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Résumé

La technologie des batteries est 1'un des goulets d’étranglement des voitures électriques.
Que ce soit en théorie ou en pratique, la recherche sur la gestion des batteries est ex-
tréemement importante, en particulier pour I'estimation de 1’état de charge des batteries.
En fait, la batterie possede de fortes propriétés non linéaires et variables dans le temps,
qui sont extrémement complexes. Par conséquent, ’estimation précise de 1’état de charge
est une tache difficile.

Dans cette étude, une analyse complete a été menée pour explorer la popularité et les
avantages des piles au lithium, ainsi que leurs caractéristiques et les facteurs influencant
les mesures de I'état de charge. L’objectif était de développer un circuit intégré précis
d’estimation de I’état de charge qui pourrait répondre a des exigences spécifiques et fournir
des informations sur le comportement des cellules au lithium.

Les résultats de I’étude contribuent non seulement au domaine des systemes de gestion
des batteries, mais offrent également une compréhension plus large de I’estimation de 1’état
de charge des cellules au lithium. En mettant en ceuvre un modele passif sur un circuit
électronique avec microcontroleur, le circuit permet une mesure précise et en temps réel

de I’état de charge.

Mots-Clés: Etat de charge ; systeme embarqué ; batterie au lithium ; systeme embarqué

; intelligence artificielle ; capteurs.
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Abstract

Battery technology has been one of the bottlenecks in electric cars. Whether it is
in theory or in practice, the research on battery management is extremely important,
especially for battery state of charge estimation. In fact, the battery has a strong time-
varying and non-linear properties, which are extremely complex. Therefore, accurately
estimating the state of charge is a challenging task.

In this study, a comprehensive analysis was conducted to explore the popularity and
advantages of lithium cells, along with their characteristics and the factors influencing
state of charge measurements. The aim was to develop an accurate embedded state of
charge estimation circuit that could meet specific requirements and provide insights into
the behavior of lithium cells.

The study’s results contribute not only to the field of battery management systems
but also offer a broader understanding of state of charge estimation for lithium cells.
By implementing a passive-based model on an elecronic circuit with microcontroller, the
circuit enables real-time and precise measurement of the state of charge.

Keywords: State of Charge; Embedded system; Lithium Battery; Embedded system:;

Artificial Intelligence; Sensors.
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General Introduction

Due to technological advancements and the growing demand for electric vehicles and
portable electronics, lithium batteries have gained immense popularity. This is primarily
attributed to their remarkable attributes of high energy density and long cycle life. How-
ever, accurately determining the state of charge (SOC) of lithium cells has emerged as
a notable challenge. The SOC of a battery denotes the amount of available energy, and
having precise knowledge of this parameter is critical for optimizing battery utilization,
preventing over-discharge or over-charge situations, and ensuring efficient and reliable
operation.

The repercussions of inaccurate SOC estimation are far-reaching and include dimin-
ished performance, shortened battery lifespan, and potential safety risks. Consequently,
the development of dependable SOC estimation methods for lithium cells has attracted
significant attention from both the research and industrial sectors. By addressing this
issue, we can enhance the usability, efficiency, and safety of lithium-based systems, which
in turn propels the advancement of sustainable energy storage technologies.

Our project is dedicated to addressing the intricate task of precisely estimating the state
of charge in lithium cells. To accomplish this, we harness the characteristics and behavior
of these batteries and employ artificial intelligence (Al) techniques. Given the intricate
and ever-changing nature of lithium cells, we propose utilizing neural networks, a potent
Al tool, to construct SOC estimation models. We investigate three distinct neural net-
work architectures to determine the most efficient approach. By training these models
on an extensive dataset encompassing the behavior of lithium cells, we strive to attain a

remarkable level of accuracy.



This document is made up of four (04) chapters, the first of which gives a general pre-
sentation of lithium cells, their types and characteristics, as well as a presentation of the
problems involved in state-of-charge estimation. The second chapter is devoted to the
state of the art of state-of-charge estimation methods highlighting the adopted method.
The third chapter presents the necessary software and hardware needed for the experi-
ments. The fourth chapter shows the results of the experiments and results comparison,

as well as the validation of the hypotheses.



Chapter 1

State of the Art Battery

Technologies

1.1 Introduction

Over the past few years, significant progress has been made in the realm of recharge-
able batteries, revolutionizing their design and technology. One of the most prevalent
and widely used types is the lithium-ion battery, commonly found in portable electronic
devices such as smartphones, robots, and electrical vehicles. These batteries boast a
remarkable energy density, enabling them to store a substantial amount of power in a
compact and convenient form. Compared to other rechargeable battery options, lithium-
ion batteries also exhibit an impressive lifespan, ensuring their longevity. Additionally,
they are lightweight and possess a low self-discharge rate, meaning they can retain their

charge for extended periods when not in use [1].

Another variant of rechargeable battery is the nickel-metal hybrid battery, predomi-
nantly employed in hybrid and electric vehicles. These batteries excel in terms of capacity,
surpassing that of lithium-ion batteries, and are highly resistant to damage caused by
overcharging. However, it is worth noting that nickel-metal hybrid batteries tend to be

heavier and more costly compared to their lithium-ion counterparts [2].
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Beyond these established technologies, researchers are actively exploring newer alterna-
tives in the field of rechargeable batteries. Solid-state batteries, for example, employ solid
electrolytes instead of liquid ones, boasting the potential for enhanced safety measures
and higher energy densities in comparison to traditional lithium-ion batteries. Moreover,
the scientific community is pushing the boundaries by investigating batteries that uti-
lize innovative materials like silicon, graphene, and lithium-sulfur. These materials hold
tremendous promise in terms of significantly improving the performance and lifespan of
rechargeable batteries [3].

The realm of rechargeable batteries is an ever-evolving and constantly improving field,
with ongoing developments and innovative breakthroughs. With relentless advancements
and new discoveries on the horizon, it is anticipated that rechargeable battery technologies

will become even more efficient and effective in the years to come.

1.2 Overview of Lithium-ion Battery

By the end of the 1900s, the battery stood as the sole power source due to the absence of
power generators and grid supplies. Over time, this technology has undergone continuous
development, leading to the emergence of various battery types [4]. One commonly used
variant was the "wet cells", which consisted of open containers holding liquid electrolytes
and metallic electrodes. These batteries could be reused by substituting their materials,
although they lacked portability, which made them suitable for early Electric Vehicles
(EV) that utilized semi-sealed wet cells [2].

During the early stages of battery technology, assembled batteries produced current
but were unable to be electrically recharged once the active elements were depleted. A
significant breakthrough occurred with the invention of the lead-acid battery, which in-
troduced rechargeable types capable of replenishing electric energy. These batteries could
store energy repeatedly, thereby extending their lifespan. In contrast, the disposable Li-
ion battery gained popularity in the rechargeable battery market due to its high energy
density and long lifespan, despite its relatively high unit price [2].

4



The structure of Li-ion batteries comprises two electrodes, namely the anode and the
cathode, which are divided by a separator. An electrolyte is present in the separator,
allowing lithium ions to migrate from the cathode to the anode during the charging
process and reverse their movement during discharging, as depicted in Figure 1.1. In
contrast to non-rechargeable batteries that incorporate metallic lithium, Li-ion batteries

employ a compound lithium electrode material [5].

In EV applications, Li-ion batteries have gained popularity as a portable recharge-
able alternative to lead-acid batteries, primarily due to their lightweight nature and high
energy density [4]. Despite their advantageous properties, Li-ion batteries require strin-
gent testing conditions and careful handling during manufacturing and usage due to the
flammable nature of their electrolyte. Thus precautions are necessary to prevent accidents

and failures [4].

LITHIUM-ION BATTERY
DISCHARGE CHARGE

ELECTROLYTE ELECTROLYTE

SEPARATOR ANODE (4 SEPARATOR ANODE (-)
TS umene oo
ALUMINIUM CURRENT ALUMINIUM CURRENT
COLLECTOR COLLECTOR

BV e

Tty B A

LI-METAL

oy Gy
BN A

LITHIUM ION LITHIUM ION

LI-METAL
OXIDES

ELECTRON

OXIDES ELECTRON

Figure 1.1: Charge, discharge mechanism of a lithium-ion battery [6].



1.3 Batteries Characteristics

1.3.1 Nominal Voltage

The nominal voltage of a battery varies according to the technology for which it has been
developed. It depends on the nature and concentration of the chemical species present
in the in the battery. Its value is only an average, since at the start of a discharge, the

voltage is higher, and as the discharge progresses, the voltage drops [7].

1.3.2 Capacity

The capacity of a lithium cell refers to its ability to store and deliver electrical energy. It
is typically measured in ampere-hours (Ah) or milliampere-hours (mAh). The capacity
indicates how much charge the cell can hold and how long it can power a device. For
instance, if a lithium cell has a capacity of 2000mAh, it can theoretically supply a current

of 2000 mA for one hour.

1.3.3 Internal Resistance

The internal resistance of a battery is a disadvantageous characteristic because it causes
the voltage at its terminals to drop as the current it delivers increases. This value is partly
due to internal connections, chemical reaction inertia, built-in protection circuits, and the
aging state of the battery. As a result, internal resistance is an important parameter in

quantifying a battery’s SOH. Its value is generally a few hundred milliohms (m{2) [8].

1.3.4 Life Cycle

The life cycle of a battery represents the total number of charge-discharge cycles it can
endure before reaching the end of its useful lifespan. it is an essential factor to consider
as it directly affects the overall longevity of the battery. Batteries with a high cycle life
can withstand numerous charge-discharge cycles before requiring replacement, whereas

batteries with a low life cycle may need to be replaced more frequently [4].
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1.3.5 Charge/Discharge Rate

The rate, also known as the C-rate, at which a battery can be charged or discharged is
referred to the charge/discharge rate, commonly measured in amperes (A), for example
1C refers to 3A discharge current in 3000 mAh battery. Significantly impacts both the
overall performance and lifespan of a battery. Charging a battery too rapidly can lead to
a reduced lifespan, while discharging it too quickly can result in diminished performance.
Therefore, maintaining an appropriate C-rate is important for optimizing the efficiency

and longevity of the battery.

1.3.6 Operating Temperature

This refers to the range of temperatures over which a battery can be used without damage
or significant loss of performance. The operating temperature of a battery can have
a significant impact on its performance and lifespan, as high temperatures can result
in decreased performance and decreased lifespan, while low temperatures can result in

decreased performance [9].

1.4 Performance Comparison "Lithium-Ion Battery

and Others"

Various conventional batteries, including lead-acid [10], nickel-cadmium (Ni-Cd) [11], and
nickel-metal hydride (Ni-MH) [12], have been developed. When compared in Table 1, Li-
ion batteries outperform other types in terms of energy efficiency, power density, compact
design, wide temperature range, fast charging, long cycle life, low self-discharge, and high
efficiency in energy, charge, and voltage [2]. These desirable features have made Li-ion
batteries the preferred choice in commercial markets, powering bio-implanted devices,
medical instruments, and portable electronics. Table 1.1 shows a comparison between

this 4 types of batteries.



Table 1.1: Comparison of Battery Types [2].

Battery Type Li-ion Ni-Cd Lead-acid Ni-MH
Energy Density (Wh/kg) 110-160 45-80 30-50 60-120
Power Density (W/kg) 1800 150 180 250-1000
Nominal Voltage (V) 3.6 1.25 2 1.25
Cycle Life (cycles) 500-1000 1500 200-300 300-500
Overcharge Tolerance Very Low Moderate High Low
Self Discharge Very Low Moderate Low High
Thermal Stability Most Stable Least Stable Least Stable Least Stable

1.5 Types of Lithium Cells

Typically, the primary sources of active lithium ions in a battery are the cathode or
positive electrode material. To achieve a high capacity, a significant amount of lithium is
incorporated into this material. Moreover, cathode materials undergo a reversible process
where they exchange lithium ions, accompanied by slight structural modifications that
affect their properties. In the electrolyte, materials are formulated using reasonably-priced
high lithium ion content, which ensures good diffusivity, conductivity, and efficiency [36].
Common cathode materials include Lithium Cobalt Oxide (LCO), Lithium Manganese
Oxide (LMO), Lithium Iron Phosphate (LFP), Lithium Nickel-Manganese-Cobalt Oxide
(NMC), Lithium Nickel Cobalt Aluminium Oxide (NCA), and Lithium Titanate (LTO)

3]-

1.5.1 Lithium Cobalt Oxide(LiCo0O2) — LCO

LCO is a popular choice for mobile phones, laptops, and digital cameras due to its high
specific energy. The battery is made up of a cobalt oxide cathode and a graphite car-
bon anode, with lithium ions moving from the anode to the cathode during discharge
and reversing during charge. However, LCO has a relatively short lifespan, low thermal
stability, and limited load capabilities. Newer systems include nickel, manganese, and/or
aluminum to improve performance and reduce cost. Li-cobalt should not be charged or

discharged at a current higher than its C-rating to avoid overheating and stress.
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1.5.2 Lithium Manganese Oxide (LiMn204) — LMO

LMO is a Li-ion cell that improves ion flow and has low internal resistance, enabling fast
charging and high-current discharging. LMO has high thermal stability and enhanced
safety, but limited cycle and calendar life. It has roughly one-third lower capacity than
Li-cobalt but can be optimized for longevity, maximum load current or high capacity.

LMO is used for power tools, medical instruments, and hybrid and electric vehicles.

1.5.3 Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2)
— NMC

NMC is a successful Li-ion system that can serve as Energy Cells or Power Cells. NMC
combines nickel and manganese to enhance their respective strengths and cobalt stabilizes
nickel. The cathode combination typically consists of one-third each of nickel, manganese,
and cobalt. NMC is used in power tools, e-bikes, and electric powertrains. Its capacity

and discharge current can be optimized for specific power or energy.

1.5.4 Lithium Iron Phosphate (LiFePO4) — LFP

LFP has a lower nominal voltage of 3.2V/cell, making its specific energy lower than
cobalt-blended lithium-ion. It is more tolerant to full charge conditions and elevated
temperatures, but has a higher self-discharge and requires cleanliness in manufacturing.
Li-phosphate is often used as a lead acid starter battery replacement and can be topped
up while driving, but overcharging for a prolonged time can stress the battery. Cold

temperature can also affect performance and cranking ability.

1.5.5 Lithium Nickel Cobalt Aluminum Oxide (LiNiCoAlO2) —
NCA

NCA has high specific energy, good specific power, and a long life span, but is less safe

and more expensive compared to other lithium-ion batteries.



1.5.6 Lithium Titanate (Li2TiO3) — LTO

LTO batteries replace graphite in the anode with a spinel structure, have a nominal voltage
of 2.40V, and can be fast charged with a high discharge current of 10C. They are safe,
have excellent low-temperature discharge characteristics, and have a higher cycle count
than regular Li-ion batteries. While they have thermal stability under high temperature,
they are expensive and have a low specific energy of 65Wh/kg. They are used in electric

powertrains, uninterruptible power supply, and solar-powered street lighting.

Table 1.2, and Figure 1.2 represents a general comparison between different lithium-ion

battery chemistries.

Table 1.2: Comparison of different lithium-ion battery chemistries [13].

Operating Voltage Energy Charge Discharge Cycle Life Cost

(V) (Wh/kg) — (C) (©) (cycles) — (8/kWh)
LCO 3.0-4.2 150-200  0.7C-1C 1C 500-1000 200
LMO 3.0-4.2 100-150  0.7C-1C 1C-10C 1000 150
NMC 3.0-4.2 150-220 0.7C-1C 1C-2C 1000 420
LFP 2.5-3.65 90-120 1C 1C-25C 2000 580
NCA 3.0-4.2 200-260  0.7C 1C 500 350
LTO 1.8-2.85 50-80  1C-5C 10C 3000-7000 1,005
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Figure 1.2: Comparison between different types of cathodes [14]

1.6 States of Batteries

1.6.1 State of Charge

SOC is one of the most important parameters for batteries, but its definition presents
many different issues. In general, the SOC of a battery is defined as the ratio of its
current capacity the nominal capacity, which is given by the manufacturer and represents
the maximum amount of charge that can be stored in the battery [1]. The SOC can be

defined as follows:

S0 = Qused 1009 (1.1)
Qrated

where SOC' is the State of Charge, Qyseq is the amount of charge discharged from the

battery, and @Q,q.q is the rated capacity of the battery.

The accurate estimation of SOC remains a significant challenge in battery usage. A
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precise SOC estimation provides information about the remaining capacity, enabling the
application to implement efficient control strategies for energy conservation, protection
against over-discharge which means enhancement of battery lifespan. However, a bat-
tery functions as a source of chemical energy storage, and the chemical energy cannot
be directly measured, which poses a challenge in estimating the state of charge. The
complexity of accurately estimating the SOC stems from limitations in battery models
and parametric uncertainties. These limitations result in instances of low accuracy and

unreliable SOC estimates in practical applications [15].

Open Circuit Voltage

The open Circuit Voltage (OCV) of a battery cell is the potential difference between the
positive electrode and the negative electrode when no current flows and the electrode
potentials are at equilibrium. A battery undergoing charge or discharge does not exhibit
this potential since it is modified by kinetic effects. Open circuit voltage, as a nonlinear
function of state of charge of lithium ion battery, commonly obtained through offline OCV
test at certain ambient temperatures and aging stages. The OCV-SOC relationship may

be inaccurate in real application due to the difference in operation conditions [7].

Discharge Current

The discharge current has a direct effect on the internal resistance of a lithium cell, which
in turn affects the measurement of SOC. As the discharge current increases, the internal
resistance of the battery also increases. This increased resistance leads to a higher voltage
drop across the battery during discharge [16].

When measuring SOC based on voltage, the voltage drop caused by the internal resis-
tance can result in an underestimation of the actual SOC. This is because the measured
voltage will be lower than expected due to the voltage drop across the internal resistance.
To accurately measure SOC, it is important to account for the influence of discharge
current on the internal resistance. This can be done by implementing compensation tech-

niques or using advanced algorithms that consider the dynamic behavior of the battery’s
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internal resistance during discharge. By taking into account the discharge current and
its impact on the internal resistance, more accurate SOC measurements can be obtained
[16]. Figure 1.3 shows the effect of internal resistance on terminal voltage at different

discharge currents .

5.0
CHARGE CONDITION :CVCC 4.2V MAX.0.71t (1500mA) , 110mA cut-off at 25deg.C
DISCHARGE CONDITION : CONSTANT CURRENT , 3.0V cut-off at 25deg.C

2.01t(4300mA) 1.01t(2150mA) 0.21t(430mA)

/
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I
(o]
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Figure 1.3: Internal resistance variation for different discharge currents and different SOC

levels [17].

Temperature

Temperature has a significant impact on battery SOC measurement, higher temperatures
tend to increase the state of charge, while lower temperatures have the opposite effect,
This is because battery capacity and performance are temperature-dependent. At higher
temperatures, the battery may experience greater self-discharge, leading to an overestima-
tion of the state of charge, conversely, low temperatures can reduce battery performance,
leading to an underestimation of service life, for example; in [9] a focused study on lithium-
ion batteries and their performance at different ambient temperatures. A simplified and
computationally efficient battery model was developed, requiring only a few estimated

parameters for on-board application. An OCV-SOC-temperature table was integrated
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into the model to improve accuracy, based on OCV tests conducted from 0°C to 50°C
with a 10°C interval, SOC estimation performance was evaluated using dynamic loading
tests and the unscented Kalman filtering approach, comparing the developed model to an
original model that did not consider temperature, the results demonstrated that the de-
veloped battery model provided more accurate SOC values with smaller RMSE estimated
errors at varying temperatures, within the SOC range of 25% to 85%. The following figure
demonstrates the relationship between OCV and SOC in different temperature tests for

Panasonic CGR18650CG cell [17]:

5.0
CHARGE CONDITION :CVCC 4.2V MAX.0.71t (1500mA) , 110mA cut-off at 25deg.C
DISCHARGE CONDITION : CC 1.0lt (2150mA) , 2.5V cut-off at VARIOUS TEMPERATURE
45T
60deg.C
= 45deg.C
4.0
W
g !25deg.c
g ' 10deg.C
s 35 o ——
307
-10deg.C 0Odeg.C
2.5 E—

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600
DISCHARGE CAPACITY [mAh]

Figure 1.4: OCV-SOC curves between 30% and 80% SOC at different temperatures for
Panasonic CGR18650CG [17].

1.6.2 State of Health

Over time, lithium batteries will inevitably suffer from aging and reduced capacity as
a result of extended use or storage. State of health (SOH) serves as a measure of a
lithium battery’s current ability to hold electrical charge. As a battery ages, various
performance indicators may change, including its rechargeable and discharge capacities,
internal resistance, terminal voltage, cycle times, and more. To assess the SOH of a

lithium battery, metrics such as battery capacity, internal resistance, and remaining cycle
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count are often used [18]. Several factors can influence the lifespan of lithium batteries.

Factors that can influence the lifespan of a lithium battery include [18]:

Temperature

Conventional lithium batteries operate best between temperatures of 0 to 40°C, with
irreversible capacity degradation occurring outside of this range. Capacity decay rate
of the battery increases with decreasing temperature. At low temperatures, lithium ion
loss is the main cause of capacity loss. In contrast, at high temperatures, irreversible
thermal runaway may occur, resulting in safety hazards such as spontaneous combustion

and explosion due to the production of gas and heat [19].

Overcharge and Overdischarge

To prevent damage from overcharging, the Battery Management System (BMS) cuts
off the power supply once the lithium battery’s SOC reaches 100%. Similarly, when
the battery’s discharge reaches the cut-off voltage, the discharge is stopped to avoid
irreversible damage caused by power loss. Overcharging causes the battery capacity to
drop rapidly, leading to accelerated aging, instability, and reduced safety. Overcharge also
leads to dendrite formation due to lithium ion deposition, generating heat and damaging
the electrolyte solution. Over-discharging a single cell in a lithium battery pack can easily
lead to a serious internal short circuit, which increases with the depth of over-discharge.
Discharging the battery below the cut-off voltage and then discharging more than 20% of

the SOC can cause irreversible internal short circuit damage to the battery [20].

High Current Charge and Discharge

The energy density of lithium batteries has not improved much despite their widespread
use, resulting in insufficient battery life per charge, especially for portable electronic
devices and long-range electric vehicles. To address this issue, charging time must be

reduced. Fast charging technology, which increases total charging power by increasing
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charging current, is widely used in mobile phone chargers and car charging stations.
Battery aging experiments conducted in [21], found that the loss of battery capacity
increases with the charging current, and the battery internal resistance also increases

rapidly with the increase of charging current.

Charge—Discharge Cycle Interval

Most people tend to charge their mobile phones and electric vehicles for a longer time even
after they are fully charged to ensure longer use-time. However, according to Ref[22], an
aging cycle experiment was conducted on lithium batteries in four categories, Case 1(75%-
65%), Case 2(75%-25%), Case 3(85%-25%), and Case 4(100%-25%), which are obtained
by dividing the SOC of the battery. Therefore, it is concluded that recycling in the high
SOC interval accelerates the aging of lithium batteries while recycling in the middle and

low SOC interval extends the battery lifespan [21].

Charge Saturation When Shelved

Manufacturers are concerned about maintaining the best performance of lithium batteries
during transportation and storage. As such, it is recommended that batteries not be put
into use immediately after production. In a study cited in [23], the capacity, internal
resistance, and discharge performance of batteries were tested after being placed in a
thermostat with different levels of charge for three months. Results showed that batteries
with either too low or too high a charge experienced greater decline in performance when
stored for extended periods. It was concluded that for long-term storage, it is better to

keep lithium battery charge levels at 40%-60% capacity to ensure optimal performance.

1.6.3 State of function

The State of Function (SOF) of a battery refers to its capability to fulfill a specific
application’s power requirements based on its current condition [11]. It is a measure used

to determine whether the battery is suitable for powering the application considering its
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SOC and SOH. Typically, the SOF of a battery is assessed using a digital scale, indicating

whether the battery can adequately support the application or not [24]. SOF is affected
by :

State of Charge (SOC)
State of Health (SOH)
Maximum Delivered Power

Temperature

1.7 Battery Management System

A "BMS" or battery management system is an on-board electronic device for monitoring

and managing battery energy. Figure 1.5 shows a synoptic diagram of a BMS. There are

several varieties of BMS depending on the manufacturer and the battery technology used

[1]. Its main functions are:

Cell Balancing: This function ensures that each individual cell within a battery
pack is charged and discharged uniformly, preventing capacity imbalances and max-

imizing overall battery performance [25].

SOC Estimation: The BMS monitors the SOC of the battery, which represents

the remaining usable capacity, it is also a key factor for decision making [1].

SOH Estimation: The BMS assesses the overall health and aging of the battery by
monitoring parameters such as capacity fade, internal resistance, and other factors

that affect the battery’s performance and longevity [25].

Safety and Protection: The BMS provides safety mechanisms to prevent over-
charging, over-discharging, and excessive temperature conditions. It also includes
features like short circuit protection and fault detection to ensure safe operation of

the battery system [26].
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e Charging: The additional function of a BMS is charging control, it oversees the
charging process to ensure safe and efficient charging of the battery. It manages
parameters such as charging voltage, current, and charging duration to prevent
overcharging, which can lead to battery degradation or safety hazards [26]. The
BMS may incorporate various charging algorithms, the most known is Constant

Current Constant Voltage (CCCV) method.

The CCCV charging method described employs a current limitation during the initial
charging phase to avoid over-current. It offers the benefit of straightforward determination
of charging current based solely on battery capacity and charging duration. However, a
notable drawback of this method is the accumulation of errors in existing SOC estimation
algorithms, which can result in overcharging or undercharging, leading to a diminished
battery lifespan. Consequently, this charging method is rarely adopted in modern BMSs
for EVs [26].
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Figure 1.5: Synoptic diagram of a BMS
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1.8 Conclusion

In conclusion, this chapter provided an overview of state-of-the-art battery technologies,
with a focus on lithium-ion batteries. These batteries have become popular due to their
high energy density, long lifespan, lightweight nature, and low self-discharge rate. They
are widely used in portable electronic devices and are increasingly being adopted in electric
vehicles.

The chapter also discussed the characteristics of batteries, including nominal voltage,
capacity, internal resistance, life cycle, charge/discharge rate, and operating tempera-
ture. These characteristics are essential in determining the performance and lifespan of a
battery.

A comparison was made between lithium-ion batteries and other conventional battery
types such as lead-acid, nickel-cadmium, and nickel-metal hydride batteries. Lithium-ion
batteries were found to outperform other types in terms of energy efficiency, power density,
compact design, wide temperature range, fast charging, long cycle life, low self-discharge,
and high efficiency in energy, charge, and voltage.

Furthermore, the chapter explored different types of lithium-ion cells, including LCO,
LMO, NMC, LFP, NCA, LTO. Each type has its own advantages and disadvantages,
making them suitable for different applications.

The SOC of a battery is determined by the ratio of the discharged charge to its rated
capacity. SOC measurement is influenced by various factors, including the open circuit
voltage, discharge current, and temperature.

In summary, highlighting the importance of SOC in batteries emphasizes the need
for accurate SOC estimation for efficient control strategies, energy conservation, and bat-
tery lifespan enhancement. Additionally, considering factors such as OCV, discharge
current, temperature, and SOH is crucial for reliable battery management and optimal
performance. Battery management systems play a key role in monitoring and managing

battery energy to ensure safe and efficient operation.
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Chapter 2

Advanced SOC Estimation
Techniques: From Traditional
Methods to FNN Adaptation

2.1 SOC Estimation Methods

Accurate SOC estimation is important for several reasons. Firstly, it enables users to
effectively monitor and manage the available energy, allowing them to make informed
decisions regarding energy consumption and usage patterns. For example, in electric
vehicles, accurate SOC estimation helps drivers plan their journeys and avoid unexpected

battery depletion [15].

Additionally, precise SOC estimation is vital for ensuring reliable and safe operation
of battery systems. It helps prevent overcharging, which can shorten battery life, and
undercharging, which can lead to premature shutdowns. By accurately estimating SOC,
battery management systems can implement appropriate charging and discharging strate-

gies, maximizing the performance and overall lifespan of the battery [1].

Moreover, SOC estimation is valuable for optimizing battery usage and efficiency. By
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having an accurate understanding of the remaining energy, it becomes possible to imple-
ment intelligent energy management strategies, to maximize the overall energy utilization

and efficiency of battery systems.

2.1.1 Methods Based on Direct Measurement

The direct measurement approach pertains to the evaluation of distinctive physical at-
tributes of a battery, which encompass terminal voltage and impedance. Diverse strategies
have been adopted for direct measurement, like the open circuit voltage, terminal voltage,

impedance quantification, and impedance spectroscopy, as documented in [15].

Open Circuit Voltage Method

The OCV method is a direct measurement technique used to estimate the SOC of a
battery by analyzing its OCV. The SOC is determined by referencing the OCV of the
battery, as shown in Figure 1. However, it’s important to acknowledge that the OCV-
SOC relationship can vary across different battery types, and the conventional OCV-SOC
model may not be universally applicable [27]. While the OCV method offers accurate

SOC estimation, it does have certain limitations.

One limitation of the OCV method is that it requires disconnecting the battery from
the load for a minimum of two hours to obtain reliable voltage measurements. However,
this prolonged disconnection time may not be practical or feasible for many battery ap-
plications. As a result, the OCV method may not be suitable for scenarios that require

frequent and immediate SOC estimation [7].

21



OCV-50C curve
3.6

S —

34 fendeennes

N Y

]
[

(%]

OCV MVolts)

28H--4-----

|| S
i

10 20 30 40 50 60 70 80 90 100
SOC (%)

Figure 2.1: Experimental OCV-SOC curve for LFP cell [28].

Terminal Voltage Method

The Terminal Voltage Method is a SOC estimation technique that relies on the rela-
tionship between the voltage drops at the battery terminals and the internal impedance
during discharge. The electromotive force of the battery is directly proportional to the
terminal voltage. This method has been tested across different discharge currents and
temperatures to establish its effectiveness. However, it is important to consider that the
accuracy of the terminal voltage method can be influenced by the internal resistances of
the battery, which may vary with usage and aging. Consequently, this method may not
always yield precise SOC estimates [29].
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Impedance Spectroscopy Method

Impedance measurements have the potential to provide insights into a battery’s SOC.
However, different batteries exhibit distinct impedance parameters and their variations
with SOC. Thus, conducting a comprehensive set of impedance experiments becomes nec-
essary to identify and utilize these parameters for SOC estimation. In order to estimate
the SOC using impedance measurements, the model impedance values can be determined
by fitting the measured impedance values to the known impedance values at different
SOC levels. This approach enables the estimation of SOC based on the impedance char-
acteristics of the battery [30].

2.1.2 Book-keeping Method

The book-keeping estimation method uses the battery’s discharging current data as in-
put. This method considers some internal battery effects such as self-discharge, capacity-
loss, and discharging efficiency. Two types of book-keeping estimation methods are used:

Coulomb counting method and modified Coulomb counting method.

Coulomb Counting Method

Coulomb counting is a widely used method for estimating SOC. This method is based on
the principle that the amount of charge flowing into or out of a battery is equal to the
product of the current and time [31]. By measuring the current and integrating it over
time, the accumulated charge entering or leaving the battery can be calculated. The SOC

can then be estimated using the following equation:

ftt—A I()dr
T on

In this equation, SOC(t) represents the state of charge at time ¢, SOC(t — 1) is the

SOC(t) = SOC(t — 1) (2.1)

state of charge at the previous time step, I(¢) denotes the current at time ¢, @ is the
battery capacity, n represents the number of series-connected cells, and A is the sampling

time interval.
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The accuracy of the coulomb counting method depends on the precision of the initial
SOC estimate and the accuracy of battery current measurement, which is influenced by
the accuracy of current sensors. This method may accumulate errors over time and is not
ideal for real-time SOC estimation. However, it can be employed to validate the precision

of SOC estimations generated by other methods [32].

The modified Coulomb counting method is a variation of the Coulomb counting
method that considers the non-linear relationship between the battery’s voltage and SOC.
This approach incorporates a correction factor based on the battery’s voltage to refine

the SOC estimate, leading to improved accuracy [31].

2.1.3 Methods Based on Adaptive Systems

Adaptive systems represent a category of SOC estimation methods specifically designed
for lithium-ion batteries. These systems possess the capability to autonomously design
and adjust the SOC estimation algorithm to accommodate various discharging conditions.
Over the past few years, several novel adaptive systems for SOC estimation have emerged,

including:

Feed Forward Neural Network

FNN is a type of ANN widely utilized for SOC estimation due to its ability to handle
complex and nonlinear relationships between input and target variables. This network
consists of an input layer that takes in current, voltage, and temperature values, one
or more hidden layers for nonlinear mapping, and an output layer for estimating SOC.
The nodes within the layers are interconnected, and activation functions are employed in
the hidden and output layers to add nonlinear relationship [28]. The architecture of a

feed-forward neural network for SOC estimation is depicted in Figure 2.2.

The output y; of a processing node j in either the hidden or output layer is determined

by the following equation:
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yi = F(u;) = F (Z Tijwji + bj) (2.2)

In this equation, y; represents the output of node j, I’ denotes the activation function,
u; is the weighted sum of inputs to node j, x;; refers to the input from node 7 to node j,
wj; represents the weight associated with the connection between nodes i and j, and b;

signifies the bias term for node j.

Voltage V

Current |

Temperature T
-

the input layer the hidden layer the output layer

Figure 2.2: The architecture of the SOC estimating FNN [28].

RBF Neural Network

The Radial Basis Function (RBF) neural network is widely employed for SOC estimation
in batteries due to its nonlinear mapping capabilities, self-organizing learning ability, fast
training, and ability to converge to global optimization, resulting in optimal function
approximation. The structure of an RBF neural network consists of an input layer, a
hidden layer, and an output layer [33].

The output h;(X) of the j¥ neuron in the hidden layer is computed as follows:

hi(X) = o(|X = G4), (2.3)

Here, ¢(-) represents the radial basis function, C; € R" denotes the center of the ;%

hidden neuron, and |-| represents the Euclidean norm [33].
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The SOC estimation output Y (X) is obtained by linearly combining the signals from
the hidden layer’s outputs h;(X) using synaptic weights:

Y(X) = 3 wihy(X), (2.4

where w; represents the synaptic weight associated with the j* neuron in the hidden
layer.

If the Gaussian function is chosen as the radial basis function ¢(+), the expression for

h;(X) is given by [33]:

h;(X) = exp (—’X_CJ‘Q> , (2.5)

2
20']-

Here, o; represents the spread of the 4% neuron for the input signal.

Support Vector Machine

Support Vector Machines (SVM) are powerful supervised learning methods used for both
classification and regression tasks. They possess the capability to approximate multivari-
ate functions with high accuracy. Initially developed for solving classification problems,
SVM models are built based on a subset of the training data. This is achieved by utiliz-
ing a cost function that disregards points beyond the margin and training data that are
close (within a threshold) to the model prediction [34]. As a result, SVM can effectively

generalize and make accurate predictions.

Kalman filter

this method uses lithium cell Equivalent Circuit Model (ECM), which aim to reproduce
the behaviour of the electrical quantities in the battery (SOC, Voltage and current) and
allows them to be easily formulated into mathematical formula. This model, as shown in
Figure 2.3, use standard electrical components such as resistors, capacitors and voltage

source. The values of the model are obtained from experimentation [1]. This Step Allow

26



us better understanding and simulating the behaviour of lithium cell, however The ECM

in Simulink has limitations including oversimplification, parameter variability, limited

dynamic response, model complexity, aging effects, and varying validity across battery

chemistries.
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Figure 2.3: RC complex ECM for lithium cell [1]
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Figure 2.4: RC complex equivalent electrical model in MATLAB Simulink

The state equation describing this electrical system is given as follow [1]:
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The system dynamics are first translated into a model, which is then used in con-
junction with a Sliding Mode Observer to estimate the state of charge. However, the
estimated SOC is subject to noise, so a Kalman filter is employed to remove the noise and

improve the accuracy of the SOC estimation [1].

2.1.4 Hybrid Methods

Hybrid methods for SOC estimation of lithium batteries leverage the strengths of mul-
tiple SOC estimation techniques to enhance accuracy and performance. By integrating
various methods, such as Coulomb counting, Kalman filter, and neural networks, hybrid
models can effectively address the limitations and uncertainties associated with individual
methods.

Research studies have demonstrated that hybrid methods generally yield more accu-
rate SOC estimations compared to single methods. However, developing a hybrid model
necessitates careful selection and optimization of each method, along with determining

suitable weighting and fusion strategies for combining the results [15].
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2.2 Adopted Method: Feed Forward Neural Network

This section focuses on elaborating FNN model for SOC estimation. The chapter intro-
duces the objectives and approach of the study, followed by a description of the experi-
mental setup. It discusses data acquisition, cell specifications, and the dataset used for

the study.

Explaining the data selection and normalization techniques used, including the appli-
cation of the Min-Max normalization algorithm and a moving average filter. It then delves

into training FNN model. Adjusting parameters and Hyper-parameters is described.

The results of the training process are analyzed through regression, performance and
gradient plots. Comparison graphs between the actual and predicted values demonstrate

the accuracy of the model, highlighting its architecture and performance.

2.2.1 Experimental Procedure: Supervised BP Learning

Selection of the input and the output data for the supervised BP learning.

o Normalization of the input and the output data.

o Training of the normalized data using BP learning.

Testing the goodness of fit of the model.

o Comparing the predicted output with the desired output.

Figure 2.5 illustrates a flowchart summarizing the process for developing an accurate

SOC estimation model.
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Figure 2.5: Experimental Procedure

2.2.2 Dataset Selection and Data Preprocessing

The dataset used in this study is sourced from [18], specifically collected using the 'Diga-
tron Firing Circuits Universal Battery Tester channel’, known for its high accuracy. Due
to hardware limitations, focusing on the dataset 25°C, assuming ambient temperature

conditions. Table 2.1 provides an overview of the essential data information.
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Table 2.1: Data Information

Lithium Cell Name LG HG2
Capacity 3000 mAh
Selected Inputs Voltage, Current, Temperature
Training Data Mixed (1-8)
Validation Data 20% of Training Data
Testing Data Drive cycles
Normalization Function Min-Max
Software Used MATLAB, Python

Min Max Normalization

Min-max normalization is a commonly used data preprocessing technique that scales the
values of a dataset to a fixed range, typically between 0 and 1. It is useful when the
range of values across different features of a dataset is significantly different, as it can
improve the performance of machine learning models by reducing the impact of outliers
and ensuring that all features are on the same scale. Additionally, it can help with faster

convergence during training and avoid issues caused by numerical instability [35].

Moving Average Filter

In signal processing, the use of a moving average filter (MAF) is a common technique to
mitigate noise and remove undesired fluctuations from a signal. This technique involves
computing the mean value of a small segment of consecutive data points within the signal
and substituting each data point with the computed mean value. This process is repeated

iteratively for all the data points, leading to a smoothed signal with reduced noise [36].

x; — min(x)

min-max normalization(z;) = @ (o)
max(x) — min(z

Figure 2.6displays a plot of the training data.
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Figure 2.6: Training data plot

2.2.3 Neural Network Model Training

Using "nntool" — open network/data manager in Matlab, network properties are shown in

the following table :

Table 2.2: FNN model properties

Neural Network Properties
Network Type Feedforward Backprop
Training Function Levenberg-Marquardt (trainlm)
Adaption Learning Function | LearnGDM
Performance Function MSE
Activation Function Tansig
Number of Epochs 30
Number of Hidden Layers 2
Number of Neurons 40 x 7

In the Neural Fitting Tool of MATLAB "NFTOOL", the regression curve is a graphical
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representation of the fit between the actual and predicted values of the output variable.

It is a plot of the predicted values against the actual values, where the ideal curve is a

straight line that passes through the origin with a slope of 1. The regression is plotted in

Figure 2.7.
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Figure 2.7: Regression Plot

The gradient plot is a visual representation of the magnitude of the gradients of the

weights with respect to the error function during the training process. The plot shows the

average gradient magnitude for each layer of the network as a function of training time or

epoch. The gradient plot is useful for monitoring the progress of training and diagnosing

potential issues, such as slow convergence or oscillations in the weights.
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Figure 2.8: Training State

Upon analyzing 2.8, it can be observed a steady decrease in the plot, indicating that
the weights are adjusting significantly to improve the training’s fit. However, at epoch

22, there was a rise in the gradient plot due to the decrease in the learning rate.

Figure 2.9 represents a comparison graph between the actual SOC and the predicted
SOC of the testing data.
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Figure 2.9: Estimated Values vs real values

Based on 2.9, a fairly good results with a high degree of accuracy has been obtained,
as indicated by the MAE value of 0.0095. However, the graph also shows some noise that
can be reduced by applying a MAF.

2.2.4 Noise Elimination Using Moving Average Filter

After examining the earlier findings, it is observed that the curve representing the pre-
dicted values of SOC exhibits noise. To address this issue, a potential solution involves
implementing MAF to mitigate the impact of minor SOC fluctuations during the discharge
process of the lithium cell, as facilitated by the battery management system. Figure 2.10
illustrates the filtered predicted values for 2.9 and 2.11 shows the error between filtered

and original SOC, showcasing the effectiveness of this approach in reducing noise.
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2.3 Conclusion

In conclusion, this chapter discussed advanced SOC estimation techniques, starting from
traditional methods and leading to the adaptation of FNN. Accurate SOC estimation is
important for effective energy management, reliable battery operation, and optimizing
battery usage and efficiency.

The chapter first highlighted the importance of accurate SOC estimation, emphasizing
its role in monitoring energy levels, making informed decisions about energy consumption,
and ensuring the longevity and performance of battery systems.

Next, exploring direct measurement methods for SOC estimation, including the OCV
method, terminal voltage method, and impedance spectroscopy method. Each method
was discussed in terms of its principles, advantages, and limitations.

The book-keeping method, specifically the Coulomb counting method, was also ex-
plained as a widely used technique for SOC estimation. The principle of Coulomb count-
ing, its equation for SOC estimation, and its limitations were discussed. The modified
Coulomb counting method, which addresses the non-linear relationship between voltage
and SOC, was also mentioned.

The chapter then introduced adaptive systems for SOC estimation, with a focus on
the FNN model. The architecture of the FNN model was described, highlighting its input
layer, hidden layers, and output layer. The equations for calculating the output of each
node in the FNN model were presented.

The chapter concluded with a detailed exploration of the FNN model for SOC estima-
tion. The experimental procedure for supervised BP learning was explained, including the
selection and normalization of input and output data. The training process, parameter
adjustment, and hyper-parameter optimization were also discussed. The results of the
training process, including regression analysis, performance evaluation, and comparison
between actual and predicted values, demonstrated the accuracy and performance of the

FNN model.
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Chapter 3

Design and Implementation

3.1 Introduction

The implementation and realization phase is a critical step in any project design, as it
involves the actual construction of the conceptual model developed earlier. This phase
serves to validate the conceptual model and to identify any previously undiscovered issues.
In the next chapter, it will be discussed about the various software, development, and

programming tools used to build our prototype.

3.2 Programming Language

The source code governing the Arduino Mega microcontroller is written in the C language.
Arduino is a widely used microcontroller platform that is popular among hobbyists and
professionals alike for a wide variety of applications. The C language is a natural choice for
the development of embedded systems on the Arduino Mega, appreciated for its efficiency
and ability to interact with hardware [37].

Originally designed in the 1970s to write the first versions of the Unix operating system, C
has become one of the most widely used programming languages for developing programs
that need to be fast or interact with hardware. The language was specifically designed to

be close to the processor and easily compiled, enabling it to be translated into machine
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language while maintaining high performance [37].

3.3 Software and Programming Tools

Various software and programming tools have been used for the implementation of this

prototype, this section offers a brief description for each of them.

3.3.1 Arduino Software

Arduino Software is an integrated development environment (IDE) for programming Ar-
duino boards. It provides an easy-to-use interface and a variety of libraries that simplify
the development of embedded systems while maintaining high performance. The IDE is
based on the C language, which is optimized for embedded systems and provides direct
access to hardware resources [37]. Compared to other software like "Atmel Studio - Atmel
Studio 7", the Arduino IDE offers a wide range of libraries (Wire Library, Servo Library...)
that enable developers to save time during the development phase. With its advanced
features, the Arduino IDE is a natural choice for anyone who wants to develop efficient

and reliable embedded systems using Arduino boards.

3.3.2 ISIS Proteus Software

Isis Proteus is a user-friendly software designed by Labcenter Electronics to facilitate
application development and simulation. Its intuitive graphical environment enables easy
editing of electronic schematics and simulations. This software is beneficial during the
initial stages of the project and algorithm writing as it allows for detecting errors and
bugs, ultimately saving valuable time during prototype realization. ISIS Proteus have

been used in order to simulate sensors with Arduino.
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3.3.3 Matlab Coder

MATLAB Coder is a powerful tool that generates C and C++ code from MATLAB code.
It can be used with a variety of hardware platforms, ranging from desktop systems to
embedded hardware. This software supports most of the MATLAB language as well as a
wide range of toolboxes. The generated code can easily be integrated into our projects as
source code, static libraries, or dynamic libraries. The code produced is highly readable
and portable, allowing you to combine it with critical parts of your existing C and C++
code and libraries [38].

During the experiment, a trained FNN model has been developed in MATLAB and
converted into an Arduino function. By specifying the input data type and size, provid-
ing a sample for compilation, and selecting the ATmega microprocessor, an estimation
function as an Arduino function has been successfully generated. The resulting Arduino
code, shown in A, has a compact size of only 5 KB, which takes only 2% of memory of

Arduino Mega 2560.

3.4 Electronic circuit

3.4.1 Electrical Components
Panasonic CGR18650CG Lithium Cell

The features of this cell are presented in table 3.1:

Table 3.1: Characteristics of Panasonic CGR18650CG Lithium Cell [17].

Capacity 2250m mAh
Chemistry LCO
Operating Voltage | 2.8 V-42V

Max Discharge Rate 2C
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Arduino Mega 2560

Arduino Mega 2560 is a microcontroller board based on the ATmega2560. It has 54 digital
input/output pins, 16 analog inputs, and four UART (hardware serial communication)
ports. It also has a USB connection, which can be used to connect to a computer and
program the board or monitor the data [37].

The board is designed to work with a wide range of sensors, motors, and other electrical
components. It is widely used in various DIY projects, robotics, and automation. Due
to its high processing power, it can handle complex tasks and run multiple programs
simultaneously by using multitasking. Table 3.2 resumes the characteristics of Arduino

2560 [37].

Characteristics Specifications
Microcontroller ATmega2560
Operating voltage oV
Digital 1/O pins 54 (of which 14 provide PWM output)
Analog input pins 16
DC current per I/O pin 20 mA
DC current for 3.3V pin 50 mA
DC current for 5V pin 200 mA
Flash memory 256 KB (8 KB used by bootloader)
SRAM 8 KB
EEPROM 4 KB
Clock speed 16 MHz

Table 3.2: Characteristics of Arduino Mega2560

ACS712 Current Sensor Module

ACST712 is a current sensor module that can measure both AC and DC currents. It uses
a Hall effect sensor to measure the magnetic field created by the current passing through
a conductor with 185 mV /A output sensitivity. The module has a programmable output
voltage, which can be set to either 5V to be compatible with Arduino or 3.3V for ESP32.
It also has a built-in amplifier to amplify the signal generated by the Hall effect sensor

and provide a more accurate measurement of the current [39].

41



MP1584EN 12V Voltage Regulator

The MP1584 is a switching regulator that steps down voltage at a high frequency. It has
an internal high voltage power MOSFET on the high side. The regulator has a 3A output
and uses current mode control for quick loop response and uncomplicated compensation.
With an input range of 4.5V to 28V, it accommodates various step-down applications,
including in automotive environments. An operational quiescent current of 100pA makes
it suitable for battery-powered devices. Scaling down the switching frequency during
light load conditions reduces switching and gate driving losses, resulting in high power

efficiency [40].

HX1314G 5V Voltage Regulator

This is a synchronous buck regulator module based on the HX1314G chip for high voltage
input. It operates within a 5.5V to 32V DC input voltage range and achieves a continuous
output current of 1A with excellent load and line regulation. It also offers high conversion
efficiency and low heat generation. The switching frequency is programmable from 130kHz
to 500kHz and the synchronous architecture allows for highly efficient designs. Its current
mode operation provides a fast transient response and facilitates loop stabilization. Its
functioning principle is similar to the old LM7805 regulator but with higher efficiency and
a better input range and can be directly replaced [41].

TP4056 Lithium cell charger module

TP4056 is a CCCV charger for single lithium cell, ideal for portable applications due to
its small size and compatibility with USB and wall adapters. It doesn’t need a blocking
diode and has thermal feedback to prevent overheating. Charge voltage is 4.2v, current
can be set with a resistor and it automatically stops when finished. Other features include
current monitor, under voltage lockout, automatic recharge and status pins [42], Image

3.1 displays CCCV curves for this charger.
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Figure 3.1: CCCV charging curve for TP4056 [42]

Voltage Divider (Voltage Measurement)

A voltage divider circuit employing resistors of 7.5k and 30k has been created. The cir-
cuit diagram for the voltage divider is displayed in Figure 3.2, and the value is determined

using the following calculation:

. R2
Vin = Vout x (Rl n R2>
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Figure 3.2: Voltage Measurement Circuit

3.4.2 Circuit on Breadboard

The test plate used in the experiment is a plastic plate with multiple holes. These holes are
spaced 2.54 mm apart, which aligns with the standard spacing of electronic components
commonly used in our assemblies. This design allows for easy testing without the need

for soldering, enabling adjustments and corrections during the design and sizing phase.

To collect automatic discharge data, a circuit is employed that measures the voltage
and current of each cell (connected in series). The Arduino utilizes these inputs to perform
coulomb counting and normalize the values, enabling SOC calculation using the neural
network function generated by MATLAB Coder. The 12V voltage regulator is responsible
for establishing the output voltage and powering the Arduino. Additionally, the 5V
voltage regulator supplies power to the ACS712 current sensor and any other shields that
may be added to the circuit. A USB connection is necessary for serial data transfer to
a computer, where the data can be visualized using MATLAB. Figure 3.3 illustrates the

circuit implemented on the bread board.
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Figure 3.3: Discharge Test Circuit

3.5 Conclusion

In this chapter, the design and implementation of our project were discussed. The im-
plementation phase, which involves the construction of the earlier developed conceptual
model and the validation of its functionality, was addressed. The programming language
used, C, was highlighted for its efficiency and hardware interaction capabilities, making

it well-suited for embedded systems like Arduino.

It was also introduced the software and programming tools utilized in the implemen-
tation process. The Arduino Software, an integrated development environment, offers

a user-friendly interface and libraries that simplify embedded system development. ISIS
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Proteus Software was employed for simulating sensors with Arduino, aiding in error detec-
tion and saving time during the prototype phase. Additionally, MATLAB Coder was used
to convert a trained FNN model into an Arduino function, generating highly readable and
portable code.

The electronic circuit section provided an overview of the electrical components used,
including the Panasonic CGR18650CG Lithium Cell, Arduino Mega 2560, ACS712 Cur-
rent Sensor Module, MP1584EN 12V Voltage Regulator, HX1314G 5V Voltage Regulator,
and TP4056 Lithium Cell Charger Module. The circuit was implemented on a breadboard,
allowing for easy testing and modifications during the design phase.

Overall, this chapter presented the design and implementation details of our project,
including the programming language, software tools, and electronic circuit. These ele-

ments form the foundation for the successful realization of our prototype.
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Chapter 4

Implementation and Results

4.1 Introduction

In this chapter, the efforts were focused on implementing an SOC estimator model for
a specific lithium cell, which is LG HG2. However, due to its unavailability in the mar-
ket, a significant challenge was faced in obtaining data for training and testing our model.
Consequently, Panasonic CGR18650CG was utilized as a substitute for LG HG2 in our ex-
perimental setup. By leveraging the power of Al and incorporating advanced algorithms,
the aim was to explore the feasibility of training a model on LG HG2 to accurately es-
timate the SOC of CGR18650CG. Several intriguing questions and considerations are
raised by this approach, such as the impact of cell variations on the overall model perfor-
mance and its implications for real-world implementation. The limitations posed by the
unavailability of LG HG2 were addressed and insights into the potential implications of
utilizing CGR18650CG as a surrogate for SOC estimation. While the emphasis is on the
methodology and the challenges faced, the focus is on highlighting the significance of the
problem. Valuable insights to the field of battery management systems are anticipated
to be contributed by our findings, aiding in the development of accurate SOC estimation

techniques for future lithium cell applications.
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4.2 LG HG2 cell Model

4.2.1 Results

According to the findings presented in Chapter 2, the prediction function B was integrated
into the Arduino code mentioned in A. By doing so, an impressive accuracy rate of 99%
was achieved. The collected results were then transmitted to MATLAB via serial reading
port. Figure 4.1 illustrates the data obtained from a comprehensive test conducted to
evaluate the performance, displaying the voltage of four cells along with the corresponding

current flowing through them.
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Figure 4.1: CGR18650CG testing data
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Figure 4.2 shows the predicted SOC comparing to SOC calculated by Coulomb count-

ing.

1.2 1 1 T T T
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Figure 4.2: Estimated SOC by LG HG2 model

MAE has a value of 23.3%, the error between the real SOC computed by Coulomb

Counting and the FNN estimation for each sample can be shown in figure 4.3:
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Figure 4.3: Error using LG HG2 model

4.2.2 Analyzing and Discussion

Figure 4.2 shows that the estimated SOC for the LG HG2 model differs significantly from
the CGR18650CG model. This is because LG HG2 and CGR18650CG belong to different
cell types with distinct characteristics. CGR18650CG is an LCO cell, while LG HG2 is
an NMC cell. These differences in cell types lead to variations in internal impedance,
causing the model to provide random SOC values due to the divergence between testing

and training data.

Due to the substantial internal impedance in CGR18650CG, the estimated SOC tends
to be lower than the calculated SOC, resulting in an underestimation of the true SOC

value.

It is worth noting that both cell types initiate discharge with a voltage of 4.2V at
100% SOC and conclude at a voltage of 2.8V when reaching 20% SOC (cut-off voltage).
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Furthermore, it is important to acknowledge that the sensors and experimental en-
vironment utilized in this test may introduce outliers, which can result in inaccurate
predictions.

The significant error observed in SOC estimation can be primarily attributed to the
variations in cell chemistry, physical characteristics (such as internal impedance), and the
OCV curve.

Based on the analysis of Figure 4.2 and Figure 4.3, it can be concluded that modeling
the behavior of lithium cells and accurately estimating SOC is a cell-specific task. At-
tempting to generalize the model and estimation process to other cell types would not be

practically feasible.

4.3 CGR18650CG Model

To assess the ability of the model to learn from uncertain data and extract key features
for estimating SOC, a series of constant current discharge tests were conducted on four
CGR18650CG cells using the LG HG2 dataset as a reference. The discharge tests were
carried out at different rates (0.25C, 0.5C, and 0.75C), and these results served as the
training data. The objective was to determine if the model could effectively utilize high
uncertainty data and accurately estimate SOC. Discharge tests were conducted using four
cells connected in series, ensuring that they all experienced the same discharge current
and depth of discharge. The resulting graphs from the four cells have been combined into

a single figure, as shown below.
e Cell 01 : From0 to 0.625 x 10*

Cell 02 : From 0.625 x 10* to 1.25 x 10*

Cell 03 : From 1.25 x 10* to 1.875 x 10*

Cell 04 : From 1.875 x 10* to 2.5 x 10*

Figure 4.4 illustrates the constant current discharge tests employed in this study.
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Figure 4.4: Constant Current Discharge Test for CGR18650CG Cell

4.3.1 Model Training and SOC Estimation

By Following same steps leading to training FNN model in Chapter 02, model training

performances can be plotted as follows:
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Figure 4.7: Regression Plot

After analyzing the graphs depicted in Figure 4.5 and Figure 4.7, a conclusion can
be drawn that the mean squared error (MSE) of the validation data has mirrored the
MSE of the training data. This indicates that there is no presence of underfitting or
overfitting in the model. Additionally, by referring to Figure 4.6, it can be observed
a consistent decrease in the gradient plot. This implies that the model is continuously
making significant improvements. At epochs 18 and 32, the gradient temporarily increases
due to a decrease in the learning rate. However, this adjustment allows the model to
maintain a stable convergence.

By testing the model on data represented in Figure 4.1 the predicted SOC and error
can be plotted respectively in Figures 4.8 and 4.9:
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Figure 4.8: Predicted SOC vs Calculated SOC for CGR18650CG Model
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Figure 4.9: Error between Predicted and Calculated SOC

In order to eliminate noise, MAF has been applied on the estimated SOC to filter un-

desired pulses resulting from outliers. Figure 4.10 shows the filtered SOC vs the computed

SOC.
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Figure 4.11: Error between Filtered and Calculated SOC

4.3.2 Analyzing and Discussion

First, the training data (Constant current discharge test) shows the terminal voltage
decrease of the four cells, the three discharge current curves, and SOC calculated by
coulomb counting. However, it can be noticed that cell 1 has a different behavior compared
to the other cells, which is due to a short circuit that occurred accidentally during testing.
This incident negatively affected the cell’s health and increased its internal impedance.
Upon analyzing Figure 4.8, the estimated SOC is closer to the calculated SOC. At the

beginning of discharge, the calculated SOC has been set at 100% by hypothesis, which is

a drawback of the Coulomb Counting method.

Between SOC=70% to SOC=40%, the error is greater, indicating an underestimation
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of the SOC by the model. This suggests that the internal impedance in constant current
tests was higher than in this mixed test. Additionally, high noise is detected at 40% for
all cells, which is due to outliers in the training data.

Above 70% and below 40%, the model provides good estimations, indicating that it
has learned the features of the cells well within this SOC interval.

By applying MAF on the predicted SOC, the noise has been partially eliminated,
achieving an MAE of 4.52% as shown in Figure 4.11. Also, cell 01 exhibits a distinct
behavior with lower underestimation compared to the calculated SOC due to the acci-
dental short circuit, which increased the internal impedance and caused a lower terminal
voltage.

Overall, considering the sensors and experimental uncertainty, this model has success-
fully learned the features of the CGR18650CG lithium cell in constant current discharge
only. However, the quality, quantity, and diversity of the data directly impact the net-

work’s ability to generalize and accurately solve the task at hand.

4.4 Conclusion

In this chapter, focusing on the implementation and results of the proposed SOC estimator
model for the LG HG2 lithium cell. However, due to the unavailability of LG HG2 in
the market, challenges in obtaining data for training and testing our model have been
faced. As a substitute, a Panasonic CGR18650CG has been used in the experimental
setup to explore the feasibility of training a model on LG HG2 to estimate the SOC of
CGR18650CG.

By leveraging Al and advanced algorithms, the objectives were to address questions
and considerations regarding the impact of cell variations on model performance and its
real-world applications. limitations were encountered due to the unavailability of LG HG2,
our approach provided insights into the potential implications of using CGR18650CG as
a surrogate for SOC estimation. The findings are expected to contribute valuable insights

to the field of battery management systems and aid in the development of accurate SOC
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estimation techniques for future lithium cell applications.

Using the LG HG2 cell model, we achieved an impressive accuracy rate of 99% was
achived by integrating the prediction function into the Arduino code. The collected results
were transmitted to MATLAB in real-time for further off-time analysis, and the perfor-
mance evaluation showed promising results. However, when comparing the estimated
SOC by the LG HG2 model to the SOC calculated by Coulomb counting, a significant
discrepancy was observed. This discrepancy can be attributed to the distinct characteris-
tics and variations between LG HG2 and CGR18650CG cells, including differences in cell
chemistry and internal impedance.

Furthermore, CGR18650CG model for SOC estimation by conducting constant cur-
rent discharge tests. The model was trained on the LG HG2 dataset and demonstrated
the ability to learn from uncertain data and accurately estimate SOC. However, some
challenges were encountered, such as underestimation of SOC in certain SOC intervals
and high noise due to outliers in the training data. By applying a moving average filter,
the noise has been partially eliminated and achieved a Mean Absolute Error of 4.52%.

In general, our implementation and results highlight the importance of cell-specific
modeling and the impact of variations in cell chemistry and physical characteristics on
SOC estimation. The challenges and complexity accurately estimating SOC has been
put forward, this task requires considering the specific features of each cell type. While
our model successfully learned the features of the CGR18650CG lithium cell in constant
current discharge, the quality, quantity, and diversity of the data significantly influence

the model’s ability to generalize and accurately estimate SOC.
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General Conclusion and Prospects

Trough this study, we have observed the steps of developing an intelligent, flexible, em-
bedded lithium battery state of charge estimator based on feed forward neural networks,
capable of predicting the SOC by measuring the cell’s terminal voltage, current, and
temperature.

Accurate SOC estimation is a primary task for a battery management system. It en-
ables effective energy management, prevents battery issues, and optimizes overall perfor-
mance. With accurate SOC estimation, users can make informed decisions about energy
consumption and avoid unexpected battery depletion. It also helps prevent overcharging
and undercharging, ensuring the safety and longevity of the battery. Additionally, ac-
curate SOC estimation allows for intelligent energy management strategies, maximizing
energy utilization and efficiency.

To achieve these objectives, we have conducted extensive research on the dependencies
of lithium cell behavior and SOC estimation requirements, with a focus on adapting the
recent adaptive method of artificial intelligence to meet our needs.

It was also introduced the software and programming tools utilized in the implementa-
tion process. The Arduino Software, ISIS Proteus Software was employed for simulating
sensors with Arduino, MATLAB Coder was used to convert a trained FNN model into
an Arduino function, generating highly readable and portable code.

The electronic circuit section provided an overview of the electrical components used,
including the Panasonic CGR18650CG Lithium Cell, Arduino Mega 2560, ACS712 Cur-
rent Sensor Module, MP1584EN 12V Voltage Regulator, HX1314G 5V Voltage Regulator,
and TP4056 Lithium Cell Charger Module. The circuit was implemented on a breadboard,
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allowing developing an electronic circuit capable of measuring cell voltage and current,

and estimating the SOC. We have highlighted the characteristics of these components and

the steps followed in our project. Our project offers the following advantages:

Accuracy: SOC can be estimated without depending on load consumption.

Informed Energy Management: Accurate SOC estimation enables users to effectively
monitor and manage available energy, making informed decisions regarding energy

consumption and usage patterns.

Avoid Unexpected Battery Depletion: Particularly important in applications like
electric vehicles, accurate SOC estimation helps drivers plan their journeys and

avoid unexpected battery depletion.

Battery Safety and Longevity: Precise SOC estimation helps prevent overcharging,
which can shorten battery life, and undercharging, which can lead to premature

shutdowns.

Autonomy: Lithium cells provide power supply for sensors and Arduino, making

the circuit mobile.

Flexibility: Can be integrated with laptops, mobile robots, and EVs, with low mem-

ory consumption in micro-controllers.

We are satisfied with our work but aim to further enhance the system. Here are some

ideas and perspectives we have put forward to improve the system:
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o Lithium cell testing environment : The Battery Tester creates a controlled envi-

ronment for lithium cell testing, enabling precise measurement of voltage, current,
temperature, energy, and power. It employs accurate sensors to ensure high preci-

sion during discharge/charge cycles under controlled temperature conditions.

Adapting hybrid methods: further exploration of hybrid methods that combine

multiple SOC estimation techniques could enhance accuracy and performance, for



example in our work using Kalman filter instead of MAE would probably give better

results.

« Battery management system : the development of practical and efficient BMS that
integrate accurate SOC, SOH and SOF estimation algorithms are important for

optimizing battery performance and extending their lifespan.

Technology is advancing rapidly, and it is essential for us to stay updated and grasp
all technological innovations and their real-world applications. This will enable us to keep

pace with countries that are developing, utilizing, and commercializing these techniques.
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Appendix A

Conceptual Implementation Arduino

Code

#define variables; % V1, V2, V3, V4, current and Ah

#define functions and set parameters;

Void setup(){
Serial.begin(9600); % lanch serial 9600
long previous_time = O;

}

Void loop(){
Read_analog voltage();
normalize_voltage();

Read_analog_current();

normalize current();

Al



current_time = millis()/1000;

Ah = Ah + current*(current_time - previous_time)/(3600%2250) ;

%» time is by seconds, we need to devide by 3600 to get it in hours
%hand devide by the capacity to get DOD

previous_time = current_time;

%Send data to Serial to view them with MATLAB
Serial.println(voltages):
Serial.println(Current);

Serail.println(Ah);

S0C1 = MyNeuralNetwokFunction({V1l, current, 0.5, V1, current});
S0C2 = MyNeuralNetwokFunction({V2, current, 0.5, V2, current});
S0C3 = MyNeuralNetwokFunction({V3, current, 0.5, V3, current});
S0C4 = MyNeuralNetwokFunction({V4, current, 0.5, V4, current});

% 0.5 is 25°C after normalization

delay(1000) ;
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Appendix B

SOC Predicting Function

\text{#include "myNeuralNetworkFunction.h"}\\
\text{#include <math.h>}\\
double myNeuralNetworkFunction(const double x1[5]){

static const double d_a[200] = {

1.3506505425445658,
1.5773875475979788,
3.2752645252894634,
2.4879703550308481,
0.24218372149629569,
-1.5816295418869464,
-0.91414926066610425,
0.84400168064770886,
1.1377784608416031,
-0.54603259129514092,
0.23542046033180605,
1.4568300965943093,
2.2244093671447609,
-0.42693237457653183,
1.8294463243695736,

2.1322708479710326,
-0.36462908480459283,
1.8489657962719186,
-1.3572352056934216,
0.53906299619105646,
2.0892132963096279,
1.8653992452625858,
-1.699309886011102,
-0.6967581057057407,
1.6965211763655392,
-0.98198424248736371,
-1.9361134101859989,
-2.6634856748398112,
-1.5847178451173365,
1.9268758466290641,

Bl

-0.42014459218790057,
3.4110935879032556,
1.3060149403709371,
1.0631050406356819,
0.25141244711437338,
-1.6463429576634718,
-3.0006769004511673,
-1.177006228272528,
-1.5295390956715131,
-0.17408065512424364,
0.80283663769913738,
-1.6500993230894556,
0.6156256134721303,
0.47775278552210865,
1.7241784842434209,
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-1.2789745358424895, -1.2502819909172138, -0.76554403963937667 ,

-1.645687844916522, -0.91039937163360685, -0.45857480753807428,
0.37825918913021872, -1.1782212148527642, -1.7800117408918992,
0.028675888059454219, 0.40058492755512, 0.17430867456462945,

0.92107124011071984, 0.33304763833888584, 1.1156070507621145,
0.957772946160816, -0.587379310564309356, -1.9610533893771713,
-0.71947374627779115, -0.32874473787710784, 2.7874054384930624,

-0.46849237912749853, 2.1705994658120136, 0.2612531103644537,
-0.15458945876632996, -1.2834484500815455, -1.2732728344426085,
1.4775063736011227, -1.0909565573399882, 0.75925356206488737,

-1.3983252049516319, -0.25263704146488436, 1.3759718131986365,
0.12679662740233369, -0.82735706706731638, 1.4913415466142974,
1.4996052969166958, -1.2350908202248241, -1.4509737762999104,
-1.7614864789152094, -0.38635327814875442, -0.65246906589954168,

-0.80507329465686217, 0.99299150407587333, -0.20924967491011198,
-0.86088279505977616, 2.1736888689460163, 2.0351162570720396,
-1.5013988023055009, 2.4206480080401938, 1.4109338389053292,
1.4755178133021563, -0.29297650136250808, -0.2141839481956726,

-1.0181274879690336, -0.2350706085360898, 1.2413858148245269,
-0.884751267247794, 1.4304312475543284, -1.5371268156529847,
0.20970963093154421, -2.0857618294493658, 1.417605483481901,
0.76922788245122964, -1.8939928487994213, 0.06214678157440847,
-0.20672757373323339, -0.018759187824259914, 0.80816877669216058,
-0.6192727736647875, -1.2917354756612949, 0.46532625964497237,
-0.1169354265225671, 0.88416520645962837, -1.4556512431242297,
-0.40180814038173385, -0.96245109914048665, 1.156454945280208,
-1.1301157538230167, 0.49080445814681217, 3.6358687816998487,
-2.1736773706789845, -0.12743933689956885, -0.19797620298862117,
2.1661653849862605, 1.2368342484980883, 1.3554917993978639,



1.1425852556556246,
2.32688995562729132,
-2.5033532745701161,
2.0220774792718013,
0.86532868706888966,
0.91445771910423046,
0.70992792696009788,
1.2032430220513077,
-1.54797466861295562,
0.99766557450128468,
0.73744085782244506,
-0.85539529133580028,
-1.2112582632921511,
1.0372911329522534,
0.96023402331222718,
-2.44282769180756,
-0.53015206524310321,
-0.64332748769861059,
0.11767799464482682,
-1.0222884964541923,
1.8798279119820158,
-0.17676065606612437,
2.4684106889768618,

1.4597513926227486,
0.33603077971399453,

-0.63855855867847711,

0.78191111923205936,
0.417501819156511797,
0.32104792575112923,
0.96566969694861537,
-2.5196205851135995,
1.4462396159618565,

0.77458993842585389,

-0.57649342448174412,

0.16826582673676757,
-0.474993205878015,
-1.1935909693131384,

-0.79193583819277413,

0.42533262368177616,
-1.4671865556080035,
1.6791845265578673,
0.668077885764157,
-1.8039050645716728,
-1.5963762022582109,
-1.2564799862386751,

0.67676665071456865} ;

static const double b_al[40] = {

-0.73164838869580384,

-0.031073664632704175, -0.39398728262804922,

1.1419157696942326,
0.42361840992545285,
-0.61481460930017862,

0.11442937868847852,

-1.1797171936824937,

-1.7483034639000548,
1.1641863620084838,
2.0023644189648877,
2.0264360501562724,
0.76685018964059981,
1.9715416128208418,

-0.95394133128681591,

1.5253316971058948,
-1.0674125477094873,
1.1467441539243615,
0.69765547436610842,

-0.26977069429714351,

-0.992072691947093,

0.32339625685487444,
1.2824297965096989,

0.58599921579392911,
-1.0297683384362952,
0.25416102804683893,
1.0675562866412485,

-1.5966994175446085,
0.47241432510575554,
0.33725809300598847,

0.31323376654811297,

0.45161657848436387,

0.63443040918465921,

0.0927625492487639, 0.0700613582619995561,

-0.0024206847899896039, 0.040956173083663241,
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-0.22112761653171004, 0.10292589185235594, 0.0944214036844272,

-0.63748135748888757, -0.058501343555859737, 0.53010911018469153,
0.0649894021048590564, -0.0793573188650569, 0.30308668296712937,
-0.022812175140580395, -0.060887305403575336, 0.052613919839953484,

0.053964473036718134, 0.21464173260359382, 0.15602216924257539,
-0.18119410049242277, -0.71854696425439335, -0.39179205501074232,
0.061061733975980546, 0.14404002938075314, 0.12042385354975119,
-0.14921915771680944, -0.89809729840646624, -0.13824279529582423,

-0.23334803524524036};

static const double c_al[40] = {
-3.2136626474686909, -2.6618102328430915, 2.7230839852419173,
-2.5010261475781337, 2.1666343982652019, -4.9160095239202937,
-1.7534392914285488, -1.4934268224078608, -1.2363408740721775,
-1.6765713394517872, 1.5896498859274331, -1.3477009624210003,
-1.2708108203809509, -1.510406570820547, -0.82318576687956557,
0.555638480397702494, -0.31104500261873008, 0.91849893549435,
-0.71097261739955953, -0.0905428003424755, -0.11155859108307212,
0.23195630674303813, -0.16623915941420467, -1.395413203069763,
0.64893916211075109, -0.7400571435222949, -0.67789362045050239,

-0.98779331212822274, 1.1083658526574218, -1.9746679802714779,
2.3289159389989065, -1.78498075007145, 2.0184204847705711,
1.8568846931876781, -1.4022952080565623, -2.2753122279430209,
2.4752702330929774, -1.7680893728674876, 2.4479117593016637,

-3.4468754239820103};
static const double dv[5] = {0.0, 0.0, 0.0, 0.172792340245624,
0.514377718585465};
static const double dvi[5] = {2.0, 2.0, 2.0, 2.52512947877986,
8.05598814106145};
double xp1[5];
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double a;

double d;

/* ===== NEURAL NETWORK CONSTANTS ===== x/
/* Input 1 */
/* Layer 1 */
/* Layer 2 */
/* Output 1 */
/* ===== SIMULATION ======== %/
/* Dimensions */
/* samples */
/* Input 1 */
/* ===== MODULE FUNCTIONS ======== %/
/* Map Minimum and Maximum Input Processing Function */
for (k = 0; k < 5; k++) {
xpl[k] = (x1[k] - dv[k]) * dvi[k] - 1.0;

/* Layer 1 */
/* Sigmoid Symmetric Transfer Function */
/* Layer 2 */
/* Output 1 x/
/* Map Minimum and Maximum Output Reverse-Processing Function */
a=0.0;
for (k = 0; k < 40; k++) {
d =0.0;
for (i = 0; 1 < 5; i++) {

d += d_alk + 40 * i] * xp1[il;
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a += b_alk] * (2.0 / (exp(-2.0 * (c_alk] + d)) + 1.0) - 1.0);

}

return ((a - 0.5330429997250532) - -1.0) / 2.0;
+
void setup() {
%This is example for simulating the function
double inputs[5] = {0.6, 0.5, 0.5, 0.5, 0.5};
double result = myNeuralNetworkFunction(inputs);
Serial.begin(9600) ;
Serial.print("SOC: ");
Serial.println(result);

}

void loop() {

// put your main code here, to run repeatedly:
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