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Preface

In today’s data-driven world, the ability to harness the power of data

analysis is a vital skill for professionals across various industries. This lecture

handout is designed to serve as a comprehensive guide to data analysis, with

a particular focus on its applications in industrial contexts.

Throughout this lecture handout, we strive to offer a balanced blend

of theory and practical applications. Real-world examples and case studies

drawn from industrial settings will illustrate how data analysis techniques can

be applied to solve complex problems and drive informed decision-making.

We hope that this lecture handout will serve as a valuable resource for

students aiming to become proficient data analysts in the industrial land-

scape.
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INTRODUCTION

In today’s industrial landscape, the mode of production is characterized by
larger firm sizes, substantial investments, mass production, and assembly-
line manufacturing. This phase is also marked by the evolution of networked
technologies, including railways, pipelines, electricity, and telephones. The
increase in positive externalities resulting from advancements in transporta-
tion and communication, coupled with the growing integration of science into
business operations, akin to the industrial revolution of the previous century.

In the industrial sphere, there is an unprecedented generation of vast
amounts of data. This raw data emanates from various domains, encompass-
ing product lifecycle management, design, assembly processes, and quality
control. It can also be sourced from equipment such as engines, compressors,
or conveyors, as well as from external partners, suppliers, or customers.

In the face of this deluge of data, the recognition of the importance of
extracting insights from it has taken center stage in the industry. This realiza-
tion has propelled the development and adoption of data analysis techniques
within the industrial landscape.

This lecture handout, designed for third-year industrial engineering stu-
dents, aims to provide a comprehensive introduction to data analysis, with
a focus on essential concepts and methods.
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The structure of this handbook is designed to provide a comprehensive
journey through the world of data analysis, catering to both beginners and
seasoned practitioners:

Chapter 1: Fundamental Concepts of Data Analysis
In this opening chapter, we lay the foundation by introducing the fundamen-
tal concepts and principles of data analysis in an industrial context.

Chapter 2: Univariate Analysis
The second chapter takes a deep dive into univariate analysis. Students will
explore various unidimensional measures and learn how to leverage them for
effective numerical operations.

Chapter 3: Bivariate Analysis
Our third course focuses on bivariate analysis. Here, students will gain valu-
able insights into utilizing and computing different types of correlations be-
tween variables.

Chapter 4: Principal Component Analysis (PCA)
In this fourth chapter, students will delve into the world of Principal Compo-
nent Analysis (PCA), a powerful method for examining relationships between
multiple variables and reducing dimensionality.

Chapter 5: Multiple Correspondence Analysis (MCA)
The fifth course introduces Correspondence Analysis and Multiple Corre-
spondence Analysis (MCA). Students will discover how these techniques un-
veil the underlying structures within multidimensional data.

Chapter 6: Classification in Machine Learning
Chapter 6 delves into the foundational approaches used in machine learn-
ing classification. Students will gain a solid understanding of classification
techniques and their practical applications.

Chapter 7: Clustering in Machine Learning
Our final chapter, Chapter 7, serves as a comprehensive introduction to clus-
tering in machine learning. It covers the core concepts of clustering, explores
different clustering tasks, and provides insights into various types of cluster-
ing algorithms.
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CHAPTER 1

FUNDAMENTAL CONCEPTS OF DATA
ANALYSIS

Data analysis encompasses a variety of methods and techniques designed to
extract actionable knowledge from raw data. Whether in the realms of in-
dustry, commerce, scientific research, or other domains, data analysis plays
a pivotal role in transforming data into actionable information. This equips
stakeholders with the capacity to make informed decisions and address com-
plex challenges.

In this chapter, we will introduce the fundamental concepts and principles
of data analysis in an industrial context.



Chapter 1 Fundamental Concepts of Data Analysis

1.1 Definition of Data Analysis

Data analysis originates from the realm of statistics and focuses on jointly
describing data. Its purpose is to provide a more concise description of the
fundamental information within the data, facilitating classification, descrip-
tion, and analysis.

The primary goal of data analysis is to extract valuable information from
raw data and convert it into actionable knowledge, ultimately improving
comprehension and supporting decision-making.

Data analysis plays a crucial role in various fields, including business,
science, and technology. It involves the systematic examination of data sets,
whether they are numerical, categorical, or textual, to identify patterns, re-
lationships, and trends. This process often requires the use of statistical
techniques, data visualization tools, and advanced software to uncover mean-
ingful insights from the data.

1.2 Understanding the Relationship Between

Data Analysis (DA), Artificial Intelligence

(AI), Machine Learning (ML), and Data

Mining (DM)

According to the American mathematician and statistician John Wilder
Tukey, data analysis procedures include techniques for interpreting their re-
sults, methods for planning data collection to enhance analysis precision or
accuracy, and all the tools and findings of mathematical statistics relevant to
analysis (Tukey, 1962). Data analysis shares connections with Data Mining,
ML, and AI. In this section, We will provide a summary of each concept
separately and then explore the relationships between them.

Data Mining as a subdomain of AI, involves the process of analyzing
vast amounts of information to uncover trends and patterns. In this context,
generating knowledge means discovering new and non-trivial patterns, rela-
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Chapter 1 Fundamental Concepts of Data Analysis

tions, and trends in data that are valuable to the user. The Data Mining
process includes data collection and selection, data pre-processing, data anal-
ysis with result visualization, interpretation of findings, and the application
of knowledge (Schuha et al., 2019).

Machine Learning is a natural outgrowth of the intersection of Com-
puter Science and Statistics. It focuses on getting computers to program
themselves from experience and initial structure, rather than manual pro-
gramming. Unlike Statistics, which primarily deals with drawing conclusions
from data, Machine Learning incorporates questions about computational ar-
chitectures and algorithms to effectively capture, store, retrieve, and merge
data. It also considers how multiple learning subtasks can be orchestrated
in a larger system, as well as issues of computational tractability (Mitchell,
2006).

Artificial Intelligence Turing proposed a ’definition of psychological
phenomena in terms of behavioral patterns,’ suggesting that a machine can
be considered to possess intelligence if its behavior is ’indistinguishable from
that of a human being.’ According to Turing, a computer can be said to
have artificial intelligence if it can replicate human responses under specific
conditions (Moor, 2003).

DA, AI, ML, and DM often intersect in practical applications. For in-
stance, in the development of AI-driven recommendation systems, DA is used
to understand user behavior, DM identifies patterns in user preferences, and
ML algorithms power personalized recommendations.

8
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Figure 1.1: Relationship Between DA, AI, ML, and DM

9
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1.3 Data Analysis Models

Data analysis models are mathematical or computational frameworks used to
analyze and interpret data. These models help extract meaningful insights,
patterns, and information from raw data. There are various types of data
analysis models that can be grouped into the following main categories :

• Statistical models: use mathematical equations to encode the infor-
mation extracted from data, make predictions, and infer relationships
between variables. In some cases, statistical modeling techniques can
quickly provide suitable models. Examples include linear regression and
logistic regression.

• Factorial models: are mathematical models designed to assess the si-
multaneous impact of multiple factors. Their objective is to streamline
the variables by condensing them into a limited set of synthetic compo-
nents, primarily utilizing linear algebra tools.
Factorial models prove especially valuable when investigating intricate
systems in which multiple variables can produce interrelated and inter-
active effects. These models find widespread application in industrial
design, allowing exploration of the connections between different factors
and their influence on the studied phenomena.

• Classification models: are a type of machine learning model used in
the field of supervised learning. These models are designed to categorize
or classify input data into one or more predefined classes or categories
based on their characteristics or features.
Classification models have a wide range of applications across various
industries. For example to optimize transportation logistics, these mod-
els can used to classify routes based on factors such as traffic, weather,
and cost-effectiveness.

• Clustering models: are machine learning or statistical techniques used
in data analysis to group similar data points or objects together based
on certain features or characteristics. The primary goal of clustering

10
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is to find hidden patterns, structures, or natural groupings within a
dataset without prior knowledge of class labels or categories.
Clustering models find applications in various industries due to their
ability to uncover patterns and group similar data points or objects
together. For example, in customer segmentation, they are used to
cluster customers with similar purchase behaviors.

1.4 Types of Data Analysis

Data analysis encompasses a variety of methodologies and techniques em-
ployed to investigate, interpret, and derive insights from data. The selection
of these methodologies is driven by the particular objectives of the analysis.
Below are several prevalent categories of data analysis:

• Descriptive analysis: revolves around the task of summarizing and
presenting data in a manner that provides a comprehensive view of key
characteristics, such as mean, median, mode, and standard deviation.
Its primary objective is to facilitate a grasp of the fundamental at-
tributes of the data, offering insights into accomplishments and provid-
ing an understanding of past events.

• Predictive Analysis: involves building models that can make predic-
tions about future outcomes based on historical data.
Data Mining, Machine learning algorithms and regression models are
commonly used for predictive analysis.

• Prescriptive analysis: helps in selecting the best solution among sev-
eral possible actions to guide what will be achieved.
It is often employed in decision optimization and provides recommen-
dations for achieving desired outcomes.

• Diagnostic analysis: focuses on identifying the causes of specific
events or outcomes. It is particularly useful in troubleshooting issues
and understanding why certain events occurred.

11
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1.5 Nature of Data

In data analysis, two primary types of data or variables are commonly dis-
tinguished: quantitative data and qualitative data.

1.5.1 Quantitative or Numeric Data

In data analysis, quantitative or numeric data refers to information or char-
acteristics that can be quantified and are expressed as numerical values.
In quantitative data, two primary types are recognized: continuous quanti-
tative data and discrete quantitative data.

1.5.1.1 Continuous Quantitative Data

Quantitative data is considered continuous when it can take an infinite num-
ber of real values within a given interval. The height of a person is an example
of continuous quantitative data.

1.5.1.2 Discrete Quantitative Data

Discrete quantitative data is limited to a finite set of real values within a
specified interval. For instance, the number of employees in a company

1.5.2 Qualitative or Categorical Data

Qualitative or categorical data refers to a non-quantifiable characteristic, of-
ten stemming from a count.
Qualitative data can be divided into two major categories: nominal qualita-
tive data and ordinal qualitative data.

1.5.2.1 Nominal Qualitative Data

Refers to descriptions of names or categories without any order. These data
are primarily used for labeling variables. For instance, color.

12
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1.5.2.2 Ordinal Qualitative Data

Is data that exhibits values defined by an ordering relationship among the
different possible categories. Customer ratings of a company’s service quality
are an example of ordinal qualitative data. It includes categories like ’Good,’
’Very Good,’ ’Excellent’.

Figure 1.2: Data types

1.6 Impact of Data Analysis in the Industry

The process of analyzing information is invaluable, not only for decision-
making but also for business development. Indeed, data analysis has brought
about a revolution in the way businesses operate.

Here are some key aspects of its impact:

• Improved decision-making: the decision can be improved by an-
alyzing historical and real-time data, businesses can identify trends,
patterns, and insights that guide strategic choices.

• Supply chain optimization: data analysis optimizes supply chain
management by forecasting demand, managing inventory efficiently, and
minimizing disruptions. This ensures that products are delivered to
customers on time.

13
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Figure 1.3: Data Analysis and the Industry

• Quality control: industries like pharmaceuticals and automotive use
data analysis for quality control. It helps identify defects and deviations
early in the production process.

• Energy efficiency: energy-intensive industries utilize data analysis to
optimize energy consumption. This reduces energy costs and environ-
mental impact.

• Predictive maintenance: in manufacturing and heavy industries,
data analysis is used for predictive maintenance. By analyzing sensor
data and equipment performance, organizations can predict when ma-
chinery needs maintenance, reducing downtime and maintenance costs.

• Personalized customer: industries such as e-commerce, marketing,
and retail leverage data analysis to understand customer behavior and
preferences. This enables the delivery of personalized products and ser-
vices, improving customer satisfaction and loyalty.

• Competitive advantage: companies that effectively harness data anal-
ysis gain a competitive advantage. They can respond quickly to market
changes, adapt strategies, and innovate based on data-driven insights.

14
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1.7 Conclusion

In this chapter, we’ve outlined the core principles of data analysis. We com-
menced by defining data analysis and its associations with artificial intelli-
gence, machine learning, and data mining. Following this, we delved into
the models of data analysis and its various types. We also introduced the
different data types, encompassing quantitative data with its subsets of con-
tinuous and discrete categories, as well as qualitative data with nominal and
ordinal classifications. Finally, we explored the significance of data analysis
within industry.

In the subsequent chapter, we will introduce the unidimensional measures
employed in data analysis.
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CHAPTER 2

UNIDIMENSIONAL MEASURES

In this chapter, we will introduce the most frequently employed unidimen-
sional measures in descriptive statistics. Specifically, Section 2.2.2 covers
Measures of Central Tendency. Section 2.2.3 delves into Measures of Varia-
tion. Measures of Position are elucidated in Section 2.2.4, and Section 2.2.5
outlines Measures of Skewness and Kurtosis. We conclude this chapter with
a set of exercises and their respective solutions.
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2.1 Definition of Descriptive Statistics

Descriptive statistics, within the realm of statistics, entails techniques for
summarizing and presenting data in a meaningful manner, facilitating a com-
prehensive grasp of its fundamental characteristics. Descriptive statistics
empower us to draw inferences beyond the analyzed data and arrive at con-
clusions concerning any hypotheses we may have formulated.
The most common unidimensional descriptive statistical measures will be
presented in the following section.

2.2 Measures in Descriptive Statistics

2.2.1 Frequency Distribution

In statistics, frequency relates to the frequency of occurrence of specific values
within a dataset, which can consist of categorical or numeric variables. It is
common to use class intervals for continuous variables. Relative frequency
distributions, meanwhile, convey frequency information as percentages.

2.2.2 Measures of Central Tendency

2.2.2.1 Mean (Average)

Calculated by summing all values and dividing by the number of data points.
It represents the central or typical value.

X̄ =
1

N

N∑
i=1

xi (2.1)

where:
X̄: represents the sample mean.
N: represents the total number of values in the sample.
denotes the summation of all values from i=1 to i=N.
xi : represents each individual value in the sample.
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We can also compute the mean using the frequencies or relative frequencies.

X̄ =

∑N
i=1 xi × fi∑N

i=1 fi
(2.2)

Where,
fi : represents the frequency of individual xi.

2.2.2.2 Median

The middle value when data is ordered from least to greatest, It is less
influenced by outliers in comparison to the mean.

Median =


(xN

2
+x

(N2 +1)
)

2
if N is even

xN+1
2

if N is odd
(2.3)

2.2.2.3 Mode

The most frequently occurring value in a data.

Mode = value with the highest frequency (2.4)

To compute the mode, another formula can be used:

Mode = L+ h× (fm − f1)

(fm − f1) + (fm − f2)
(2.5)

Where:
L denotes the lower limit of the modal class.
h denotes the size of the class interval.
fm denotes the frequency of the modal class.
f1 denotes the frequency of the class preceding the modal class.
f2 denotes the frequency of the class succeeding the modal class.
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Advantages Disadvantages

Mean -Easy to calculate

-Strongly influenced by

extreme values

-Poor representation

of a heterogeneous population

Median

-Not influenced by extreme values

-Calculable for cyclical data

where the mean has little significance.

-Represents only the value that

divides the sample into

two equal parts

Mode

-Not influenced by extreme values

-Calculable for cyclical data

-A good indicator of heterogeneous population

-Very sensitive to variations

in class amplitudes

Table 2.1: Comparison between Mean, Median, and Mode
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2.2.3 Measures of Variation (Spread)

2.2.3.1 Range

Represent the difference between the maximum and minimum values in a
data.

Range = max(xi)−min(xi) (2.6)

2.2.3.2 Absolute Deviation

Is a statistical term that refers to the absolute value of the difference between
a data point and a measure of central tendency, such as the mean, median,
or mode. It quantifies the extent to which individual data points in a data
set vary from the chosen measure of central tendency.

AbsoluteDeviation = |x− C| (2.7)

Where:
x : is data point
C : is central value (mean, median, or mode)

2.2.3.3 Variance

A measure of how far the set of data is dispersed from their mean value.
Represented by σ2 or S2 the variance is the average of the squared difference
from the mean.
The formula for population variance is defined as follows:

σ2 =

∑N
i=1(xi − µ)2

N
(2.8)

Where:
N : is the number of observation in the population
xi : is the ith observation in the population
µ : is the mean of the population.
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When using frequencies, the formula becomes:

σ2 =
1

N

N∑
i=1

fix
2
i − µ2 (2.9)

The formula for Sample Variance is defined as follows:

S2 =

∑N
i=1(xi − X̄)2

N − 1
(2.10)

Where
X̄ : is the mean of xi .

2.2.3.4 Standard Deviation

Standard Deviation, also called root mean square deviation, is the square
root of the variance of the given data set. It is a measure of the average
amount of variation.
The formula for population standard deviation is defined as follows:

σ =

√∑N
i=1(xi − µ)2

N
(2.11)

The formula for sample standard deviation is defined as follows:

S =

√∑N
i=1(xi − X̄)2

N − 1
(2.12)
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Advantages Disadvantages

Range -Easy to calculate -Sensitivity to outliers

Absolute

Deviation

-Simplicity

-Used to measure error or deviation

from a desired value

-Limited for complex

situation

Variance

-Quantifiable measure of how spread out

the data points are around the mean value

-Sensitive to deviations

-Lack of direction

-It less intuitive

to understand

-Sensitive to outliers

Standard

Deviation

-Measured in the same units

as the original data

so it clear and interpretable

-Useful for comparisons

-May not reflect data

distribution shape

-Sensitive to outliers

Table 2.2: Comparison between Range, Absolute deviation, Variance and
Standard Deviation
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2.2.4 Measures of Position

Quantiles represent a natural extension of the concept of the median, as they
are values that partition a dataset into equal segments. These quantiles are
commonly classified as quartiles, deciles, and percentiles.

2.2.4.1 Quartiles

Divide the distribution into four equal parts, and they are labeled as Q1
(the first quartile), Q2 (the second quartile or median), and Q3 (the third
quartile).
The significance of each quartile is as follows:
Q1: 25% of the data lies below Q1, while 75% lies above it.
Q2: Marks the midpoint, with 50% below and 50% above.
Q3: 75% of the data falls below Q3, leaving 25% above.

2.2.4.2 Deciles

It split the distribution into ten equal segments, represented as D1, D2, D3,
D4, D5, D6, D7, D8, and D9. Each ’D’ value divides the lower 10% of the
data from the upper 90%, and so forth.

2.2.4.3 Percentiles

Percentiles divide the data into 100 equal parts, yielding 99 percentiles la-
beled as P1, P2, P3, P4, and so on.
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2.2.5 Measures of Skewness and Kurtosis

2.2.5.1 Skewness

Skewness is a statistical measure that quantifies the departure from symmetry
or the presence of asymmetry in a dataset. It becomes evident on a bell
curve when data points are not evenly distributed to the left and right of the
median.
The distribution of skewness values is as below:
Skewness = 0 when the distribution is normal.
Skewness > 0 when more weight is on the left side of the distribution.
Skewness < 0 when more weight is on the right side of the distribution.

Skewness =

∑N
i=1(xi − X̄)3

(N − 1)× σ3)
(2.13)

Figure 2.1: Positive and negative skew

2.2.5.2 Kurtosis

Kurtosis is a statistical term that characterizes frequency distribution. It
measures the peakedness or flatness of the data distribution.
kurtosis =3, indicates that the distribution has the same tailedness as a nor-
mal distribution
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kurtosis < 3, is referred to as platykurtic, which means the distribution has
lighter tails and is flatter compared to a normal distribution.
kurtosis > 3, is termed leptokurtic, signifying that the distribution has heav-
ier tails and is more peaked compared to a normal distribution.

Kurtosis =

∑N
i=1(xi − X̄)4

N × S4
(2.14)

Figure 2.2: Positive and negative Kurtosis
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2.3 Exercices

Exercice 1

The following table shows the distribution of daily wages in dinars in a com-
pany:

Daily Wage (xi) # Employees (fi)

450 6

500 10

550 24

600 18

700 5

Table 2.3: Daily Wage

1- Calculate the mean and the standard deviation of this series.
2- If the daily wage of each employee is increased by 200 DA, what will

be the new mean and standard deviation of the series ?

Exercice 2

The table below displays the quantity of pieces manufactured by a machine
over a span of 10 years.

1- What was the average number of pieces produced during this period ?
2- How many pieces were manufactured each day within the same time-

frame ?
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Years Piece

2009 623

2010 583

2011 959

2012 1 037

2013 960

2014 797

2015 663

2016 652

2017 560

2018 619

Total 7 453

Table 2.4: Quantity of pieces manufactured
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2.4 Solutions

Solution exercice 1

1-The calculation of the mean and standard deviation:

µ =

∑N
i=1 xi × fi∑N

i=1 fi
(2.15)

σ =

√∑N
i=1(xi − µ)2

N
(2.16)

OR

σ =

√√√√ 1

N

N∑
i=1

fix2
i − µ2 (2.17)

µ=(450*6 + 500*10 + 550*24 + 600*18 + 700*5)/63
µ=558.73

σ 2 = (6*(450-µ) 2 + 10*(500-µ) 2 +24*(550-µ)2+18*(600-µ)2+5*(700-µ)2)/63
OR

σ2 = ((6*(450) 2 + 10*(500) 2 +24*(550)2+18*(600)2+5*(700)2)/63)-µ2

σ=61.43

2- If the daily wage of each employee is increased by 200 DA, the new mean
will be:

µ = Old (µ) + 200
µ =558.73+200=758.73

The standard deviation will remain the same in this case because adding
a constant value to each data point does not change the spread or variability
of the data.
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Solution exercice 2

The total production of pieces, as shown in the table, is 7,453.
1- We obtain the yearly average by dividing the total by 10 since the table

spans 10 years, resulting in an annual average of approximately 745 pieces.
2- To calculate the daily average, divide the total by 365, which yields

approximately 2 pieces per day.

2.5 Conclusion

In this second chapter, we have introduced essential unidimensional mea-
sures crucial for data analysis. We discussed descriptive statistical measures,
covering frequency distribution and measures of central tendency like mean,
median, and mode. Additionally, we explored measures of variance or spread,
including range, absolute deviation, variance, and standard deviation. Fur-
thermore, we presented measures of position, such as quartiles, deciles, and
percentiles, along with measures of skewness and kurtosis. Lastly, we pro-
vided a series of exercises for practice.
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CHAPTER 3

BIDIMENSIONAL MEASURES

In this chapter, we will explore commonly used bidimensional measures in
descriptive statistics. We will begin by introducing bidimensional descriptive
statistics in Section 3.1. Then, we will present the measure of covariance and
its properties in Section 3.2. Section 3.3, we will focus on various types of
correlation measures, including the Pearson correlation coefficient, Spearman
correlation coefficient (rho), Kendall’s tau correlation coefficient, and point
biserial correlation. In Section 3.4, we will delve into the chi-square test of
independence. To wrap up, we will provide exercises and their solutions in
Sections 3.5 and 3.6.
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3.1 Bidimensional Descriptive Statistics

Bidimensional descriptive statistics, often referred to as bivariate or two-
variable statistics, enable us to explore and quantify the relationships and
associations between two variables. This offers valuable insights into how
changes in one variable correspond to changes in another. Such insights are
beyond the scope of univariate statistics. Bidimensional descriptive statis-
tics serve as a foundation for informed decision-making and the derivation of
meaningful conclusions.
In the following section, we will present the most commonly used measures
and methods for analyzing the relationship or association between two vari-
ables.

3.2 Covariance

In statistics, covariance is a mathematical technique used to gauge the di-
rection of variation between two variables, helping to describe the extent to
which these variables are independent of each other.
For two datasets with N data points (xi and yi), the population covariance
is calculated as the average of the products of the deviations of each pair of
data points from their respective means:

Cov(X, Y ) =
1

N

N∑
i=1

(xi − µ(X))(yi − µ(X)) (3.1)

Where
µ(X) and µ(Y ) represent the means of variables X and Y, respectively.

The formula for sample covariance is as following:

Cov(X, Y ) =
1

N − 1

N∑
i=1

(xi −X(yi − Y ) (3.2)

Where
X and Y represent the means of variables X and Y, respectively.
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3.2.1 Covariance vs Variance

Covariance and variance are distinct statistical measures that serve different
purposes in data analysis. Variance helps quantify the spread of a single vari-
able’s data, while covariance assesses the relationship between two variables
and whether they move together or in opposite directions.

Figure 3.1: Variance of X and Y

Figure 3.2: Covariance(x,y)
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3.2.2 Properties of Covariance

If X and Y are random variables with real values, and c is a constant, then
the following formulas are direct consequences of the definition of covariance:

Cov(X,X) = V ar(X) (3.3)

Cov(X, Y ) = Cov(Y,X) (3.4)

Cov(cX, Y ) = cCov(Y,X) (3.5)

The sign of the covariance indicates the direction of the association be-
tween the two variables:
Positive Covariance (Cov(X, Y) > 0): indicates that when one variable
is above its mean, the other tends to be above its mean as well, and vice
versa. This suggests a positive linear association.
Negative Covariance (Cov(X, Y) < 0): indicates that when one vari-
able is above its mean, the other tends to be below its mean, and vice versa.
This suggests a negative linear association.
Zero Covariance (Cov(X, Y) = 0): indicates no linear association be-
tween the variables. However, it doesn’t necessarily imply independence.

Figure 3.3: Direction of Association
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3.3 Correlation

Correlation is a statistical measure that quantifies the extent to which two
variables are linearly related and assesses the strength and direction of their
relationship.

Correlation is typically measured using the sample correlation coefficient,
denoted as ’r’.
Unlike covariance, which has units that are the product of the units of the
two variables, correlation is a dimensionless measure, making it easier to
compare and interpret the strength and direction of relationships between
variables.

The formula for the sample correlation coefficient, which measures the
linear relationship between two variables X and Y, is as follows:

r =

∑
(xi − X̄)(yi − Ȳ )√∑
(xi − X̄)2(yi − Ȳ )2

(3.6)

The formula for calculating the sample correlation coefficient (r) using
the covariance (Cov) and standard deviations (σ) of two variables X and Y
is as follows:

r =
Cov(X, Y )

σ(X)× σ(Y )
(3.7)

3.3.1 Properties of Correlation

The correlation coefficient ’r’ is a dimensionless measure that falls within the
range of -1 to +1.

The sign of the correlation coefficient indicates the direction of the asso-
ciation between the two variables:
Positive Correlation (r> 0): suggesting that both variables tend to in-
crease together.
Negative Correlation (r< 0): indicating that when one variable’s values
increase, the other variable’s values tend to decrease
When ’r’ is closer to zero, it indicates a weaker linear relationship between
the variables.
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Common correlation coefficients include Pearson correlation coefficient
(for linear relationships), Spearman rank correlation coefficient (for ordinal
data or non-linear relationships), and Kendall’s tau correlation coefficient
(for rank-ordered data).

3.3.2 Pearson Correlation Coefficient

The Pearson correlation coefficient, often symbolized as ’r’, serves as a statis-
tical metric that gauges the strength and direction of the linear relationship
between two variables.

The Pearson correlation is the preferred choice when the following condi-
tions are true:

• Both variables under consideration are quantitative.

• The variables exhibit normal (or nearly normal) distributions.

• Outliers are not present in the dataset.

• The relationship between the variables is fundamentally linear in nature.
It’s important to note that the Pearson correlation may not accurately
capture non-linear associations.

The formula for computing the Pearson correlation coefficient between
two variables X and Y is as follows:

r =
n
∑

xy − (
∑

x)(
∑

y)√
n
∑

x2 − (
∑

x)2 ×
√

n
∑

y2 − (
∑

y)2
(3.8)

Where,
n is the sample size.
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Figure 3.4: Visualizing the Pearson correlation coefficient
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Testing for the significance of the Pearson correlation coefficient

To draw inferences about the population correlation ρ from the sample corre-
lation ’r’ statistical hypothesis tests are commonly employed. These methods
assist in assessing whether the observed correlation in the sample is statisti-
cally significant and provide a confidence interval within which the population
correlation ρ is likely to lie.

The Pearson correlation of the sample is r. It is an estimate of rho (ρ),
the Pearson correlation of the population. Knowing r and n, we can infer
whether ρ is significantly different from 0.

Null hypothesis (H0): ρ = 0
Alternative hypothesis (H1): ρ ̸= 0

We have three steps to test the hypotheses:

• Calculate the t value using this formula

t =
r√
1−r2

n−2

(3.9)

• Find the critical value of t∗ in "t table". This value depends on the
degrees of freedom (df) and the significance level (α). For Pearson
correlation tests, df = n – 2, the significance level is usually .05 and,
two-tailed is an appropriate choice.

• Accept or reject the null hypothesis:
If the t value > t∗ value, then the relationship is statistically significant.
The data allows you to reject the null hypothesis and provides support
for the alternative hypothesis.
If the the t value < t∗ value, then the relationship is not statistically
significant. The data doesn’t allow you to reject the null hypothesis.
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3.3.3 Spearman Correlation Coefficient (Rho)

Spearman’s rho, or Spearman’s rank correlation coefficient ’rs’, is a non-
parametric statistical measure employed to evaluate the strength and direc-
tion of the monotonic relationship between two variables.

The Spearman’s rank correlation coefficient is the preferred choice when
the following conditions are true

• The variables are on an ordinal level of measurement.

• The relationship between variables is not expected to be linear.

In a linear relationship, both variables change in the same direction at a
consistent rate across the entire data range. Conversely, in a monotonic rela-
tionship, both variables change in only one direction, though not necessarily
at the same rate.

• Positive Monotonic: as one variable increases, the other also in-
creases.

• Negative Monotonic: As one variable increases, the other decreases.

As with the previous correction, the value of Spearman’s rho falls within
the range of -1 to +1. A value of +1 signifies a perfect positive monotonic
relationship. A value of -1 signifies a perfect negative monotonic relationship.
A value of 0 signifies no monotonic relationship.

The first step in computing Spearman’s rank correlation coefficient is to
rank the values of the variables X and Y separately. Arrange them from
lowest to highest and assign ranks, starting with 1 for the smallest value, 2
for the next smallest, and so forth. In cases where values are equal, handle
them by assigning the average rank.

The second step involves calculating the differences (d) between the ranks
of corresponding data points for X and Y.

di = rank(Xi)− rank(Yi) (3.10)
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Finaly we used the formula of spearman’s rank correlation (3.11)

rs = 1− 6
∑

d2i
(n2 − n)

(3.11)

Figure 3.5: Visualizing the Spearman correlation coefficient

3.3.4 Kendall’s tau Correlation Coefficient

Kendall rank correlation coefficient or Kendall’s Tau, often denoted as (τ),
measures the relationship between two variables.
Kendall’s Tau is the preferred choice when the following condition is true:

• The two variables must only have an ordinal scale level.

The Kendall’s tau is very similar to Spearman’s rank correlation coefficient.
However, Kendall’s Tau should be preferred over Spearman’s correlation
when there is very little data and many rank ties.
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The formula for computing Kendall’s Tau between two variables X and
Y is as follows:

τ =
C −D

1
2
n(n− 1)

(3.12)

Where:
C represents the number of concordant pairs, which are data points that
have the same order in both sets of rankings.
D represents the number of discordant pairs, which are pairs that have dif-
ferent orders in the two sets of rankings.
n represents the total number of data points.
An alternate formula for the Kendall’s Tau is as follows:

τ =
C −D

C +D
(3.13)

Kendall’s Tau can take on values between -1 and 1, where:

• τ = 1, it indicates perfect positive concordance, meaning that the two
sets of rankings are identical.

• τ = -1, it indicates perfect negative concordance, meaning that the two
sets of rankings are in reverse order.

• τ = 0, it suggests no association or correlation between the rankings.

3.3.5 Point Biserial Correlation

The point-biserial correlation coefficient,denoted as rpb, is a statistical mea-
sure used to quantify the strength and direction of the linear relationship
between a dichotomous variable and a continuous variable. The dichoto-
mous variable is a binary variable with two expressions, for example (male
and female) or (yes and no).
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The formula for calculating the point-biserial correlation coefficient is
expressed as:

rpb =
X̄1 − X̄0

S

√
n1n0

N(N − 1)
(3.14)

Where:
X̄1, X̄0 are the means of the continuous variable for the two binary categories
(1 and 0, typically).
S is the standard deviation of the continuous variable.
n1, n1 are the sample sizes for the two binary categories.
N is the total sample size.
Like other correlations, the point-biserial correlation coefficient can range
from -1 to 1, where:

• rpb =1, it indicates a strong positive relationship between the binary
and continuous variables.

• rpb =-1 it indicates a strong negative relationship, meaning that as the
binary variable increases, the continuous variable tends to decrease.

• rpb close to 0, it suggests little to no linear relationship between the
binary and continuous variables
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3.3.6 Correlation Coefficient Types: A Comprehensive

Comparison

Correlation coefficient Type of relationship Levels of measurement

Pearson’s r Linear Two quantitative variables

Spearman’s rho Non-linear Two ordinal variables

Kendall’s tau Non-linear Two ordinal variables

Point-biserial Linear
One dichotomous (binary) variable

and one quantitative variable

Table 3.1: Different types of correlation coefficients comparison
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3.4 Chi-Square Test

Chi-square test of independence, also known as the χ2 test, is a statistical
method used to determine if there is a significant association or relationship
between two categorical variables.
Chi-square test of independence ( χ2) is the preferred choice when the fol-
lowing conditions are true:

• The two variables are categorical variables (nominal or ordinal).

• There are a minimum of five observations expected in each group.

The chi-square test methodology comprises the following sequential steps:

1. Define the hypothesis
H0: there is no link between the two variables.
H1: there is a link between the two variables.

2. Construct an observed data table
Organize the data into a contingency table or cross-tabulation table,
depicting the counts for each combination of categories related to the
two variables.

3. Construct an expected data table
Organize the data into a contingency table, where each cells represent
the expected value.
The expected value is computed according to the following formula:

ExpectedV alue =
RowTotal × ColumnTotal

TotalNumberofObservation
(3.15)

4. Calculate Chi-Square
The formula is :

χ2 =

∑
(O − E)2

E
(3.16)

Where:
O is the observed value in each cell of observed data table.
E is the expected value in each cell of expected data table.
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5. Compare the obtained χ2 to the critical statistic found in the
chi-square table
Degrees of freedom: are calculated based on the dimensions of the con-
tingency table.

df = (NumberofRows− 1) ∗ (NumberofColumns− 1) (3.17)

Significance level (α): can be 1%,5%,10%.

6. Determine if there is an association
If χ2 > χ2 critical, we reject the null hypothesis. This implies that
H1 is accepted, concluding that there is a relationship between the two
variables.
If χ2 < χ2 critical, we accept the null hypothesis, indicating that there
is no relationship between the two variables.
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3.5 Exercises

Exercise 1

A study was undertaken to examine the relationship between the weight (kg)
and length (cm) of 10 babies. The results are displayed in the following table.

1- Utilizing the Pearson correlation coefficient, is there a correlation be-
tween newborns’ weight and length ?

2- Determine the statistical significance of the Pearson correlation coeffi-
cient by using the t-test.

Weight (X) Length (Y)

3.63 53.1

3.02 49.7

3.82 48.4

3.42 54.2

3.59 54.9

2.87 43.7

3.03 47.2

3.46 45.2

3.36 54.4

3.3 50.4

Table 3.2: The weight (kg) and length (cm)

Exercise 2

The table below displays the ranking of players in two different competitions.
- Can we infer that those who achieved high rankings in the first competition
also attained good rankings in the second competition ?

45



Chapter 3 Bidimensional Measures

Players Competition 1 (X) Competition 2 (Y)

P1 7 10

P2 10 12

P3 1 4

P4 6 7

P5 9 11

P6 13 9

P7 3 2

P8 5 4

P9 11 5

P10 9 11

P11 6 6

P12 4 1

Table 3.3: The ranking of players

Exercise 3

Consider a scenario where two employers are ranking six candidates for a job,
ranging from worst to best. The table below displays the rankings assigned
by each employer to the employees.
- Is there a correlation between the two ranks ?

46



Chapter 3 Bidimensional Measures

Employee Rank 1 (X) Rank 2 (Y)

E1 1 3

E2 2 1

E3 3 4

E4 4 2

E5 5 6

E6 6 5

Table 3.4: Recruitment Rankings

Exercise 4

A company has analyzed the number of purchases of three decorative prod-
ucts in relation to the gender of their customers (male/female). The results
obtained are as follows: men purchased 100, 70, and 30 units of products
1, 2, and 3, respectively, while women purchased 140, 60, and 20 units of
products 1, 2, and 3, respectively.
- Determine whether there is a correlation between the gender of the clientele
and the products they bought (α = 0.05).

47



Chapter 3 Bidimensional Measures

3.6 Solutions

Solution exercise 1

1- Utilizing the Pearson correlation coefficient The formula for computing the
Pearson correlation coefficient between two variables X and Y is as follows:

r =
n
∑

xy − (
∑

x)(
∑

y)√
n
∑

x2 − (
∑

x)2 ×
√

n
∑

y2 − (
∑

y)2

n=10∑
x = 33.5∑
y = 501.2∑
x2 = 113.05∑
y2 = 25264∑
xy = 1684.2

r =
10 ∗ 1684.2− (33.5)(501.2)√

10 ∗ 113.05− (33.5)2 ×
√
10 ∗ 25264− (501.2)2

r = 0.47.
With a correlation coefficient of r = 0.47, it represents a very weak correla-
tion, indicating a minimal relationship between newborns’ weight and length.

2- The statistical significance of the Pearson correlation coefficient by us-
ing the t-test :

"r" is an estimate of rho (ρ), the Pearson correlation of the population.
Knowing r and n, we can infer whether ρ is significantly different from 0.

Null hypothesis (H0): ρ = 0
Alternative hypothesis (H1): ρ ̸= 0

• We calculate the t value using this formula

t =
r√
1−r2

n−2

48



Chapter 3 Bidimensional Measures

t =
0.47√
1−(0.47))2

10−2

= 1.506

• The critical value of t∗

The degrees of freedom (df) is n-2, so df=8.
The significance level is α =05.
Accorrding to the "t table" t∗=2.305

Figure 3.6: Critical values of t

• Accept or reject the null hypothesis ?
The t value (1.506) < t∗ value (2.305), it signifies that the relationship
lacks statistical significance, and thus, we do not reject the null hypoth-
esis. This outcome can be attributed to the limited sample size of 10.
Increasing the sample size may reveal a significant relationship.

Solution exercise 2

We use Spearman’s correlation because the variables are on an ordinal scale
level.
First, we rank the data according to the variable (X). We can observe from
Table 3.5 that player 4 and 11 share the same ranking in competition 1, as
do players 5 and 10 . Therefore, their final rank is the average of their ranks.
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Players Competition 1 (X) Rank Final Rank (X)

P3 1 1 1

P7 3 2 2

P12 4 3 3

P8 5 4 4

P4 6 5 5.5

P11 6 6 5.5

P1 7 7 7

P5 9 8 8.5

P10 9 9 8.5

P2 10 10 10

P9 11 11 11

P6 13 12 12

Table 3.5: Competition 1 (X) Rankings

Secondly, we rank the data according to the variable (Y). We can observe
from Table 3.6 that players 8 and 3 share the same ranking in competition
2, as do players 5 and 10. Consequently, their final rank is calculated as the
average of their ranks

Table 3.7, presente the final rang of the variable (X) and the variable (Y)
with their difference ranks (d). Finaly we used the formula of spearman’s
rank correlation (equation 3.11) to compute rs :

rs = 1− 6
∑

d2i
(n3 − n)

rs = 1− 6× 81

(123 − 12)
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Players Competition 2 (Y) Rank Final Rank (Y)

P12 1 1 1

P7 2 2 2

P8 4 3 3.5

P3 4 4 3.5

P9 5 5 5

P11 6 6 6

P4 7 7 7

P6 9 8 8

P1 10 9 9

P5 11 10 10.5

P10 11 11 10.5

P2 12 12 12

Table 3.6: Competition 2 (Y) Rankings

rs=0.72,
With an rs value of 0.72, it indicates a strong correlation between variables
X and Y. Hence, we can deduce that individuals who performed well in the
first competition also achieved favorable rankings in the second competition.
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Players Rank (X) Rank (Y) d d*d

P1 7 9 -2 4

P2 10 12 -2 4

P3 1 3.5 -2.5 6.25

P4 5.5 7 -1.5 2.25

P5 8.5 10.5 -2 4

P6 12 8 -4 16

P7 2 2 0 0

P8 4 3.5 -0.5 0.25

P9 11 5 6 36

P10 8.5 10.5 -2 4

P11 5.5 6 -0.5 0.25

P12 3 1 2 4

Table 3.7: Final Rankings

52



Chapter 3 Bidimensional Measures

Solution exercise 3

The variables are on an ordinal scale level, so we can use Kendall’s Tau or
Spearman’s correlation. In this case, we prefer to use Kendall’s Tau as there
is very little data.
We choose rank 1 as the reference, and then we sort the employees from 1 to
6. Afterward, we compute the number of concordant and discordant pairs.

Rank 1 (X) Rank 2 (Y) Concordant Discordant

1 3 3 2

2 1 4 0

3 4 2 1

4 2 2 0

5 6 0 1

6 5 - -

Table 3.8: Concordant and Discordant pairs

Computing the concordant pairs:
y=3, we have 4,6 and 5 -> C=3
y=1, we have 4,2,6 and 5 -> C=4
y=4, we have 6 and 5 -> C=2
y=2, we have 6 and 5 -> C=2
y=6, − -> C=0

The total number of concordant pair C=11
Computing the discordant pairs:

y=3, we have 1 and 2 -> D=2
y=1, − -> D=0
y=4, we have 2 -> D=1
y=2, − -> D=0
y=6, we have 5 -> D=1

The total number of discordant pair D=4
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Replacing in

τ =
C −D

C +D
(3.18)

τ = 11−4
11+4

= 0.47

There is a medium and positive correlation between the two variables with
τ= 0.47.

Solution exercise 4

To analyze the dependence between the gender of the clientele and the prod-
ucts they bought, we used the chi-square test of independence.

1. Define the hypothesis
H0: there is no link between the gender of the clientele and the products.
H1: there is a link between the gender of the clientele and the products.

2. The observed data table

Product 1 Product 2 Product 3 Total

Male 100 70 30 200

Female 140 60 20 220

Total 240 130 50 440

Table 3.9: The observed data table
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3. The expected data table
The expected value for each cell in the table is computed according to
equation 3.15

Product 1 Product 2 Product 3 Total

Male 114 62 24 200

Female 126 68 26 220

Total 240 130 50 420

Table 3.10: The expected data table

4. Calculate Chi-Square
We calculate χ2 according to the equation 3.16

χ2 = (100−114)2

114
+ (70−62)2

62
+ (30−24)2

24
+ (140−126)2

126
+ (60−68)2

68
+ (20−26)2

26

χ2=8.13

5. Comparison of the obtained χ2 to the critical statistic found
in the chi-square table
Degrees of freedom according to the equation 3.17 :
df = (2 - 1) * (3 - 1)=2
Significance level (α)=0.05.
For an alpha level of 0.05 and two degrees of freedom, the criticalχ2

value is 5.9915

Figure 3.7: Chi-square Table
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6. Decision
With a chi-squared value of 8.13, which exceeds the critical chi-squared
value of 5.991 at an alpha level of 0.05, we reject the null hypothesis
(H0) and accept H1. This leads us to the conclusion that there is indeed
a significant relationship between the gender of the clientele and the
products.

3.7 Conclusion

The analysis of relationships between two variables is often a key aspect
of data analysis. In this chapter, we introduced bidimensional descrip-
tive statistics, starting with covariance and its properties, highlighting
its distinctions from variance. Additionally, we discussed correlation and
its properties. We then delved into various types of correlations, such
as the Pearson correlation coefficient, Spearman correlation coefficient,
Kendall’s tau, and point biserial correlation, providing a comprehensive
comparison among them. Furthermore, we introduced the chi-square
test and supplemented this chapter with practical exercises.
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CHAPTER 4

PRINCIPAL COMPONENT ANALYSIS

Principal Component Analysis (PCA) is a valuable technique in multidi-
mensional analysis for extracting meaningful insights from complex datasets.
PCA aids in identifying the primary variables contributing to process varia-
tions and reducing dimensionality. In this chapter, we will introduce Princi-
pal Component Analysis in Section 4.1. Section 4.2 will delve into the steps
of this method. Section 4.3 will cover the most commonly used software and
libraries for performing PCA. Lastly, in Sections 4.4 and 4.5, we will present
some practical examples along with their solutions.
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4.1 Definition of Principal Component Analy-

sis (PCA)

Analyzing datasets with a large number of variables presents challenges in
visualization and interpretation. Additionally, selecting the relevant variables
for two or three dimensional plots is not straightforward.
The Principal Component Analysis (PCA) technique stands as one of the
most renowned unsupervised dimensionality reduction methods. It works by
transforming a large set of variables into a smaller one that retains most of
the information from the original set. The objective of PCA is to identify
the PCA space, which represents the direction of maximum variance within
the given data (Tharwat,2016).

4.2 Understanding the Inner Workings of PCA

The primary objective of PCA is to transform a dataset with a potentially
large number of correlated variables into a smaller set of uncorrelated vari-
ables known as principal components.

The PCA method is based on three key steps:

1. Data standardization

2. Defining the new multidimensional space,

3. Representing the data the new multidimensional space.

4.2.1 Data Standardization

In PCA, data preparation plays a critical role, involving two distinct pro-
cesses: data centering and data normalization.
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4.2.1.1 Data Centering

Data centering refers to the procedure of adjusting the values of a variable
so that its mean becomes zero. When variables are centered, their values are
modified by subtracting the mean of each variable from each individual data
point associated with that variable. This adjustment does not alter the shape
or spread of the data but rather relocates the data in relation to its central
point. Centering proves particularly beneficial when the initial variables are
directly comparable, sharing the same nature and exhibiting similar ranges
of variation.

4.2.1.2 Data Normalization

Data normalization becomes necessary when different variables are measured
using different metrics. For instance, one variable may represent the length
of an object in meters, while another variable represents the width of the
same object in centimeters. Normalization involves dividing each variable by
its standard deviation.

4.2.2 Defining the new multidimensional space

The goal of Principal Component Analysis (PCA) is to project the data onto
a lower-dimensional subspace while preserving the majority of the relevant
information. This newly defined lower-dimensional space is characterized by
fresh axes referred to as Principal Axes, which represent the new variables
known as Principal Components, as illustrated in Figure 4.4. This is
donne by transforming data with a potentially large number of correlated
variables into a smaller set of uncorrelated principal components.
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Figure 4.1: Projection onto a lower-dimensional subspace
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To understand this transformation, let’s consider an example with two
variables, X and Y. As we’ve previously discussed in Chapter 3 Section 3.2,
covariance is employed to analyze the variation between two variables.
Figure4.2 demonstrates how the overall shape of the data determines the
covariance matrix and its associated eigenvectors and eigenvalues. Essen-
tially, the covariance matrix captures both the data’s spread (variance) and
its orientation (covariance). The eigenvectors indicate the directions of max-
imum data spread, while their corresponding eigenvalues quantify the extent
of spread (variance) in those directions.

Figure 4.2: Covariance matrix with their corresponding eigenvectors and
eigenvalues
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Recalling that the covariance matrix for the two variables X and Y is as
follows:

Cov(x, y) =

Cov(x, x) Cov(x, y)

Cov(y, x) Cov(y, y)


This is equal to :

Cov(x, y) =

 var(x) Cov(x, y)

Cov(y, x) var(y)


Upon observing the covariance matrices in the top two plots of Figure

4.2, it becomes apparent that cov(x, y) and cov(y, x) are both equal to zero.
These covariance matrices are diagonal matrices, in which case the variances
are equal to the eigenvalues.

Conversely, when we examine the two bottom plots of Figure 4.2, the co-
variance matrices are not diagonal. It is noteworthy that the four covariance
matrices are not the same, even though the data exhibit the same spread.
This is because covariance matrices represent the magnitude of variance along
the x-axis and y-axis.

Nonetheless, the eigenvalues still represent the magnitude of variance in
the direction of the largest spread of the data. On the other hand, the
eigenvectors indicate the direction of the largest spread of the data while
maintaining the same magnitude in different orientations.
Now, what is the relationship between PCA and covariance matrix?
We will answer this question in the next sections.
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4.2.2.1 Principal Axes

PCA is founded on the identification of axes that explain data variance,
with the goal of capturing maximum information. While the number of axes
matches the number of variables in the dataset, PCA concentrates infor-
mation within the initial axes. This allows for retaining only the first two
or three axes, resulting in dimensionality reduction while preserving more
valuable information and enhancing data visualization.

These axes are the Principal Axes, and their unit vectors are the eigen-
vectors of the covariance matrix of the data. Principal axes represent the
directions of maximum variance in a dataset. The first principal axis cor-
responds to unit vectors associated with the largest eigenvalue, the second
principal axis corresponds to the second-largest eigenvalue, and so forth.
The measure of the proportion of variance explained by axisi is determined
by equation 4.1, and it is often represented as a percentage.

PV =
λi

λ1 + λ2 + ...λN

(4.1)

Where:
N is the total number of variables.
λi is eigenvalue of axisi.
You can also compute the proportion of variance explained by a set of axes
of size q (where q < N):

PV =
λ1 + ...+ λq

λ1 + λ2 + ...+ λN

(4.2)

4.2.2.2 Principal Components

Principal components are new, uncorrelated variables that correspond to the
principal axes. The majority of the information from the original variables
is condensed into the first components, which capture the most crucial infor-
mation in the original dataset, leaving the maximum remaining information
for the subsequent components. Figure 4.3 illustrates the explained variance

63



Chapter 4 Principal Component Analysis

percentages for 7 principal components. It’s important to mention that the
original dataset consists of 7 variables.

Figure 4.3: The explained variance percentages for 10 principal components

Selecting the Optimal Number of Principal Components
In dimensionality reduction, there are two ways to choose the number of
components that you want to retain:

• Explained Variance Threshold : You can choose a threshold for the
amount of variance you want to retain in your data (e.g., retaining 95%
of the variance). You then select the number of principal components
that collectively explain at least that much variance.

• Scree Plot : Plot the explained variance for each principal component
and visually inspect the "Elbow" point on the plot. The number of
components before the elbow is often selected.
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Figure 4.4: The Elbow point on the plot

4.2.3 Representing Data in the New Multidimensional

Space

This is the final step, in which we represent data within the new multidi-
mensional space based on the principal axes. To realign the data from its
original axes to those represented by the principal components, we must:

1. Construct the projection matrix: by stacking the eigenvectors as-
sociated with the selected principal components as columns.

2. Transform the data: multiply the standardized data by the projection
matrix to obtain the final dataset in the reduced-dimensional space.
Each row of the transformed dataset represents an observation, and
each column represents a principal component.

D′ = D ∗ PM (4.3)

Where:
D’ is the new data.
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D is the original standardized data.
PM is the projection matrix.

The final dataset obtained after this transformation contains fewer columns
(dimensions) than the original dataset but retains most of the essential in-
formation.

Figure 4.5: Data in the New Space

4.3 Software Tools and Libraries for Principal

Component Analysis (PCA)

Principal Component Analysis (PCA) is a widely used technique for dimen-
sionality reduction and data analysis. Various software tools and libraries
are available to perform PCA.

Among the popular software tools are IBM SPSS (Statistical Package for
the Social Sciences link), SAS (Statistical Analysis System link), and Orange,
which is an open-source data visualization tool link.

As for libraries, there are Weka link, a Java-based machine learning li-
brary; the Eigen C++ library link; FactoMineR, an R package link; and the
scikit-learn Python library link.
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4.4 Exercises

Exercise 1

The following table presents data for 4 variables. To visualize this data,
apply PCA to reduce the variables to two dimensions while retaining more
than 80% of the information.

X1 X2 X3 X4

1 2 3 4

5 5 6 7

1 4 2 3

5 3 2 1

8 1 2 2

Table 4.1: Original data with four variables

Exercise 2

In a data analysis using SPSS, we have obtained the following values:
1- According to the table, how many variables are present in the original

dataset?
After applying PCA, the dataset was reduced to three principal components.

2- What is the percentage of variation explained by each component, and
what is the rate of information loss?
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4.5 Solutions

Solution exercise 1

X1 X2 X3 X4

1 2 3 4

5 5 6 7

1 4 2 3

5 3 2 1

8 1 2 2

Table 4.2: Original data with four variables

1. Data Standardization
We implement centering and data normalization using the following for-
mula:

Xnew =
X − X̄

S
(4.4)

Where:
X̄ is the mean of variable X.
S is the standard deviation.

X1 X2 X3 X4

X̄i 4 3 3 3.40

Si 3 1.5811 1.7321 2.3022

Table 4.3: Mean and standard deviation of the 4 variables
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X1 X2 X3 X4

-1.0000 -0.6325 0 0.2606

0.3333 1.2649 1.7320 1.5637

-1.0000 0.6325 -0.5773 -0.1737

0.3333 0 -0.5773 -1.0425

1.3333 -1.2649 -0.5773 -0.6081

Table 4.4: Original data standardized

2. Defining the new multidimensional space
- We compute the covariance matrix of the original data standardized.

X1 X2 X3 X4

1.0000 -0.3162 0.0481 -0.1810

-0.3162 1.0000 0.6390 0.6181

0.0481 0.6390 1.0000 0.9404

-0.1810 0.6181 0.9404 1.0000

Table 4.5: Covariance Matrix

- From the covariance matrix, we compute the eigenvalues and the eigen-
vectors :
λ1 = 2.5158

λ2 = 1.0653

λ3 = 0.3939

λ4 = 0.0251
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Their corresponding eigenvectors are:

−→v1 =



−0, 1620

0, 5241

0, 5859

0, 5965



−→v2 =



0.9171

−0.2069

0.3205

0.1159



−→v3 =



−0.3071

−0.8173

0.1882

0.4497



−→v4 =



−0.1962

−0.1206

0.7201

−0.6545


So we have 4 principal components:
The first principal component (PC1) explains 62.9% of the variation.
The second principal component (PC2) explains 26.63% of the variation.
The third principal component (PC3) explains 9.85% of the variation.
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The fourth principal component (PC4) explains 0.62% of the variation.

3. Representing data in the new multidimensional space
Using only PC1 and PC2, we retain more than 80% of the information
(89.53%).
- The projection matrix (PM) is composed of PC1 and PC2

PM =



−0, 1620 0.9171

0, 5241 −0.2069

0, 5859 0.3205

0, 5965 0.1159


- Transform the data

D′ =



−1.0000 −0.6325 0 0.2606

0.3333 1.2649 1.7320 1.5637

−1.0000 0.6325 −0.5773 −0.1737

0.3333 0 −0.5773 −1.0425

1.3333 −1.2649 −0.5773 −0.6081


∗



−0, 1620 0.9171

0, 5241 −0.2069

0, 5859 0.3205

0, 5965 0.1159
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D′ =



−0.0140 −0.7560

2.5565 0.7804

0.0515 −1.2531

−1.0141 −0.0002

−1.5798 1.2289


Solution exercise 2

1-From the table, we can see that the number of principal components is 11,
which means that the number of variables in the original dataset is also 11.
2- The sum of

∑
λi is 10.998.

PC1, the first principal component, accounts for 45.10% (4.961/10.998) of
the variation.
PC2, the second principal component, explains 18.72% (2.059/10.998) of the
variation.
PC3, the third principal component, accounts for 11.68% (1.284/10.998) of
the variation.
Collectively, these three principal components explain 75.5% of the total
variation, resulting in an information loss of 24.5% (100 - 75.5).

4.6 Conclusion

Principal Component Analysis (PCA) is a method used to represent a dataset
in a reduced space while minimizing distortion. This space is defined by
eigenvectors and eigenvalues. Essentially, PCA is a special case of singu-
lar value decomposition where the eigenvectors have unit magnitude. In
this chapter, we’ve explored the foundational concepts of PCA, detailing the
method’s steps, which include data standardization, determining the new
multidimensional space defined by principal axes and principal components,
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and representing data within this new space. Furthermore, we’ve introduced
software tools and libraries for implementing PCA. The chapter concludes
with a series of exercises.
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CHAPTER 5

MULTIPLE CORRESPONDENCE ANALYSIS

Multiple Correspondence Analysis (MCA) is multidimensional analysis ap-
proaches used to explore and visualize relationships between categorical vari-
ables.
MCA aims to simplify the complexity of a dataset by transforming the orig-
inal variables into a new coordinate system called factor scores

This chapter provides an overview of Multiple Correspondence Analysis
(MCA). We will begin by introducing Correspondence Analysis in Section
5.1, followed by an examination of its inner workings in Section 5.2. An Ex-
ample of Correspondence Analysis (CA) Application is given in Section 5.3.
Subsequently, we will explore the connection between Correspondence Analy-
sis and Multiple Correspondence Analysis, including computational specifics,
in Section 5.4. To conclude the chapter, we will introduce the software tools
and libraries for Multiple Correspondence Analysis (MCA) in Section 5.5.



Chapter 5 Multiple Correspondence Analysis (MCA)

5.1 Definition of Correspondence Analysis (CA)

Correspondence analysis belongs to a broad class of methods based on sin-
gular value decomposition. It is essentially a generalized version of princi-
pal component analysis, specifically designed for qualitative data analysis.
While initially developed for contingency tables, Correspondence Analysis
has demonstrated its versatility and is now frequently applied to various
other types of data tables (Abdi and Béra, 2014).
CA operates by computing a set of orthogonal axes, referred to as dimensions
or factors, in a way that maximizes the variance of the data. It then maps
the categories of the two categorical variables onto these dimensions.

5.2 Understanding the Inner Workings of CA

The main goal of CA is to map the dataset onto the row and column profiles,
thus aiding interpretation.
The CA method is based on three key steps:
1. Data preparation
2. Defining the new multidimensional space
3. Representing the data in the new multidimensional space

5.2.1 Data preparation

The initial step involves constructing the cross-table, or contingency table,
that summarizes the joint distribution of the two categorical variables.

5.2.2 Defining the new multidimensional space

The axes that define the new multidimensional space are determined using
singular value decomposition.
Considering the following notation:
N: Data matrix (I×J) where Nij ≥ 0.
n: is the total of N,

∑i∑j Nij

P: is correspondence matrix P = n−1N , where each element of N is devided
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by the total of N.
r: is the row masses r=P1 (the notation 1 is used for a vector of ones of
length) ie ri =

∑J
j=1 Pij, it is a vector that counts the total number for each

row.
c: is the column masses c = P T1 ie cj =

∑I
i=1 Pij, it is a vector that counts

the total number for each column.
Diagonal matrices of row and column masses: Dr = diag(r) and Dc =

diag(c).

5.2.2.1 Computation Profiles Matrices

CA is particularly interested in the marginal matrices of N, computed from
row and column sums, called profiles. There are matrix row profiles (X) and
matrix column profiles (Y) that aid in the interpretation of N.

Xij =
Pij

ri
(5.1)

Yij =
Pij

cj
(5.2)

5.2.3 Representing the data in the new multidimen-

sional space

The computational algorithm to obtain coordinates of the row and column
profiles with respect to principal axes, using the singular value decomposition
(SVD), is as follows:

• Calculate the matrix S of standarized residuales:

S = D
− 1

2
r (P − rcT )D

− 1
2

c (5.3)

• Calculate the SVD of S:

SV D(S) = UDαV
T (5.4)

77



Chapter 5 Multiple Correspondence Analysis (MCA)

Where
UTU = V TV = I

Dα is the diagonal matrix of singular values in descending order α1 ≥
α2 ≥ ..

• Principal inertias λK are defnied as

λK = α2
K (5.5)

Where
k=1,2,...K and K = min {I − 1, J − 1}

• Standard coordinates of rows ϕ :

ϕ = D
− 1

2
r U (5.6)

• Standard coordinates of columns γ:

γ = D
− 1

2
c V (5.7)

• Principal coordinates F of rows are defined according to principal iner-
tias:

F = D
− 1

2
r UDα (5.8)

• Principal coordinates G of columns are defined according to principal
inertias:

G = D
− 1

2
c V Dα (5.9)

The SVD is matrix decomposition expresses any rectangular matrix as a
product of three matrices of simple structure, as equation 5.4. The columns
of the matrices U and V are the left and right singular vectors respectively,
and the positive values αk down the diagonal of Dαk

, in descending order,
are the singular values.

The rows of the coordinate matrices from equation 5.6 to equation 5.9
refer to the rows or columns, while the columns of these matrices refer to the
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principal axes, or dimensions, of which there are min {I − 1, J − 1}.

5.2.3.1 Computation of Total Inertia

The inertia is the sum of squares of the singular values, i.e., the sum of the
eigenvalues:

inertia =
K∑
k=1

α2
K =

K∑
k=1

λK (5.10)

The total inertia is also defined by the sum of squares of the matrix S:

inertia = trace(SST ) =
I∑

i=1

J∑
j=1

(pij − ricj)
2

ricj
= n−1χ2 (5.11)

5.2.3.2 Contributions of points to principal inertias

The contributions of the row and columns points to the inertia on the k-th
dimension are the inertia components:
For row i:

rif
2
ik

λk

= riϕ
2
jk (5.12)

For column j:
cjg

2
jk

λk

= cjγ
2
jk (5.13)

5.2.3.3 Contributions of principal axes to point inertias (squared
correlations)

The contributions of the dimensions to the inertia of the i-th row and j-th
column points is the squared cosines or squared correlations :
For row i:

f 2
ik∑
k f

2
ik

(5.14)

For column j:
g2ik∑
k g

2
ik

(5.15)
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5.3 An Example of Correspondence Analysis

(CA) Application

We consider the following example (see Table 5.1) of a statistical study on
the factors that prevent having many children, conducted with a different
number of individuals with varying levels of education.

The factors (conditions) can be: money, future, unemployment, deci-
sion, difficult, economic, selfishness, occupation, finances, war, housing, fear,
health, work.

The levels of education: no degree, elementary school, trade school, high
school and college.

The results of the analysis are provided using SPSS software. The initial
step involves examining the row and column profiles.

Row profiles describe the information related to the variable in the row,
i.e., the conditions (money, future, etc.).
Comparing two row profiles will help us understand how the respective pat-
terns are associated with different levels of education.
For example, in row profiles presented in Figure 5.1, the factor ’money’ was
considered by individuals without a diploma at a rate of 26.4%, compared to
individuals with only an elementary school level at 33.2%, 16.6% for those
with a trade school education, 15% for those with a high school education,
and finally, 8.8% for individuals with a college degree. As we can observe,
this information cannot be extracted directly from the correspondence table.

Column profiles describe the information related to the variable in the
column, i.e., levels of education (no degree, elementary school, etc.). Com-
paring two column profiles informs us about the proximities existing between
different diploma categories.
For instance, in Column profiles presented in Figure 5.2, among individuals
without a diploma, motivations for not having many children vary: 15.8%
cite financial concerns, 16.4% express worries about the future, 22% fear
unemployment, 0.3% attribute it to decision, 2.2% mention difficulty, 2.2%
point to economic factors, 6.5% cite selfishness, 3.7% link it to occupation,
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3.1% mention financial issues, 1.2% attribute it to war, 2.5% blame housing,
7.7% connect it to fear, 5.6% relate it to health, and 10.8% attribute it to
work.

No

degree

Elem

School

Trade

School

High

School
College

Active

Margin

Money 51 64 32 29 17 193

Future 53 90 78 75 22 318

Unemployment 71 111 50 40 11 283

Decision 1 7 5 5 4 22

Difficult 7 11 4 3 2 27

Economic 7 13 12 11 11 54

Selfishness 21 37 14 26 9 107

Occupation 12 35 19 6 7 79

Finances 10 7 7 3 1 28

War 4 7 7 6 2 26

Housing 8 22 7 10 5 52

Fear 25 45 38 38 13 159

Health 18 27 20 19 9 93

Work 35 61 29 14 12 151

Active Margin 323 537 322 285 125 1592

Table 5.1: Correspondence Table
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Figure 5.1: Row Profiles

Figure 5.2: Column Profiles
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Representing the data in the new multidimensional space

The principal inertias λk and the singular value α2
K are présented in Figure

5.3

λK = α2
K

Where
k=1,2,...K and K = min {I − 1, J − 1}
In this case, I = 14 and J = 5

So K =min {14− 1, 5− 1} that mean K=4. The proportion of inertia for λk

is defined as
λk∑K λk

The diagonal matrix of singular values Dαis:

Dα =



0.188 0 0 0

0 0.115 0 0

0 0 0.085 0

0 0 0 0.079



Figure 5.3: Inertias and Singular Value
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Principal coordinates F of rows are defined according to principal inertias
(see equation 5.3 and 5.4):

F = D
− 1

2
r UDα

Figure 5.4: Principal coordinates F of rows
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Principal coordinates G of columns are defined according to principal
inertias (see equation 5.3 and 5.4):

G = D
− 1

2
c V Dα

Figure 5.5: Principal coordinates G of columns

Contributions of row points to principal inertias and contributions
of principal axes to row point inertias

The contributions of the i-th row points to the inertia:

rif
2
ik

λk

= riϕ
2
jk

The contributions of the dimensions to the inertia of the i-th row points:

f 2
ik∑
k f

2
ik
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Figure 5.6: Contributions According to Row Points

Contributions of column points to principal inertias and contribu-
tions of principal axes to column point inertias

The contributions of the j-th column points to the inertia:

cjg
2
jk

λk

= cjγ
2
jk

The contributions of the dimensions to the inertia of the j-th column points:

g2ik∑
k g

2
ik
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Figure 5.7: Contributions According to Column Points

In order to gain a better understanding of the relationship between the
condition variable and the education level variable, we have represented the
data in a new space, focusing on just two dimensions.

Figure 5.8 illustrates that individuals without a diploma tend to have
fewer children due to factors like unemployment and financial constraints.
Those with an elementary school education cite reasons such as money, dif-
ficulties, work, housing, and occupation. Individuals who have completed
trade school or high school express nearly identical concerns, including health,
future prospects, war, fear, and selfishness. However, individuals holding
a college diploma are predominantly influenced by economic and decision-
related conditions.
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Figure 5.8: 2D Data Visualization in the New Dimensional Space
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5.4 From Correspondence Analysis (CA) to Mul-

tiple Correspondence Analysis (MCA)

Multiple Correspondence Analysis (MCA) is an advanced statistical tech-
nique that extends the capabilities of Correspondence Analysis (CA). It is
specifically designed to analyze the complex patterns of relationships that
exist among several categorical dependent variables. MCA can also be used
for data reduction and dimensionality reduction, which can be helpful in
simplifying complex data sets.

While CA is suitable for analyzing two-way contingency tables, MCA
can analyze multi-dimensional contingency tables involving three or more
categorical variables.

To apply MCA, the data must be presented in a specific matrix format
that allows us to subsequently apply CA. These matrices are the indicator
matrix and the Burt matrix.
The standard coordinates of the categories are identical in the two versions
of MCA.

5.4.1 Indicator Matrix

The indicator matrix Z is generated by transforming the data, organized as
cases-by-variables, into binary variables.

In the context of a data matrix with N cases and Q categorical variables,
if the q-th variable has Jq categories, this variable will be presented by
J =

∑q Jq columns.
Next, the indicator matrix Z, which consists of N cases and J categories,
serves as the input for the CA algorithm.
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Exemple:

Gender Nationality Eye Color

1 Male Algerian Blue

2 Female Foreigner Brown

3 Female Foreigner Black

4 Male Foreigner Blue

5 Female Algerian Brown

6 Male Algerian Black

Table 5.2: Initial Table

Gender Nationality Eye Color

1 1 1

2 2 2

2 2 3

1 2 1

2 1 2

1 1 3

Table 5.3: Modality coding
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Male Female Algerian Foreigner Bleu Brown Black

1 0 1 0 1 0 0

0 1 0 1 0 1 0

0 1 0 1 0 0 1

1 0 0 1 1 0 0

0 1 1 0 0 1 0

1 0 1 0 0 0 1

Table 5.4: The indicator Matrix Z
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5.4.2 Burt Matrix

The Burt matrix B = ZTZ of all two-way cross-tabulations of the Q vari-
ables. Then the Burt version of MCA is the application of the basic CA
algorithm to the matrix B, resulting in coordinates for the J categories (B is
a symmetric matrix).

Male 1 0 0 1 0 1

Female 0 1 1 0 1 0

Algerian 1 0 0 0 1 1

Foreigner 0 1 1 1 0 0

Bleu 1 0 0 1 0 0

Brown 0 1 0 0 1 0

Black 0 0 1 0 0 1

Table 5.5: The indicator Matrix Z
′

Figure 5.9: Burt Matrix
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5.5 Software Tools and Libraries for Multiple

Correspondence Analysis (MCA)

MCA is a frequently employed method for reducing dimensionality and an-
alyzing data. Numerous software tools and libraries are accessible for con-
ducting MCA.

Popular software tools for this purpose include IBM SPSS (Statistical
Package for the Social Sciences), SAS (Statistical Analysis System), Jamovi,
which is an open-source statistical software, and Factoshiny, a web-based
application.

When it comes to libraries, there are FactoMineR, ca, and MASS as R
packages, as well as the scikit-learn and Prince Python libraries.

5.6 Conclusion

Correspondence Analysis (CA) and Multiple Correspondence Analysis (MCA)
are statistical techniques employed for investigating and visualizing relation-
ships among categorical variables. In this chapter, we’ve introduced both
methods. We commenced with Correspondence Analysis (CA), delineating
its procedural steps, encompassing data preparation and the establishment of
a new multidimensional space via the computation of profile matrices. Fur-
thermore, we elaborated on the data representation within this new space,
covering the computation of total inertia, points to principal inertias, and
the contribution of principal axes to point inertias. An example illustrating
CA application was provided. Subsequently, we elucidated the transition
from Correspondence Analysis (CA) to Multiple Correspondence Analysis,
introducing the indicator matrix and Burt matrix. The chapter concluded
with an overview of the software tools and libraries utilized for MCA.
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CHAPTER 6

CLASSIFICATION IN MACHINE LEARNING

Industries generate vast and diverse datasets, which can be a daunting task
to process manually. As a result, machine learning classification techniques
have found increasing application in enhancing data management, ultimately
leading to improved return on investment.

In this chapter, we will delve into the realm of machine learning, exploring
the fundamental concepts in Section 6.1. Subsequently, in Section 6.2, we
will introduce the concept of classification within the domain of machine
learning, emphasizing its significance. We will then pivot to Section 6.3,
where we will illuminate the practical utilization of classification techniques
in various industrial applications.

Our journey will also encompass an exploration of the different types of
classification tasks in machine learning, providing valuable insights in Sec-
tion 6.4. Next, we will provide an overview of the different classification
algorithms in Section 6.5 and discuss the performance metrics used to as-
sess the quality of classification algorithms in Section 6.6. Finally, we will
conclude the chapter with a set of exercises in Section 6.7.
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6.1 What is Machine Learning ?

Machine learning (ML), a subfield of artificial intelligence (AI) and computer
science, focuses on the exploration of data and algorithms that mimic human
learning processes. In essence, it entails machines progressively enhancing
their accuracy through the learning process.

Machine learning has become an integral part of diverse industries. Its
significance lies in its ability to furnish organizations with valuable insights
into customer behavior trends and operational patterns.

6.1.1 Types of Machine Learning

There are four types of machine learning:

• Supervised Learning

• Unsupervised Learning

• Semi-Supervised Learning

• Reinforcement Learning

6.1.1.1 Supervised Learning

In this scenario, machine learning operates on labeled data, meaning that
each data point is associated with a class. During the training process, the
algorithm strives to discern patterns and relationships among the inputs in
order to predict their corresponding outputs. As input data is fed into the
model, it refines its weights iteratively until the model is appropriately fitted.

6.1.1.2 Unsupervised Learning

Machine learning operates on unlabeled data, meaning that each data point
lacks a class label. In such cases, the algorithm analyzes the available data to
uncover correlations and connections without requiring human intervention.
The output of the model is the organization of the input data into clusters.
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6.1.1.3 Semi-Supervised Learning

Semi-supervised learning bridges supervised learning and unsupervised learn-
ing. It employs both labelled and unlabelled data. The model can learn to
categorise unlabelled data using this combination.

Figure 6.1: Supervised Learning VS Unsupervised Learning VS Semi-
Supervised Learning

6.1.1.4 Reinforcement Learning

Is a machine learning training method based on rewarding desired behav-
iors and punishing undesired ones. Following the definition of the rules, the
method attempts to explore several options and prospects, monitoring and
assessing each output to determine which is ideal. Reinforcement learning
instructs the machine through trial and error. It learns from previous expe-
riences and begins to change its approach to the situation to reach the best
possible outcome.
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6.2 Understanding Classification in Machine Learn-

ing: A Definition

Classification, in the context of machine learning, is a technique in which a
model categorizes samples into specific classes or categories. This process in-
volves thorough training of the model using training data to capture patterns
and relationships within the dataset. Once trained, the model can effectively
assign the correct class labels to new, unseen data points.

Figure 6.2: Classification

6.3 Classification in Machine Learning with In-

dustrial Applications

The Industrial applications involves the use of classification methods to cat-
egorize and assign items, components, or data points to specific classes or
categories. This enables automated decision-making, quality control, fault
detection, and optimization in various industrial sectors, such as manufac-
turing, supply chain management, quality assurance, and predictive mainte-
nance.
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6.4 Different Types of Classification Tasks in

Machine Learning

There are four types of classification tasks :

• Binary Classification

• Multi-Class Classification

• Multi-Label Classification

• Imbalanced Classification

6.4.1 Binary Classification

Binary classification stands as a fundamental task in the realm of machine
learning. Its objective is to classify data into one of two possible classes,
guided by input features.
Binary classification finds applications in industries like manufacturing, where
it can be utilized to monitor the health of equipment and machinery. Models
can classify equipment as either "healthy" or "faulty".

Figure 6.3: Binary Classification
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6.4.2 Multi-Class Classification

Multi-class classification is a machine learning modeling task where the goal
is to categorize data into one of more than two possible classes.
Industries like retail and marketing use multi-class classification to segment
customers into different groups based on purchasing behavior, demographics,
or preferences.

Figure 6.4: Multi-Class Classification: three classes
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6.4.3 Multi-Label Classification

When data can be associated with multiple classes, multi-label classification
is employed.
This differs from binary classification and multi-class classification, where a
single class label is assigned to each sample.
For example multi-label classification can categorize products based on sev-
eral quality parameters, such as "size," "color," "shape," and "material".

Figure 6.5: Multi-Class Classification VS Multi-Label Classification

6.4.4 Imbalanced Classification

Imbalanced classification refers to a particular challenge in machine learning,
characterized by an unequal distribution of classes within the dataset. In this
scenario, the number of examples in each class is unevenly distributed.
For example, in the context of manufacturing, the majority of products are
typically free from defects. Therefore, the crucial task is to detect and identify
rare defects or anomalies to ensure and uphold product quality.
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Figure 6.6: Imbalanced Classification

6.5 Instances of Classification Algorithms

There are several instances of classification algorithms, each with its own
characteristics and suitability for different types of problems. Here are some
common types of classification algorithms:

• Logistic Regression

• Decision Trees

• Random Forest

• Support Vector Machines (SVM)

• k-Nearest Neighbors (k-NN)

• Naive Bayes
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6.5.1 Logistic Regression

Logistic Regression is a statistical method used in machine learning to model
the relationship between a binary dependent variable and one or more inde-
pendent variables.

The logistic regression model estimates the probability that a given input
instance belongs to a specific class. The result is a value between 0 and 1. The
logistic regression model uses the logistic function (also called the sigmoid
function) to transform a linear combination of the predictor variables into a
probability. The formula for logistic regression can be expressed as:

Logit(pi = 1/(1 + exp(−pi))) (6.1)

ln(pi/1− pi) = Beta−0 +Beta−1 ∗X−1 + ....+Beta−K ∗X−K (6.2)

In this logistic regression equation, logit(pi) is the dependent or response
variable and x is the independent variable. The beta parameter, or coefficient,
in this model is commonly estimated via maximum likelihood estimation
(MLE). This method tests different values of Beta through multiple iterations
to optimize for the best fit of log odds. All of these iterations produce
the log likelihood function, and logistic regression seeks to maximize this
function to find the best parameter estimate. Once the optimal coefficient
(or coefficients if there is more than one independent variable) is found, the
conditional probabilities for each observation can be calculated, logged, and
summed together to yield a predicted probability. For binary classification,
a probability less than .5 will predict 0 while a probability greater than 0
will predict 1.

6.5.2 Decision Trees

A decision tree is a non-parametric supervised learning algorithm. It has a
hierarchical, tree structure, which consists of a root node, branches, internal
nodes and leaf nodes.
Decision tree learning employs a divide and conquer strategy by conducting a
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greedy search to identify the optimal split points within a tree. This process
of splitting is then repeated in a top-down, recursive manner until all, or the
majority of records have been classified under specific class labels.
There are multiple ways to select the best attribute at each node, two meth-
ods, information gain and Gini impurity, act as popular splitting criterion
for decision tree models.

Entropy(S) = −
∑
c∈C

pclog2pc (6.3)

Where
S represents the data set that entropy is calculated.
c represents the classes in set S.
pc represents the proportion of data points that belong to class c to the
number of total data points in set S.

Information−Gain(S, a) = Entropy(S)−
∑

v∈V alues(a)

|Sv|
|S|

Entropy(Sv)

(6.4)
Where
a represents a specific attribute or class label
Entropy(S) is the entropy of dataset S
|Sv |
|S| represents the proportion of the values in Sv to the number of values in
dataset
Entropy(Sv) is the entropy of dataset Sv.

As Entropy(S) is fixed for a given S, independent of the splitting attribute
a, maximising Information−Gain(S, a) is equivalent to minimising

E =
∑

v∈V alues(a)

|Sv|
|S|

Entropy(Sv) (6.5)

Gini impurity is defined as:

Gini− Impurty = 1−
∑
c

(p2c) (6.6)
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Figure 6.7: Decision tree
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6.5.3 Random Forest

The random forest algorithm consists of an ensemble of decision trees, with
each tree in the ensemble trained on a data sample drawn from the training
set with replacement, a process known as bootstrapping. Within this train-
ing sample, one-third of the data is reserved as test data, referred to as the
out-of-bag (oob) sample. Additional randomness is introduced through fea-
ture bagging, enhancing dataset diversity and reducing correlations among
individual decision trees.

For classification tasks, the predicted class is determined by a majority
vote, which selects the most frequently occurring categorical variable among
the trees.

Subsequently, the oob sample is used for cross-validation, finalizing the
prediction process.

Figure 6.8: Random Forest
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6.5.4 Support Vector Machines (SVM)

Support Vector Machines is a supervised machine learning algorithm that
aims to find the optimal hyperplane (decision boundary) that maximally
separates data points from different classes in a feature space. It does this
by identifying the support vectors, which are the data points closest to the
decision boundary, and finding the hyperplane that maximizes the margin
between these support vectors.
SVM can handle non-linear classification problems by using kernel func-
tions (e.g., polynomial, radial basis function) to map the data into a higher-
dimensional space, where a linear hyperplane can separate the classes.
SVM can be extended to multi-class classification problems using various
techniques, including one-vs-one and one-vs-all strategies.

Figure 6.9: Support Vector Machines (SVM)

6.5.5 Naive Bayes

A naive Bayes classifier is an algorithm that uses Bayes’ theorem to clas-
sify objects. Naive Bayes classifiers assume strong, or naive, independence
between attributes of data points. A naive Bayes classifier uses probabil-
ity theory to classify data. The key insight of Bayes’ theorem is that the
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probability of an event can be adjusted as new data is introduced.

6.5.6 k-Nearest Neighbors (k-NN)

The k-nearest neighbors algorithm, is a non-parametric, supervised learning
classifier, which uses proximity to make classifications or predictions about
the grouping of an individual data point. It is typically used as a classification
algorithm, working off the assumption that similar points can be found near
one another.
For classification problems, a class label is assigned on the basis of a majority
vote—i.e. the label that is most frequently represented around a given data
point is used.
In order to determine which data points are closest to a given query point,
the distance between the query point and the other data points will need to
be calculated.
This distance can be Euclidean distance, Manhattan distance, Minkowski
distance, Hamming distance.
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Figure 6.10: k-Nearest Neighbors (k-NN)
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6.6 Performance Metrics for Assessing Classi-

fication Algorithm Quality

There are several metrics commonly used to evaluate the quality of classifi-
cation algorithms.
Here are some widely used classification evaluation metrics:

• Accuracy

• Precision

• Recall

• F1 Score

• Specificity

• Cohen’s Kappa

• Receiver Operating Characteristic (ROC) Curve

• Area Under the ROC Curve (AUC-ROC)

6.6.1 Accuracy

This is one of the most straightforward metrics. It measures the ratio of
correctly predicted instances to the total number of instances in the dataset.

Accuracy =
TP + TN

TP + TN + FP + FN
(6.7)

Where:
TP refers to True Positive
TN refers to True Negative
FP refers to False Positive
FN refers to False Negative
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6.6.2 Precision

Precision is the ratio of true positive predictions to the total positive predic-
tions. It indicates how many of the predicted positive instances are actually
correct.

Precision =
TP

TP + FP
(6.8)

6.6.3 Recall

Recall measures the ratio of true positive predictions to the total actual
positive instances. It tells you how many of the actual positive instances
were correctly predicted.

Recall =
TP

TP + FN
(6.9)

6.6.4 F1 Score

The F1 Score is the harmonic mean of precision and recall. It is useful
when you want to balance precision and recall, especially when there is an
imbalance between the classes.

F1score = 2× recall × precision

recall + precision
(6.10)

6.6.5 Specificity

Specificity measures the ratio of true negative predictions to the total actual
negative instances.

Specificity =
TN

TN + FP
(6.11)

6.6.6 Cohen’s Kappa

Kappa Statistic is based on the difference between how much agreement is
actually present (“observed”
agreement-Po) compared to how much agreement would be expected to be
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present by chance alone (“expected”
agreement-Pe).

Kappa =
(Po− Pe)

(1− Pe)
(6.12)

6.6.7 Receiver Operating Characteristic (ROC) Curve

The ROC curve is a graphical representation of the trade-off between sen-
sitivity and specificity. It helps you choose an appropriate threshold for
classification.

6.6.8 Area Under the ROC Curve (AUC-ROC)

AUC-ROC quantifies the overall performance of a classification model. A
higher AUC-ROC indicates a better model.
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6.7 Exercises

Exercise 1

Given the dataset distribution presented in the following figure:

Figure 6.11: Dataset distribution

-Perform k-Nearest Neighbors classification using Euclidean distance with
k=3 for the red point (5, 5) to determine its class.

Exercise 2

Provided is a dataset illustrating the probability of machine breakdown (High
or Low), considering variables such as the duration since the last repair (1-5
years, 5-10 years, >10 years), the gender of the maintenance expert involved
(Male or Female), and the installation zone (Zone 1 or Zone 2).

-Using information gain, build a decision tree from this data.
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ID Duration Gender Zone Risk

1 >10 M 1 L

2 5−10 M 2 H

3 1−5 F 2 L

4 >10 F 2 H

5 1−5 M 2 H

6 >10 M 2 H

7 5−10 F 1 L

8 5−10 M 1 L

Table 6.1: Dataset
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6.8 Solutions

Solution exercise 1

From the figure we obtained the coordinate of each point.

X-coordinate Y-coordinate Class

2 3 Class 1

3 1 Class 1

4 2 Class 1

7 9 Class 2

9 6 Class 2

8 8 Class 2

Table 6.2: Data points coordinates

Distance from (5, 5) to (2, 3): sqrt((5− 2)2 + (5− 3)2) ≈ 3.61

Distance from (5, 5) to (3, 1): sqrt((5− 3)2 + (5− 1)2) ≈ 4.47

Distance from (5, 5) to (4, 2): sqrt((5− 4)2 + (5− 2)2) ≈ 3.16

Distance from (5, 5) to (7, 9): sqrt((5− 7)2 + (5− 9)2) ≈ 4.47

Distance from (5, 5) to (9, 6): sqrt((5− 9)2 + (5− 6)2) ≈ 4.12

Distance from (5, 5) to (8, 8): sqrt((5− 8)2 + (5− 8)2) ≈ 4.24

The three nearest neighbors are: (2, 3), (4, 2), and (9, 6).
Count the number of neighbors for each class:
Class 1: 2 neighbors
Class 2: 1 neighbor
Since Class 1 has a higher count, we classify the point (5, 5) as belonging

to Class 1. Therefore, the predicted class for the point (5, 5) using k-Nearest
Neighbors with k=3 is Class 1.
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Solution exercise 2

We compute E according to 6.5 for the variable Duration

E =
3

8
.0.918 +

3

8
0.918 +

2

8
.1 ≃ 0.94

Duration |Sv| Risk pv Entropy(Sv)

>10 3
L 1/3

0.918
H 2/3

5−10 3
L 2/3

0.918
H 1/3

1−5 2
L 1/2

1
H 1/2

Table 6.3: Entropy Computation for Variable Duration

We compute E according to 6.5 for the variable Gender

E =
5

8
.0.971 +

3

8
.0.918 ≃ 0.95

Gender |Sv| Risk pv Entropy(Sv)

M 5
L 2/5

0.971
H 3/5

F 3
L 2/3

0.918
H 1/3

Table 6.4: Entropy Computation for Variable Gender

We compute E according to 6.5 for the variable Zone

115



Chapter 6 Classification in Machine Learning

E =
3

8
.0 +

5

8
.0.722 ≃ 0.45

Zone |Sv| Risk pv Entropy(Sv)

1 3
L 3/3

0
H 0/3

2 5
L 1/5

0.722
H 4/5

Table 6.5: Entropy Computation for Variable Zone

As Zone yields the lowest entropy, resulting in the highest information
gain, it is selected for splitting. The branch for Zone 1 is already pure, so no
further processing is required. The branch of Zone 2 contains the following
data:

ID Duration Gender Risk

2 5−10 M H

3 1−5 F L

4 >10 F H

5 1−5 M H

6 >10 M H

We compute again E according to 6.5 for the variable Duration

E =
2

5
.0 +

1

5
.0 +

2

5
.1 ≃ 0.4

We compute again E according to 6.5 for the variable Gender

E =
3

5
.0 +

2

5
.1 ≃ 0.4
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Duration |Sv| Risk pv Entropy(Sv)

>10 2
L 0/2

0
H 2/2

5−10 1
L 0/1

0
H 1/1

1−5 2
L 1/2

1
H 1/2

Table 6.6: Entropy Calculation for Variable Duration - Second Iteration

Gender |Sv| Risk pv Entropy(Sv)

M 3
L 0/3

0
H 3/3

F 2
L 1/2

1
H 1/2

Table 6.7: Entropy Computation for Variable Gender - Second Iteration

Finally, We’ll opt for Gender as an arbitrary choice. Now, we’re left with
only one non-pure branch, which is ’female.’ We can further split it using
Duration. The resulting final tree is shown below:
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6.9 Conclusion

Machine learning plays a crucial role in data analysis within industries. In
this chapter, we’ve outlined the fundamental concepts of machine learning.
We began by introducing the most common types of machine learning: su-
pervised, unsupervised, semi-supervised, and reinforcement learning. Fol-
lowing this, we provided illustrative diagrams to explain classification in ma-
chine learning and offered examples of classification in industrial applications.
We then delved into various classification scenarios including binary classi-
fication, multi-class classification, multi-label classification, and imbalanced
classification. Moreover, we discussed several classification algorithms such
as logistic regression, decision trees, random forest, support vector machines,
naive Bayes, and k-nearest neighbors. Furthermore, we covered metrics for
evaluating classification algorithms including accuracy, precision, recall, F1
score, kappa, ROC, and AUC-ROC. Finally, we wrapped up this chapter
with a series of exercises.
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CHAPTER 7

CLUSTERING IN MACHINE LEARNING

In our final chapter, we will delve into the intriguing world of clustering within
the realm of machine learning. We embark on this journey by building a
solid understanding of this concept in Section 7.1. Following that, in Section
7.2, we illuminate the practical significance of clustering through industrial
applications.

Section 7.3 is dedicated to unraveling the different types of clustering tasks
that machine learning encompasses, providing clarity on their distinctions.
Moving forward, both Section 7.4 and Section 7.5 offer valuable insights,
with the former presenting an array of clustering algorithms and the latter
focusing on the metrics employed to assess the quality of these algorithms.

As we approach the conclusion of this chapter, we turn our attention
to Section 7.6, where we introduce some popular libraries tailored for im-
plementing clustering algorithms, equipping you with the tools necessary to
embark on your own clustering adventures. Section 7.7 provides a set of
exercises.
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7.1 Understanding Clustering in Machine Learn-

ing: A Definition

Cluster analysis, a machine learning technique falling under unsupervised
learning, is concerned with grouping unlabeled datasets. Its primary objec-
tive is to reveal underlying patterns, structures, or relationships within a
dataset, all without prior knowledge of predefined groups or categories. This
process involves assigning a cluster-ID to each cluster or group formed. This
cluster-ID can then be utilized by machine learning systems to streamline
the processing of large and intricate datasets.

7.2 Clustering in Machine Learning with In-

dustrial Applications

Cluster analysis, a vital technique in the realm of machine learning, finds
wide-ranging industrial applications that significantly benefit organizations.
One of the most prominent applications is customer segmentation for busi-
nesses. By employing clustering algorithms, companies can categorize their
customers into groups with similar purchasing behaviors. This segmentation
proves invaluable for targeted marketing efforts, personalized product rec-
ommendations, and enhancing overall customer satisfaction. For instance, a
retail company can utilize cluster analysis to divide its customer base into
distinct clusters based on their shopping habits, allowing the company to
tailor its marketing strategies accordingly.

Another compelling application of clustering is in optimizing supply chain
management. Clustering can be employed to group products or suppliers
based on various factors such as demand patterns, lead times, or transporta-
tion costs. This strategic approach leads to more efficient inventory man-
agement and substantial cost reduction. By identifying clusters of products
or suppliers that share similar characteristics or requirements, organizations
can streamline their logistics and procurement processes, ultimately improv-
ing their bottom line.
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7.3 Different Types of Clustering Tasks in Ma-

chine Learning

There are several types of clustering tasks in machine learning, each with its
own specific objectives and characteristics. Here are some of the main types:

• Partitioning Clustering (Exclusive)

• Density-Based Clustering

• Distribution Model-Based Clustering

• Hierarchical Clustering

• Fuzzy Clustering (Probabilistic)

• Spectral Clustering

7.3.1 Partitioning Clustering (Exclusive)

Partitioning clustering, also known as exclusive clustering, is a type of data
clustering method where each data point belongs exclusively to one and only
one cluster. The goal of partitioning clustering algorithms is to divide a
dataset into non-overlapping clusters in such a way that the data points
within each cluster are more similar to each other.

Partitioning clustering algorithms work to create cluster centers in such
a manner that the intra-cluster distances (i.e., the distances between data
points within the same cluster) are minimized, while inter-cluster distances
(i.e., the distances between data points from different clusters) are maxi-
mized. This process results in a partitioning of the data into non-overlapping
clusters, where each data point exclusively belongs to one cluster, facilitating
the identification of meaningful patterns and groupings within the dataset.
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Figure 7.1: Partitioning Clustering (Exclusive)

7.3.2 Density-Based Clustering

Density-based clustering is a method that aims to group data points by iden-
tifying highly dense regions and connecting them into clusters. This approach
allows for the formation of clusters with arbitrarily shaped distributions, as
long as dense regions can be linked together. The algorithm achieves this by
discerning distinct clusters within the dataset and connecting areas of high
density.

These algorithms may encounter challenges when dealing with datasets
that exhibit varying densities across the data space and when working with
high-dimensional data, as the concept of density becomes more complex in
higher dimensions.
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Figure 7.2: Density-Based Clustering

7.3.3 Distribution Model-Based Clustering

Distribution model-based clustering is an approach in data analysis that
operates under the assumption that data points within each cluster adhere
to a specific probability distribution or statistical model. In this method,
clusters are established by assessing how closely the observed data conforms
to the presumed distribution models. The primary objective is to determine
the distribution parameters, such as mean and variance, that offer the best
fit for the data within each cluster.

A couple of noteworthy examples of distribution model-based cluster-
ing encompass Gaussian Mixture Models (GMMs) and Multinomial Mixture
Models. GMMs posit that each cluster adheres to a Gaussian (normal) distri-
bution, making them suitable for continuous data. In contrast, Multinomial
Mixture Models find application in clustering categorical data and operate
on the assumption of a multinomial distribution within each cluster.
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Figure 7.3: Distribution Model-Based Clustering

7.3.4 Hierarchical Clustering

Hierarchical clustering offers an alternative to partitioned clustering methods
by eliminating the need to predefine the number of clusters in advance. This
technique organically divides the dataset into clusters, forming a hierarchi-
cal tree-like structure known as a dendrogram. The beauty of hierarchical
clustering lies in its flexibility, as it allows you to choose the desired number
of clusters by slicing the dendrogram at an appropriate level.

In hierarchical clustering, the algorithm starts with each data point as
its own cluster and then iteratively merges clusters based on their similarity,
creating a hierarchy of nested clusters. This process continues until all data
points belong to a single, overarching cluster. At any point in the hierarchy,
you can cut the dendrogram to obtain clusters at different levels of gran-
ularity. This adaptability makes hierarchical clustering a valuable tool for
exploring data without the need for a priori knowledge about the number of
clusters, making it particularly useful in exploratory data analysis and data
mining tasks.
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Figure 7.4: Distribution Model-Based Clustering

7.3.5 Fuzzy Clustering

Fuzzy clustering represents a soft clustering approach where a data object
is allowed to have partial membership in multiple clusters rather than being
strictly assigned to just one cluster. In this method, each data point is
associated with a set of membership coefficients that reflect the extent to
which it belongs to each cluster. These membership coefficients indicate the
degree of membership, allowing for a more nuanced representation of the
data’s relationship with multiple clusters.

Figure 7.5: Fuzzy Clustering
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7.4 Types of Clustering Algorithms

There are several types of clustering algorithms, each with its own char-
acteristics and suitability for different types of problems. Here are some
common types of classification algorithms:

• K-Means Clustering

• Fuzzy C-Means

• Gaussian Mixture Model (GMM)

• DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

• Mean Shift

• Hierarchical Clustering

7.4.1 K-Means Clustering

K-means clustering stands out as one of the most prevalent clustering al-
gorithms in use today. This centroid-based method represents the simplest
form of unsupervised learning.

The primary objective of the K-means algorithm is to minimize the vari-
ance of data points within each cluster. It accomplishes this by iteratively
adjusting cluster centroids until convergence.

However, it’s worth noting that K-means has its limitations. It performs
best when applied to smaller datasets due to its iterative nature, which entails
processing all data points. Consequently, on large datasets, K-means can be
computationally intensive and may require more time to classify data points,
making it less suitable for such scenarios.

7.4.2 Fuzzy C-Means

This unsupervised clustering algorithm enables the creation of a fuzzy parti-
tion from input data. Its operation hinges on the allocation of membership
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values to each data point with respect to every cluster center. This mem-
bership assignment is contingent on the distance between a data point and
the cluster center. In simpler terms, the closer a data point is to a specific
cluster center, the higher its membership score for that particular cluster.

7.4.3 Gaussian Mixture Model (GMM)

The distance metric used in K-means calculations assumes a circular path,
which can lead to inaccurate clustering results when dealing with non-circular
or elongated data shapes.

Gaussian Mixture Models (GMMs) address this limitation effectively by
offering more flexibility. GMMs are capable of handling data with diverse
shapes, not limited to circular or spherical structures.

In a GMM, the model employs multiple Gaussian distributions, often
referred to as components or clusters, to fit the data. These individual Gaus-
sian distributions can adapt to different shapes within the data. The model
calculates the probability that a data point belongs to each of these Gaussian
distributions, and the data point is assigned to the cluster associated with
the highest probability.

7.4.4 DBSCAN (Density-Based Spatial Clustering of Ap-

plications with Noise)

DBSCAN, which stands for Density-Based Spatial Clustering of Applications
with Noise, is a clustering algorithm that operates based on the density of
data points in a dataset. Its primary purpose is to identify outliers and
discover clusters of arbitrary shapes within the data. DBSCAN effectively
distinguishes different clusters by identifying regions of low density, which
helps it detect outliers situated between high-density clusters.

This algorithm surpasses K-means when it comes to handling datasets
with irregular or non-circular shapes. DBSCAN relies on two key parameters
to define clusters:

minPts: This parameter specifies the minimum number of data points
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required to form a cluster.
eps (epsilon): If the distance between two data points is less than or

equal to epsilon, they are considered to belong to the same cluster.

7.4.5 Mean Shift

Mean-shift is a versatile clustering algorithm that doesn’t require specifying
the number of clusters in advance, making it a valuable tool in exploratory
data analysis.

Mean-shift lies in its mode-seeking behavior. It operates by traversing
each data point and shifting them toward the mode, which corresponds to
the region of high data point density. Hence, it’s often referred to as a mode-
seeking algorithm. During this iterative process, each data point gradually
gravitates toward the nearest high-density area, ultimately leading to all data
points being assigned to a cluster that corresponds to a local density peak.

However, one limitation of Mean-shift is its scalability issue with large
datasets, as it involves iterating over all data points, which can be computa-
tionally intensive.

7.4.6 Hierarchical Clustering

Hierarchical clustering doesn’t require specifying the number of clusters in
advance, making it a versatile tool for exploratory data analysis.

Hierarchical clustering algorithms are of 2 types: Agglomerative and Di-
visive.

7.4.6.1 Agglomerative Hierarchy clustering algorithm

Its purpose is to organize objects into clusters by assessing their degree of
similarity. This method follows a bottom-up clustering approach, where each
individual data point initially forms its own cluster. Subsequently, these
clusters are systematically merged together.

During each step of this process, clusters that exhibit a high degree of
similarity are combined, and this merging operation continues iteratively
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until all data points are consolidated into a single, overarching root cluster.

7.4.6.2 Divisive clustering algorithm

In contrast to agglomerative clustering, divisive hierarchical clustering begins
with all data points in a single cluster and then recursively divides clusters
into smaller subclusters. This process continues until each data point is in
its own cluster, yielding a dendrogram in the reverse order of agglomerative
clustering.

7.5 Metrics Used to Evaluate the Quality of

Clustering Algorithms

There are several metrics commonly used to evaluate the quality of clustering
algorithms.
Here are some widely used clustering evaluation metrics:

• Silhouette Score

• Davies-Bouldin Index

• Calinski-Harabasz Index (Variance Ratio Criterion)

• Rand Index

• Dunn Index

7.5.1 Silhouette Score

The silhouette score measures how similar an object is to its own cluster
compared to other clusters. It ranges from -1 to 1, where a high value indi-
cates that the object is well matched to its own cluster and poorly matched
to neighboring clusters.

S(i) =
b(i)− a(i)

max {b(i), a(i)}
(7.1)
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Where:
a(i) is the average distance from data point "i" to the other data points
within the same cluster "A." It measures the cohesion of the data point to
its own cluster.
b(i) is the minimum average distance from data point "i" to the data points
in any other cluster, where "i" does not belong to that cluster. It measures
the separation from other clusters.
b(i)-a(i) quantifies how much better the data point is clustered with its own
cluster compared to the neighboring clusters.
max {b(i), a(i)} is used to normalize the score to fall within the range of -1
to +1.

7.5.2 Davies-Bouldin Index

This index measures the average similarity ratio of each cluster with the
cluster that is most similar to it. A lower value indicates better clustering.

DB =
1

n

n∑
i=1

maxj ̸=i(
Si + Sj

d(Ci + Cj)
) (7.2)

Where
n is the number of clusters.
Ci and Cj are two different clusters.
Si is the average distance from each point in cluster Cito the centroid of
cluster Ci. It measures the intra-cluster similarity.
Sj is the average distance from each point in cluster Cjto the centroid of
cluster Cj .
d(Ci+Cj) is the distance between the centroids of cluster Ci and cluster Cj.
It measures the inter-cluster dissimilarity.
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7.5.3 Calinski-Harabasz Index (Variance Ratio Crite-

rion)

This index calculates the ratio of the between-cluster variance to the within-
cluster variance. Higher values suggest better-defined clusters.

CH =
B

W
× N −K

K − 1
(7.3)

Where
B is the between-cluster variance, which is the sum of the variances between
each cluster’s centroid and the overall centroid.
W is the within-cluster variance, which is the sum of the variances within
each cluster.
N is the total number of data points.
k is the number of clusters.

7.5.4 Dunn Index

The Dunn Index evaluates the ratio of the minimum inter-cluster distance to
the maximum intra-cluster distance. A higher Dunn Index indicates better
clustering.

D =
mini ̸=j(d(Ci, Cj))

maxk(dintra(Ck))
(7.4)

Where
d(Ci, Cj) represents the distance between cluster Ci and Cj, which is the
minimum distance between any two data points from different clusters.
dintra(Ck) represents the intra-cluster distance for cluster Ck, which is the
maximum distance between any two data points within the same cluster.

7.5.5 Rand Index

The Rand index measures the similarity between the true clustering and the
clustering produced by the algorithm. It provides a measure of the accuracy
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of the clustering.

RI =
TP + TN

TP + TN + FP + FN
(7.5)

Where:
TP is the number of true positive pairs, i.e., pairs of data points that are
correctly grouped together in both the predicted clustering and the reference
clustering.
TN is the number of true negative pairs, i.e., pairs of data points that are
correctly placed in separate clusters in both the predicted clustering and the
reference clustering.
FP is the number of false positive pairs, i.e., pairs of data points that are
grouped together in the predicted clustering but not in the reference cluster-
ing.
FN is the number of false negative pairs, i.e., pairs of data points that are
placed in separate clusters in the predicted clustering but not in the reference
clustering.

7.6 Libraries for Implementing Clustering Al-

gorithms

There are several libraries available for implementing and applying cluster-
ing algorithms in various programming languages. Here are some popular
options:
Scikit-learn, SciPy and PyClustering are Python libraries. Cluster and fpc
are R packages. Weka is Java’s library. Dlib and MLPack are C++ libraries.
MATLAB Statistics and Machine Learning Toolbox it is toolbox for various
clustering algorithms and data analysis tasks.
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7.7 Exercises

Exercise 1

A logistics report provides the distance (in kilometers) between different
zones (Z1, Z2, Z3, Z4). To organize the circuit for visiting these zones, cre-
ate a dendrogram using agglomerative hierarchical clustering following the
maximum linkage strategy.

Exercise 2

Table 7.1 displays a set of two-dimensional points.
-Apply K-Means clustering with two centers to assign each point to a

class.
Centroid 1: (4, 5)
Centroid 2: (12, 13)

-Provide the coordinates of the centers after the first iteration.
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X-coordinate Y-coordinate Point

2 3 Point 1

4 5 Point 2

6 7 Point 3

8 9 Point 4

10 11 Point 5

12 13 Point 6

14 15 Point 7

16 17 Point 8

Table 7.1: Data points coordinates
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7.7.1 Exercise 3

Given the data points and their membership for the two centers (Table 7.2),
apply fuzzy C-means clustering to determine the new coordinates of the
centers and the membership of each point to the two centers after the first
iteration.

Cluster (1,3) (2,5) (4,8) (7,9)

1 0.8 0.7 0.2 0.1

2 0.2 0.3 0.8 0.9

Table 7.2: Data points membership
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7.8 Solutions

Solution exercise 1

The agglomerative hierarchical clustering, employing the maximum linkage
strategy, entails grouping zones with the maximum distance between them.
This process is illustrated in Figure 7.6, and the resulting dendrogram is
depicted in Figure 7.7.

Figure 7.6: Maximum linkage strategy for grouping the zones
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Figure 7.7: Dendrogram
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Solution exercise 2

We compute the Euclidean distance between each point and the two centers.
For point (2, 3):

Distance to Centroid 1: sqrt((2− 4)2 + (3− 5)2) = 2.83

Distance to Centroid 2: sqrt((2− 12)2 + (3− 13)2) = 14.14

Assign point (2, 3) to Centroid 1
After applying the same distance for all other points, we obtained the fol-
lowing results:

Assign point (2, 3) to Centroid 1
Assign point (4, 5) to Centroid 1
Assign point (6, 7) to Centroid 1
Assign point (8, 9) to Centroid 1
Assign point (10, 11) to Centroid 1
Assign point (12, 13) to Centroid 2
Assign point (14, 15) to Centroid 2
Assign point (16, 17) to Centroid 2

-We calculate the mean of the points assigned to each centroid
Centroid 1:

(2+4+6+8+10) / 5 = 6
(3+5+7+9+11) / 5 = 7

Centroid 2:
(12+14+16) / 3 = 14
(13+15+17) / 3 = 15

So the new coordinates of the centers are:
Centroid 1: (6, 7)
Centroid 2: (14, 15)
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Solution exercise 3

We compute the new center coordinates according to the following formula:

Ci,j =

∑n
k=1 γ

m
ik ∗ xk∑n

k=1 γ
m
ik

(7.6)

where
γ: fuzzy membership value
m: fussiness parameter generally taken as 2
xk: is the data point
n: number of data points

C11 =
0.82 ∗ 1 + 0.72 ∗ 2 + 0.22 ∗ 4 + 0.12 ∗ 7

0.82 + 0.72 + 0.22 + 0.12
= 1.568

C12 =
0.82 ∗ 3 + 0.72 ∗ 5 + 0.22 ∗ 8 + 0.12 ∗ 9

0.82 + 0.72 + 0.22 + 0.12
= 4.051

So the coordinates of Center 1 are: (1.568,4.051).

C21 =
0.22 ∗ 1 + 0.32 ∗ 2 + 0.82 ∗ 4 + 0.92 ∗ 7

0.22 + 0.32 + 0.82 + 0.92
= 5.35

C22 =
0.22 ∗ 3 + 0.32 ∗ 5 + 0.82 ∗ 8 + 0.92 ∗ 9

0.22 + 0.32 + 0.82 + 0.92
= 8.215

So the coordinates of Center 2 are: (5.35,8.215).
For point (1,3):

Distance to Centroid 1: sqrt((1− 1.568)2 + (3− 4.051)2) = 1.2

Distance to Centroid 2: sqrt((1− 5.35)2 + (3− 8.215)2) = 6.79

For point (2,5):
Distance to Centroid 1: sqrt((2− 1.568)2 + (5− 4.051)2) = 1.04

Distance to Centroid 2: sqrt((2− 5.35)2 + (5− 8.215)2) = 4.64

For point (4,8):
Distance to Centroid 1: sqrt((4− 1.568)2 + (8− 4.051)2) = 4.63

Distance to Centroid 2: sqrt((4− 5.35)2 + (8− 8.215)2) = 1.36

For point (7,9):
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Distance to Centroid 1: sqrt((7− 1.568)2 + (9− 4.051)2) = 7.34

Distance to Centroid 2: sqrt((7− 5.35)2 + (9− 8.215)2) = 1.82

We compute the new membership of all points using the following formula:

γki =

(
n∑

j=1

d2ki
d2kj

( 1
m−1

)
)−1

where
d represent the distance between the point and the centroid.
For point (1,3):

Distance to Centroid 1:

γ11 =

({
(1.2)2

(1.2)2
+

(1.2)2

(6.79)2

}( 1
(2−1))

)−1

= 0.97

Distance to Centroid 2:

γ12 =

({
(6.79)2

(1.2)2
+

(6.79)2

(6.79)2

}( 1
(2−1))

)−1

= 0.03

For point (2,5):
Distance to Centroid 1:

γ21 =

({
(1.04)2

(1.04)2
+

(1.04)2

(4.64)2

}( 1
(2−1))

)−1

= 0.95

Distance to Centroid 2:

γ22 =

({
(4.64)2

(1.04)2
+

(4.64)2

(4.64)2

}( 1
(2−1))

)−1

= 0.05

140



Chapter 7 Clustering in Machine Learning

For point (4,8):
Distance to Centroid 1:

γ31 =

({
(4.63)2

(4.63)2
+

(4.63)2

(1.36)2

}( 1
(2−1))

)−1

= 0.08

Distance to Centroid 2:

γ32 =

({
(1.36)2

(4.63)2
+

(1.36)2

(1.36)2

}( 1
(2−1))

)−1

= 0.92

For point (7,9):
Distance to Centroid 1:

γ41 =

({
(7.34)2

(7.34)2
+

(7.34)2

(1.82)2

}( 1
(2−1))

)−1

= 0.06

Distance to Centroid 2:

γ42 =

({
(1.82)2

(7.34)2
+

(1.82)2

(1.82)2

}( 1
(2−1))

)−1

= 0.94

Cluster (1,3) (2,5) (4,8) (7,9)

1 0.97 0.95 0.08 0.06

2 0.03 0.05 0.92 0.64

Table 7.3: The new data points membership
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7.9 Conclusion

Clustering analysis serves as a vital technique in industrial applications, facil-
itating organizational improvements and informed decision-making processes.
Throughout this chapter, we’ve explored different types of clustering tasks in
machine learning, encompassing partitioning clustering, density-based clus-
tering, distribution model-based clustering, hierarchical clustering, and fuzzy
clustering. Additionally, we’ve examined various clustering algorithms such
as K-means, fuzzy C-means, Gaussian mixture models, and density-based
spatial clustering of applications with noise (DBSCAN), mean-shift, and hi-
erarchical clustering. Furthermore, we’ve delved into the metrics utilized
to assess clustering algorithm quality, along with the libraries available for
implementing these algorithms. This chapter concludes with a series of ex-
ercises.
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CONCLUSION

This course on data analysis is designed for third-year engineering students
specializing in industrial engineering. It consolidates key concepts in data
analysis.

Spanning 7 chapters, we have introduced diverse models and approaches
employed in univariate, bivariate, and multivariate analysis. We have also
presented classification and clustering models, extensively utilized in today’s
industry for making informed decisions.

By offering this educational resource, our aim is to enrich the learning
journey for students. We believe that a strong foundation in data analysis
and its practical applications will empower them to excel in their future
endeavors, both academically and professionally.
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