, known
for its readability and extensive libraries, is ideal for scripting, automation, machine
learning, and data analysis. It enables complex computations, control algorithms, and
advanced functionalities such as computer vision and autonomous navigation, thanks
to libraries like OpenCV and TensorFlow. On the other hand, Arduino is a popular
open-source electronics platform that provides an easy-to-use micro-controller board and
development environment. It excels in prototyping, controlling hardware components,
and interfacing with various sensors and actuators. By integrating Python and Arduino,
developers can harness the computational power of Python for high-level processing and
decision-making while utilizing Arduino’s capabilities for real-time control and hardware
interfacing. This integration often involves serial communication, where Python scripts
send commands to and receive data from Arduino, allowing for tasks such as sensor data
acquisition, actuator control, and implementing advanced robotic behaviors. Together,
Python and Arduino empower developers to build responsive, intelligent, and versatile
robotic systems suitable for a wide range of applications.

5.1 Raspberry Pi

Raspberry Pi is a versatile and compact single-board computer that has captured the
imagination of hobbyists, educators, and professionals alike. Its small size and low cost
make it accessible to a wide range of users, from beginners learning the basics of program-
ming to advanced developers creating complex projects. Powered by various versions of
the Linux operating system, Raspberry Pi can be programmed in multiple languages,
including Python, C/C++, and Java, among others. Its GPIO (General Purpose In-
put/Output) pins allow users to connect sensors, motors, and other hardware compo-
nents, turning it into a powerful tool for prototyping and experimenting with electronics.
Raspberry Pi offers an affordable and versatile platform for realizing creative visions,
whether individuals are developing a home automation setup, a multimedia hub, or a
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robotic project.

Figure 5.1: Raspberry Pi Key Platform for Robotics and Embedded Systems

5.2 Virtual Network Computing

Virtual Network Computing (VNC) is a technology that allows remote access and control
of computers over a network. It works by transmitting the graphical desktop environ-
ment of the remote system to the viewer, which can be running on a different computer
or device. This enables users to interact with and operate a remote computer as if they
were sitting in front of it, regardless of physical distance. VNC is widely used for remote
technical support, system administration, and accessing files or applications from afar. It
provides a convenient solution for collaboration, troubleshooting, and accessing resources
across distributed environments.

Figure 5.2: Virtual Network Computing Facilitating Remote Access in Robotics and
Embedded Systems

RealVNC is a versatile remote desktop software solution that enables users to access
and control computers or devices from anywhere in the world. With RealVNC, users
can remotely view the desktop interface, transfer files, and even operate applications
as if they were physically present at the machine. This software is particularly popu-
lar among businesses for its secure and reliable remote access capabilities, facilitating
seamless collaboration and troubleshooting across teams. When integrated with Rasp-
berry Pi, RealVNC extends its functionality to the widely used single-board computer,
allowing users to remotely manage their Raspberry Pi projects with ease. This combi-
nation empowers enthusiasts, hobbyists, and professionals alike to harness the power of
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remote computing for various applications, ranging from home automation to industrial
IoT deployments.

Figure 5.3: Controlling Raspberry Pi With Vnc

5.3 Arduino

Arduino programming is a versatile and accessible way to interact with the physical
world through code. Utilizing the Arduino IDE (Integrated Development Environment),
developers can write, compile, and upload code to Arduino micro-controller boards, which
then execute the programmed instructions. This programming environment is based on
a simplified version of C/C++, making it approachable for beginners while still offering
advanced functionality for experienced users. With a vast array of sensors, actuators,
and shields available, Arduino projects span from simple blinking LED experiments to
complex robotics and IoT (Internet of Things) applications.

Figure 5.4: Arduino: The Heart of Creative Electronics Design

5.4 Communication Protocols and Techniques

Raspberry Pi and Arduino can communicate with each other using various communication
protocols, enabling them to exchange data and work together in projects. Here’s a brief
overview of each protocol:
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5.4.1 Serial Communication

- Both Raspberry Pi and Arduino support serial communication via UART (Universal
Asynchronous Receiver-Transmitter) hardware.

- They can exchange data through RX (Receive) and TX (Transmit) pins using a
serial connection.

5.4.2 I2C (Inter-Integrated Circuit)

- I2C is a multi-master, multi-slave serial communication protocol.

- Raspberry Pi and Arduino can communicate as master or slave devices on an I2C
bus, facilitating communication between multiple devices.

5.4.3 SPI (Serial Peripheral Interface)

- SPI is a synchronous serial communication interface.

- It enables full-duplex communication between a master device (e.g., Raspberry Pi)
and one or more slave devices (e.g., Arduino).

5.4.4 USB Communication

- Raspberry Pi and Arduino can communicate over USB using virtual serial ports.

- This method is convenient for establishing communication without additional hard-
ware, especially when physically connected via USB cables.

5.4.5 Network Protocols (e.g., MQTT)

- MQTT (Message Queuing Telemetry Transport) is a lightweight messaging protocol
suitable for network communication.

- Both Raspberry Pi and Arduino can connect to a network and communicate using
MQTT, allowing communication over long distances or with remote servers.

5.5 OpenCV

OpenCV (Open Source Computer Vision Library) is an open-source computer vision
and machine learning software library. Initially developed by Intel, it has become a
key resource for real-time computer vision applications. OpenCV offers a wide range
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of functions and tools that allow developers to process images and videos to detect and
recognize faces, objects, and text. It supports multiple programming languages, including
C++, Python, and Java, and can be deployed on various platforms like Windows, Linux,
and macOS, as well as on mobile operating systems such as Android and iOS. The library
is highly optimized for performance, making it suitable for both research and production
purposes. Its extensive suite of algorithms covers numerous applications in robotics,
surveillance, gesture recognition, and more, enabling the development of innovative and
intelligent vision-based solutions.

Figure 5.5: OpenCV: The Visionary Library for Image Processing

5.6 Graphical User Interface

A graphical user interface (GUI) is a visual platform that allows users to interact with
electronic devices using graphical elements such as icons, buttons, and menus, rather
than text-based interfaces or command-line prompts. GUIs are designed to be intuitive
and user-friendly, enabling users to perform tasks through direct manipulation of these
visual elements. This approach to interface design enhances accessibility and efficiency,
making it easier for people with varying levels of technical expertise to use computers
and other digital devices [20].
In Python, the Tkinter library is a popular choice for creating graphical user interfaces.
Tkinter is the standard GUI toolkit for Python, providing a simple way to create windows,
dialogs, buttons, menus, and other interactive components [21].

Figure 5.6: Tkinter - GUI for Python
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5.6.1 Graphical User Interface for Robot Manipulator Mobile
Control

In this study, we developed a graphical user interface (GUI) using the Tkinter library in
Python to facilitate the control and monitoring of robotic systems. The primary objective
of the GUI is to provide an intuitive and user-friendly platform for interacting with various
robotic components. The interface includes multiple widgets such as buttons, sliders, and
text fields, which allow users to input commands and receive real-time feedback from the
robots. The design of the GUI emphasizes modularity and scalability, enabling easy
integration with different robotic platforms and sensors.
The development of a Graphical User Interface (GUI) for a robotic manipulator using
Python’s Tkinter library provides an efficient means of controlling a robotic system. This
GUI allows users to manage both the movement of a mobile robot and the precise control
of a robotic arm with six degrees of freedom. The interface includes directional buttons for
movement (forward, backward, left, right) and speed control buttons to adjust the robot’s
speed within a defined range. It features two input methods for adjusting the robotic
arms angles: entry fields, which accept angles between -90 and 90 degrees, and sliders,
which offer a more interactive approach. Users can switch between these input methods
using radio buttons, with the GUI dynamically updating to reflect the selected option.
Real-time feedback on angle settings and speed is provided, and users have the capability
to reset all angles to zero and stop the robot’s movements. The interface also integrates
keyboard controls for directional movement and speed adjustment, ensuring a responsive
and user-friendly experience. This Tkinter-based GUI exemplifies a practical application
in robotics, combining functionality with ease of use to enhance both operational and
educational interactions with robotic systems.
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(a) Option 1 (b) Option 2

Figure 5.7: Graphical User Interface for Controlling a Mobile Robot Manipulator

The flowchart presented outlines the systematic process for managing a robot via a graph-
ical user interface (GUI). It starts with initializing the GUI and binding key events to
enable user interaction. The flowchart then details the selection between two input meth-
ods: entry fields for direct angle input or sliders for real-time adjustments. Following
input selection, it describes the steps for validating and applying servo angles when the
’Start’ button is pressed. It also includes mechanisms for adjusting speed, both increasing
and decreasing, and handling cases where the speed remains unchanged. The flowchart
further addresses directional controls, detailing how the robot responds to key presses
for movement or stopping. Finally, it covers the reset functionality, which returns the
robot and angles to their default settings. This structured representation ensures a clear
understanding of the operational workflow and user interactions involved in robot control
through the GUI, as shown in Figure (5.8).
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Figure 5.8: This Figure presents a detailed flowchart outlining the sequential process for
controlling a robot through a graphical user interface (GUI). It includes the components
for speed adjustments, directional movements and management of servo angles.
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The integration of Mecanum wheels in robotic systems enables advanced mobility, al-
lowing omnidirectional movement such as rotation and diagonal motion. This expanded
capability is reflected in the updated Tkinter GUI, which now includes buttons for ad-
ditional movements: Rotate Left, Rotate Right, and various diagonal directions. Each
button is mapped to a corresponding function in the code, providing intuitive control over
the robot’s movement. The GUI layout has been optimized for consistent button size and
spacing, ensuring ease of use and enhancing the overall user experience in controlling the
robot.

(a) Option 1 (b) Option 2

Figure 5.9: Graphical User Interface for Controlling an All-Directional Mobile Manipu-
lator Robot
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5.6.2 Graphical User Interface for Pathfinding Visualization

The Pathfinding Visualizer GUI, created using Python’s Tkinter library, provides an
interactive platform for exploring and comparing the A* and Dijkstra algorithms in a
grid-based environment. The interface allows users to configure start and goal positions,
as well as place obstacles, by clicking on the grid cells. Radio buttons enable easy selection
between placing start points, goal points, or obstacles, with the grid dynamically updating
to reflect these changes. Clear color coding is used throughout the interface, with the
start position marked in green, the goal in red, and obstacles in black, ensuring easy
distinction of these elements.
Users can select either A* or Dijkstras algorithmor a combination of both via radio
buttons, and a "Start" button initiates the selected algorithm(s). The paths generated
by each algorithm are displayed in real-time, with A* paths visualized in blue and Dijkstra
paths in purple, allowing users to see the differences in how the algorithms navigate
the grid. The "Reset" button provides the ability to clear the grid and start fresh,
encouraging experimentation with different setups.
The GUI features a legend to explain color codes for start and goal positions, obstacles,
and paths, making it easy for users to interpret the visual output. It allows simultaneous
visualization of both algorithms, providing a side-by-side comparison to highlight their
different pathfinding strategies.

Figure 5.10: Development and Implementation of a Pathfinding Visualization Interface
Using Tkinter: Analysis of A* and Dijkstra Algorithms
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5.6.3 Line Following Status: GUI Interface and Visualization

Integrating a graphical user interface (GUI) with a microcontroller-based control system
greatly improves the management and monitoring of a line-following robot, enhancing
operational efficiency and user interaction. Developed with Tkinter, the GUI serves as
the main interface for real-time status monitoring, featuring color-coded LED indicators
to represent various operational modes. These modes include:

• STOP: Indicates that the robot halts due to the absence or complete detection of
the line.

• SHARP_LEFT and SHARP_RIGHT: Signal sharp turns in response to de-
tected line curves.

• LEFT and RIGHT: Represent moderate deviations from the line.

• FORWARD: Shows that the robot is moving straight ahead.

The LEDs change color dynamically based on the robot’s status, offering immediate visual
feedback for operators to assess and adjust the robot’s behavior. The GUI is depicted in
Figure (5.11).

Figure 5.11: Graphical User Interface for line-following robot.

The microcontroller, commonly an Arduino, plays a pivotal role in the line-following
robot’s control system by processing inputs from line-tracking sensors. These sensors
continuously monitor the robots position relative to the line, detecting variations in line
presence and direction.
The integration of the microcontroller with a Tkinter-based graphical user interface (GUI)
establishes a comprehensive control system for the robot. The GUI displays real-time
operational status through color-coded LED indicators, dynamically updated based on
data from the Arduino. This setup allows operators to effectively monitor and adjust the
robots behavior. Real-time feedback from the GUI enhances user interaction by providing
an intuitive view of the robots performance and modes.
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5.6.4 Real-Time QR Code Detection System

This real-time QR code detection system integrates advanced computer vision techniques
with a user-friendly graphical interface. The system is designed to efficiently capture and
process video input from a camera, identifying and decoding QR codes within the live
feed. The detection process involves analyzing each frame in real-time, where QR codes
are identified, highlighted, and their data is displayed along with the coordinates of their
center [22]. This combination of real-time processing and intuitive control makes the
system a valuable tool for applications requiring quick and accurate QR code recognition
[22].

Figure 5.12: GUI Visualization of Real-Time QR Code Detection System

In addition to the real-time QR code detection, the system has been enhanced to estimate
the distance between the camera and the detected QR code. This functionality is achieved
by applying the pinhole camera model, which utilizes the known real-world width of the
QR code and the detected width in pixels. The system calculates the focal length of
the camera in pixels based on its horizontal field of view and resolution. By measuring
the width of the QR code in the captured image, the program estimates the distance
in millimeters, which is then converted to centimeters for easier interpretation. This
estimated distance is displayed directly on the video feed, providing users with both the
QR code data and the approximate distance from the camera.
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5.6.5 Real-Time QR Code Detection and Servo Motor Control
Integration

The integration of computer vision and robotic control is demonstrated through a Python-
based graphical user interface (GUI) utilizing Tkinter, OpenCV, and PyZbar. This ap-
plication enables real-time QR code detection and servo motor control via an interactive
interface. OpenCV captures live video, while PyZbar decodes QR codes from each frame.
Frames are processed in grayscale to improve detection accuracy, and QR codes are iden-
tified and analyzed. When the decoded data matches a user-selected QR type (e.g.,
"Blue," "Red," or "Green"), the system draws a bounding rectangle around the QR code
and displays the information on the video feed. The servo motor is then halted as part
of the control feedback loop.
The user interface includes buttons to start and stop the video feed and servo motor, along
with radio buttons for selecting the QR code type for detection filtering. This modular
design allows for interactive control based on camera input. By combining real-time QR
code detection with servo control, the system effectively integrates vision-based object
recognition with mechanical control, offering a robust solution for automation tasks. A
visual representation of this integration is shown in Figure (5.13), which illustrates the
real-time QR code detection and servo motor control interface.

Figure 5.13: GUI for Real-Time QR Code Detection and Servo Motor Control Integration

5.6.6 Tkinter GUI for Managing and Executing Multiple Python
Scripts

A graphical user interface (GUI) is developed using Python’s Tkinter library to manage
and execute multiple scripts. This interface allows users to run various scripts sequentially
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through a set of interactive buttons. Each button is linked to a specific script, and
selecting a button will halt any currently running script before initiating the chosen
one. This design ensures that only one script is active at a time, thus avoiding conflicts.
Additionally, the GUI features a "Home" button that stops any ongoing processes and
refreshes the main window, improving user control and navigation. The interface also
manages the application’s closing event effectively, ensuring all processes are properly
terminated before exiting. This setup offers a user-friendly and efficient way to control
script execution within a cohesive Tkinter-based environment, as illustrated in Figure
(5.14).

Figure 5.14: Graphical User Interface for Managing and Executing Multiple Scripts.

5.7 Functionality and Features of the Robotics Con-
trol Interface

This section has introduced the graphical user interface (GUI) designed for controlling
robotic systems, focusing on both mobile robots and robotic arms. The GUI enhances
user interaction through intuitive controls for navigation and manipulation.In the initial
state, the mobile robot manipulator is positioned at its home configuration, where all joint
angles are set to zero. This configuration ensures that the manipulator is in a known and
repeatable position, which is crucial for calibration and starting tasks. The base of the
robot is stationary, and the manipulator arm is fully extended along a predefined axis.
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This initial state serves as a reference point for subsequent movements and operations,
allowing for precise control and repeatability in tasks such as pick-and-place.
As shown in Figure (5.15), the manipulator’s home configuration aligns its joints along
the predefined axis, providing a stable and consistent starting position for task execution.

Figure 5.15: Robot Manipulator Mobile in Initial State

5.7.1 Mobile Robot Control GUI

The integration of Mecanum wheels into a mobile robot allows for omnidirectional move-
ment, enhancing its ability to maneuver in various directions. Using a graphical user
interface (GUI) and keyboard controls, the robot can be operated by pressing the corre-
sponding arrow keys. For instance, pressing the up arrow moves the robot forward, the
down arrow moves it backward, while the left and right arrow keys enable lateral move-
ment and speed adjustment further streamline control. This seamless control provides
an intuitive interface for the user, where the robot’s movement is displayed in real-time
within the GUI, offering both visual feedback and dynamic interaction with the mobile
robot, as shown in Figure (5.17) and Figure (5.19).
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Forward movement control

Backward movement control

Figure 5.17: Results of the GUI Showing Control for Forward and Backward Movements
of the Mobile Robot with Mecanum Wheels
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Left movement control

Right movement control

Figure 5.19: Results of the GUI showing control for left and right movements of the
mobile robot with Mecanum wheels

5.7.2 Robotic Arm Control GUI

The graphical user interface (GUI) for the robotic arm provides real-time control over the
arm’s angles. The interface displays the angles for each joint directly on the GUI, allowing
the user to visualize different configurations of the arm. For instance, if the shoulder joint
is set to -45 degrees, the elbow to 30 degrees, and the forearm to -60 degrees. The result
is shown in the following Figure (5.20).
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Figure 5.20: Graphical User Interface for the Robotic Arm Showing Real-Time Angle
Adjustments

A pick-and-place operation uses a GUI to control the angles of servo motors in a robotic
arm. By adjusting these angles, the arm moves to pick an object from one location and
place it in another. The GUI allows users to input the servo angles, coordinating the
movement of the arm’s joints to ensure accurate and smooth positioning of the end ef-
fector. This simplifies the process, enabling precise and repeatable pick-and-place tasks.
This visualization of the pick-and-place operation, as illustrated in Figure (5.22), demon-
strates how the robotic arm adjusts its configuration to handle objects with precision and
efficiency.
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Pick Operation

Place Operation

Figure 5.22: Graphical user interface for the robotic arm showing real-time angle adjust-
ments

5.7.3 Pathfinding and Robotic Arm Operations

In this study, we explore the implementation of pathfinding algorithms and robotic arm
operations within a graphical user interface (GUI) for a mobile robot. The pathfinding
visualization employs both the A* and Dijkstra algorithms on a (3x3) grid. The GUI is
designed to demonstrate the functionality of these algorithms in navigating the mobile
robot from a start position of (0,0) to a goal position of (2,2), considering obstacles
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located at coordinates (2,0) and (1,2) as shown in Figure (5.23) and Figure (5.24).
Additionally, we address the operations of a robotic arm tasked with executing a pick-and-
place operation. The robotic arms objective is to transport an object from a start position
(0,0) to a goal position (2,2). The operation involves moving the arm to the start position,
grasping the object, navigating to the goal position, and then releasing the object. This
integrated system highlights the interaction between mobile robot navigation and robotic
arm operations in achieving complex objectives.

Figure 5.23: Pathfinding visualization GUI for the mobile robot

Figure 5.24: Pathfinding Visualization GUI for the Mobile Robot Using the A* Algorithm
and Dijkstra Algorithm

For the following figures, we used the A* algorithm for mobile robot navigation.
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Figure 5.25: Start Position of the Mobile Robot and Robotic Arm

Figure 5.26: Position (0, 1) for the Mobile Robot and Robotic Arm

Figure 5.27: Goal Position of the Mobile Robot and Robotic Arm
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5.7.4 Line-Following Robot GUI

The GUI for the line-following robot effectively displays the robot’s operational status
through a series of LED indicators. These indicators, which represent states such as
STOP, SHARP_LEFT, LEFT, FORWARD, RIGHT, and SHARP_RIGHT, are color-
coded to provide immediate visual feedback on the robot’s behavior.
In operation, the GUI continuously updates the LED colors based on real-time data
received via serial communication. Each status update triggers a change in the corre-
sponding LED indicator’s color, reflecting the robot’s current activity or state.
For example, when the robot is moving forward, as shown in Figure (5.28), the FOR-
WARD LED illuminates green, while other statuses are represented in red when inactive.
This dynamic display allows for straightforward monitoring and assessment of the robot’s
performance.

Figure 5.28: Robot Moving Forward While Following a Line

Similarly, Similarly, when the robot turns right, as shown in Figure (5.29), the RIGHT
LED is highlighted, providing clear visual feedback on the robot’s directional change.
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Figure 5.29: Robot Turning Right While Following the Line

5.7.5 Real-Time QR Code Detection System GUI

The system comprising a Raspberry Pi 4, Raspberry Pi Camera Module v2, and a
gimbal with a servo motor is designed for high-precision, stabilized image and video
capture. The Raspberry Pi 4 acts as the central processor, handling both the control of
the servo motor and the processing of visual data from the camera. The Camera Module
v2 provides high-resolution imaging for applications such as object tracking and video
streaming. The gimbal, driven by the servo motor, stabilizes the camera and allows it to
rotate. This setup is suitable for various uses, including robotics, surveillance, and real-
time computer vision, offering dynamic camera control and stable, high-quality imaging.

Figure 5.30: Assembly of Raspberry Pi 4, Camera Module v2, Gimbal, and Servo Motor
Components

The graphical user interface (GUI) for the real-time QR code detection system integrates
a live camera feed from a Raspberry Pi camera module. The system’s primary feature
is its ability to detect QR codes in real time, highlighting them with bounding boxes on
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the live feed, as shown in Figure (5.31).
In addition to the visual representation, the GUI displays the decoded information from
the QR code in a dedicated text field. The system also provides the center coordinates
of the QR code in pixel terms (u, v), offering precise location details.
The interface includes controls for starting and stopping the camera feed, adjusting cam-
era settings, and saving detected QR codes for further analysis. The design is user-
friendly, ensuring intuitive navigation and efficient real-time processing of QR codes.

Figure 5.31: Real-Time QR Code Detection with Center Coordinates

The system also provides the distance between the camera and the QR code, measured
in centimeters. This distance measurement is crucial for assessing the accuracy of the
QR code detection and ensuring proper alignment during processing. The distance is
displayed in the GUI, as illustrated in Figure (5.32), allowing users to monitor and adjust
their setup as needed.
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Figure 5.32: Distance Measurement Between the Camera and the QR Code

5.7.6 Real-Time QR Code Detection and Servo Motor Control
GUI

The GUI for real-time QR code detection and servo motor control integrates video analysis
with mechanical actuation. It continuously processes the live video feed to identify QR
codes, highlighting those that match user-selected categories such as "Blue", "Red", or
"Green" with a bounding rectangle and overlaying relevant information on the feed.
The GUI also controls a servo motor, which is activated by pressing the "Start Servo"
button. The motor’s operation is closely linked to the QR code detection process, it
rotates until the specified QR code is detected, at which point the system automatically
stops the motor. This ensures a coordinated response between the visual detection of QR
codes and the servo motor’s mechanical actions, as is illustrated in Figure (5.33).
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Green Blue

Figure 5.33: Real-Time QR Code Detection with Servo Motor Control Interface
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General Conclusion

This project report presents a comprehensive exploration of robotics systems and compo-
nents, emphasizing the integration of theoretical foundations with practical applications.
The study begins with a thorough examination of the fundamental principles underlying
robotic control, including control theory, command architectures, and sensor integration.
The theoretical foundation sets the stage for understanding various control strategies,
which are further explored in the context of mobile robots, manipulator arms, and mo-
bile manipulator robots.
The modeling section delves into the kinematic and dynamic aspects of robotic systems,
providing detailed insights into Mecanum wheel models, kinematic constraints, and tra-
jectory generation. By employing both forward and inverse kinematics, the report lays a
solid foundation for understanding the motion planning and control of robotic arms.
In the trajectory generation and planning section, the report covers key algorithms such
as Dijkstras and A* algorithms, offering a historical perspective, detailed descriptions,
pseudocode, and comparative analysis. These algorithms are essential for pathfinding
and navigation tasks, ensuring efficient and accurate movement of robotic systems.
Simulation plays a crucial role in validating the theoretical models and algorithms. The
report includes simulations of robotic manipulator arms and mobile robots using MAT-
LAB and GAZEBO, demonstrating how these tools can be leveraged to test and refine
robotic systems.
Implementation aspects focus on practical considerations, including the use of Raspberry
Pi, Arduino, and various communication protocols. The integration of OpenCV for com-
puter vision applications and the development of graphical user interfaces (GUIs) using
Tkinter are highlighted. These GUIs facilitate real-time control, pathfinding visualiza-
tion, and QR code detection, underscoring the importance of user-friendly interfaces in
robotics.
Overall, this project underscores the synergy between theoretical knowledge and practical
implementation, providing valuable insights into the design, simulation, and control of
advanced robotic systems.
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