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اܳٴۜت ཯ྥٷ؇ول ݁٭ਃ಻Ⴄၽܝ٭۰. وఈః࿾ேت ુળොູ ࢻࣕراع ਲ਼ਦود ݁ٺۜݠك ሒᇆިًرو َޙ؇م وّޚިߌߵ ّݱ݄ࡗࡲ আॻ༟ มจۜاܳٴ ا๤དྷৎ৊وع ஼ߵணߌ
૰૏݄ܭ .ᄎცݠ੆اࠍ دڢ۰ ඔ൹ܳٺۜފ PID ુળ༲اܳٺ و༡ڎات ݪٴޔ আॻ༟ ༠؇ص ଩ଃ܋ߵ ߙ ؕ݁ ،ુળ༲اܳٺ واݿଫଐا౯౏ళ٭؇ت ௧ௌਃ಻Ⴄၽ٭ৎ৊ا اܳٺݱ݄ࡗࡲ
اৎ৊ޚިر اܳٷޙ؇م ا৙৑ނ٭؇ء. ؜݆ واܳـܝލژ اܳٺٷگܭ ܳٺأݞߌ߳ IMU وو༡ڎات اଫଃ݁Ⴄၽܳات ݁ټܭ ا৖৑ݿྥލأ؇ر أۏ۳ݞة ༇ံد ا๤དྷৎ৊وع

واৎ৊ݠو۰َ. اᄴᄟڢ۰ ਐಾޚܹص ዛᔻ؇م ؕ݁ ይዧٺܝ٭ژ ً ఈఃً؇ڢ ᄩᄥأ෠ຬ ؇ᆙᆘ اܳٴ๤ཡل۰، واৎ৊ٷ؇ورة ᄎცݠ੆اࠍ ඔ൹ً ؕᆇ໶໕

Abstract

The research project focuses on the design and development of a mobile robotic system
equipped with a manipulator arm and Mecanum wheels. It explores mechanical design
and control strategies, with a strong emphasis on fine-tuning PID controllers for precision
movement. The project integrates sensors like cameras and IMUs to enhance navigation
and object detection. The developed system combines mobility and visual manipulation,
making it adaptable for tasks requiring precision and flexibility.

Résumé

Le projet de recherche porte sur la conception et le développement d’un système robotique
mobile équipé d’un bras manipulateur et de roues mecanum. Il explore la conception
mécanique et les stratégies de contrôle, en mettant l’accent sur le réglage des contrôleurs
PID pour une précision accrue des mouvements. Le projet intègre des capteurs comme
des caméras et des IMU pour améliorer la navigation et la détection d’objets. Le système
développé combine mobilité et manipulation visuelle, le rendant adaptable à des tâches
nécessitant précision et flexibilité.
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General Introduction

The field of robotics has seen remarkable growth in recent years, transitioning from sim-
ple automation in factories to playing vital roles in sectors like autonomous vehicles,
healthcare, and smart homes. The focus of robotics research today is to create systems
that can handle complex, adaptive tasks in unpredictable environments. This evolution
presents significant challenges, such as processing large volumes of sensor data, making
real-time decisions, and achieving reliable, precise performance.
This project investigates these issues by designing, developing, and controlling a robotic
system. It examines the entire process, from the initial design to the final control strate-
gies. By addressing both theoretical and practical challenges, the project aims to advance
our understanding of robotics potential and its limitations, while also exploring future
developments in this exciting field.
The first chapter introduces the broad concepts of robotics, tracing the evolution of
robots from simple, automated machines to sophisticated systems capable of perform-
ing intelligent tasks. The chapter breaks down the essential components of robots and
covers topics such as mobile manipulation, where robots move and interact with objects
simultaneously. Different mechanical structures, including robotic arms and mobile plat-
forms, are explored alongside an overview of various types of mobile manipulators, such
as multi-legged, underwater, and wheeled robots.
The second chapter highlights the importance of designing robots using 3D models, al-
lowing engineers to simulate their movement and functionality before physical assembly.
The chapter outlines the tools and software used to create detailed models of robotic
components like the manipulator arm, mobile platform, and mecanum wheels, which give
robots omnidirectional movement. These models are essential for visualizing and refining
the design from concept to reality.
The third chapter delves into the individual components of the robot, focusing on mo-
tors, sensors, and control boards. It provides an in-depth discussion on various motor
types, including DC motors, stepper motors, and servo motors, explaining how each con-
tributes to the robots movement. The chapter also covers sensors, such as cameras and
line-following sensors, which enable the robot to perceive and respond to its environment.
This exploration of components shows how they work together to allow the robot to per-
form its tasks accurately.
The fourth chapter discusses the practical side of assembling the robot. It outlines the
machines and tools used to construct the robotic arm and mobile platform, detailing the
process of integrating electronic components with mechanical structures. This chapter
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walks through the steps of assembling the robot, addressing challenges such as aligning
mechanical parts with the control system to ensure the entire system operates smoothly
and efficiently.
The 5th chapter is critical, focusing on how to control the robots movements. This
chapter explores the control architecture, detailing how both the mobile platform and
manipulator are coordinated. The PID controller is central to this, as it enables smooth,
precise movement by continuously adjusting based on sensor feedback. The chapter ex-
plains the theory behind PID controllers, how they are tuned for optimal performance,
and their limitations. Special attention is given to controlling the yaw angle, a key factor
in stabilizing robots with mecanum wheels. Additionally, it explains the use of sensors
like the MPU6050 for measuring orientation, and how these measurements are processed
to maintain stability. The final section covers the control of servo motors, essential for
precise manipulations of the robotic arm, explaining how PID controllers manage both
speed and position for accuracy.
The 6th chapter covers camera vision, an essential aspect of modern robotics. Camera
systems allow robots to visually perceive their surroundings and make decisions based
on what they "see". The chapter introduces the pinhole camera model, explaining how
cameras capture images and the mathematics behind it. It also covers camera calibra-
tion, ensuring that the robot accurately interprets visual data. Both intrinsic parameters
(camera-specific properties) and extrinsic parameters (the cameras position relative to
the environment) are discussed, along with how tools like MATLAB are used in the cal-
ibration process. This chapter highlights the growing importance of visual feedback in
enabling robots to perform tasks such as navigation and object recognition.
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Chapter 1

General Overview of Robotics

Robotics is a multidisciplinary field integrating engineering, computer science, and tech-
nology to design, build, and operate robots. These machines can perform tasks au-
tonomously or semi-autonomously, often replicating human actions and capabilities.
This chapter provides an overview of the evolution, system composition, mechanical struc-
ture, classification, and control aspects of mobile manipulators. Additionally, it delves
into the applications of mobile wheeled manipulators, highlighting their significance in
various industries and domains.

1.1 Robotics

The Robotics feild is creating machines that are capable of carrying out a variety of tasks,
often in environments or situations that are hazardous, repetitive, or beyond human
capabilities.
Technological advancements and the growing demand for mobility have led to the rapid
development of robots. These robots are becoming increasingly sophisticated, ranging
from large stationary machines to small, agile devices that can perform complex tasks
and navigate various environments, including factories, offices, and homes. A mobile
manipulator is a robotic system that combines a movable platform with a manipulator
arm.

1.2 The Evolution of Robotics in the Industry Sector

While productivity, accuracy, repetition and speed have been at focus of research in
robotics for years, other criteria based on industrial transformation have become of equal
importance [1]. Modern robots must meet criteria such as flexibility, adaptability, preci-
sion, and autonomy of action in practically every industry. These characteristics reveal
mobile robots and related automation technology play a significant role in the develop-
ment and advancement of industry. However, it is not only the industrial sector that
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benefits from these developments, The Figure (1.1) shows that the world of robotics is
increasing in number of installation each year.
Also it is worthy to mention that the supply chain sector too benefits from the new
installations and robotic developments.

Figure 1.1: Annual Installs Industrial Robots

1.3 General System Composition

Robots can come in all shapes and sizes, but they generally needs the following parts:

• Sensors: These are the robot’s eyes and ears, allowing it to gather information about
its environment. Sensors can include cameras, microphones, lidar (light detection
and ranging) and we can visualize the robot sensors types in the Figure (1.2).

Figure 1.2: Types of Robot Sensors

• Control System (Brain): This is the brain of the robot, where the information from
the sensors is processed and used to make decisions about how to move and act.
The control system can be a simple circuit board or a complex computer.
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• Actuators: These are the muscles of the robot, allowing it to move and interact
with the world. Actuators can be motors, hydraulics, or pneumatics.

• Power Supply: This provides the robot with the energy it needs to operate. Power
supplies can be batteries, solar panels, or connection to the power grid.

These are the essential parts of a robot, but many robots will also have additional com-
ponents, such as:

• End Effectors: These are the tools that are attached to the end of a robot’s arm
or manipulator. End effectors can be grippers, welding tools, spray paint guns, or
any other tool that the robot needs to perform its task.

• Locomotion System: This is how the robot moves around. Locomotion systems can
include wheels, legs, tracks, or even swimming fins.

• Communication System: This allows the robot to communicate with other robots
or computers. Communication systems can be wired or wireless.

1.4 Description of Mobile Manipulation

A mobile manipulation system benefits from the mobility of a mobile platform and the
dexterity of the manipulator. The manipulator has increased workspace on the mobile
platform. The additional degrees of freedom offered by the mobile platform provide users
more options. However, due of the multiple degrees of freedom and the unstructured
environment in which it operates, the operation of such a system is difficult.

1.5 Evolution of Mobile Manipulation

Since their inception in 1953, Automated Guided Vehicles (AGVs) have been recognized
as autonomous transportation systems. The journey of robotics began with the first
industrially programmed robot in 1959, which used coordinate-based programming. In
1972, the development of the first intelligent mobile robot, Shakey, marked a significant
milestone. The introduction of IBM’s user-friendly robot programming language AML in
1982 further advanced the field. The early 2000s saw the deployment of the Mars rovers
by the United States in 2003, showcasing advanced robotic capabilities. The release of
the open-source Robot Operating System (ROS) by Willow Garage in 2009 revolution-
ized robot programming. In 2021, China’s development of the Zhurong rover highlighted
rapid innovations in robotic technology [2]. These advancements have significantly en-
hanced robots’ intelligence, autonomy, and adaptability, leading to the deployment of
Autonomous Mobile Robots (AMRs) in healthcare, robotic vacuum cleaners in house-
holds, and intelligent warehousing and social robots. Today, intelligent mobile robots are
making significant impacts across various domains, including industry, agriculture, and
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defense, marking a new era of intelligence-driven transformation Figure (1.3).

Figure 1.3: Development History of Mobile Robots

1.6 Robot Mechanical Structure

A robot’s fundamental aspect is its mechanical configuration. Robots are divided into
those with a fixed base, robot manipulators, and those with a mobile base, which are
referred to as mobile robots.
The subsequent section details the geometric characteristics of these two categories.

1.6.1 Robot Manipulators

The structure of a robot manipulator involves a sequence of rigid bodies (links) connected
through articulations (joints). This manipulator is defined by an arm for mobility, a
wrist for dexterity, and an end effector responsible for executing the required task of the
robot [3].

Serial Manipulator

A serial manipulator is a type of robotic manipulator consisting of a chain of linked
segments. Each segment of the robot is connected to the next, typically by joints that
allow rotational or translational movement. The end effector, which is the part of the
robot that interacts with the environment, is attached to the last segment of the chain.
Types or configurations of serial manipulators include:

• Cartesian Robot: A Cartesian robot operates using a Cartesian coordinate system,
where movements are defined in terms of linear motions along the X, Y, and Z
axes. These robots are characterized by their simple and precise linear movements,
making them well-suited for applications requiring accurate positioning in a fixed
workspace Figure (1.4).
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Figure 1.4: Cartesian Manipulator

• Gantry Manipulator: A gantry manipulator is a specialized robotic system de-
signed with a horizontal beam or gantry supported by vertical columns or pillars.
This configuration provides a stable and rigid framework that facilitates precise
and controlled movement of the robotic arm along a predetermined path within a
large workspace. The gantry structure serves as the primary axis for the robot’s
movement, offering a versatile platform for mounting various end effectors and tools
to perform a wide range of tasks Figure (1.5).

Figure 1.5: Gantry Manipulator

• Cylindrical Robot: cylindrical robot features a combination of rotary and linear
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movements. It typically has a rotary joint at the base, allowing rotational move-
ment around a vertical axis, and a prismatic joint for vertical movement. This
configuration is advantageous for tasks that involve handling cylindrical or circular
objects and requires both rotational and vertical motions Figure (1.6).

Figure 1.6: Cylindrical Manipulator

• Spherical Robot: A spherical robot operates based on a spherical coordinate sys-
tem, offering a unique combination of rotational and spherical movements. It has
a spherical arm design that enables a wide range of motion and orientation capa-
bilities, making it suitable for applications that require complex spatial movements
and positioning Figure (1.7).
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Figure 1.7: Spherical Manipulator

• SCARA Robot (Selective Compliance Assembly Robot Arm):A SCARA robot is
characterized by its two parallel rotary joints that provide horizontal movement
along the X and Y axes, combined with a prismatic joint for vertical movement
along the Z axis. This configuration allows the robot to achieve precise and coor-
dinated movements, making it ideal for assembly tasks, pick-and-place operations,
and applications requiring high-speed and high-accuracy positioning Figure (1.8).

Figure 1.8: SCARA Manipulator

• Anthropomorphic manipulator: An anthropomorphic manipulator, often referred
to as a humanoid robot or human-like robot, is a robotic system designed to mimic
the structure, function, and capabilities of the human arm and hand. This type
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of robot is characterized by its multiple degrees of freedom, allowing it to perform
complex and human-like movements with a high degree of flexibility, dexterity, and
adaptability. The anthropomorphic design aims to replicate the biomechanics and
kinematics of the human body, enabling the robot to interact with its environment
in a manner similar to humans Figure (1.9).

Figure 1.9: Anthropomorphic Manipulator

Parallel Manipulator

A parallel manipulator, also known as a parallel robot or parallel mechanism, is a me-
chanical system consisting of multiple chains of interconnected links. Unlike serial ma-
nipulators, where one link follows another in a linear fashion, parallel manipulators have
multiple links connected in parallel to perform motion tasks. These manipulators are
widely used in various applications requiring high precision, stiffness, and dynamic per-
formance Figure (1.10).
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Figure 1.10: Parallel Manipulator

Hybrid Parallel-Serial Manipulator

A hybrid parallel-serial manipulator is an advanced robotic system that merges the struc-
tural and operational characteristics of both parallel and serial manipulators. This in-
tegration aims to capitalize on the strengths of each manipulator type while minimizing
their inherent weaknesses, resulting in a versatile and efficient robotic platform Figure
(1.11).

Figure 1.11: Anthropomorphic Manipulator

1.6.2 Mobile Robots

Mobile robots are characterized by having a mobile base that enables them to navigate
freely in their surroundings. These robots are commonly utilized in service-oriented tasks
that demand advanced autonomous movement abilities. In terms of mechanics, a mobile
robot is comprised of one or more rigid bodies that come equipped with a locomotion
system.
Wheeled mobile robots generally include a rigid body (base or chassis) and a set of wheels
that facilitate movement on the ground. There are three distinct types of conventional
wheels Figure (1.12):
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• The fixed wheel is capable of rotating around an axis that is perpendicular to the
wheel’s plane and passes through the center of the wheel. The wheel is firmly affixed
to the chassis, resulting in a constant orientation between the two components
Figure (1.12a).

• With two axes of rotation, the steerable wheel operates differently. The first axis
mimics that of a fixed wheel, while the second axis is vertical and intersects the
wheel’s center. As a result, the wheel gains the ability to modify its orientation in
relation to the chassis Figure (1.12b).

• The caster wheel features two axes of rotation, with the vertical axis positioned
away from the center of the wheel by a fixed offset. This configuration enables
the wheel to swivel effortlessly and promptly align with the chassis’s direction of
movement Figure (1.12c).

(a) Fixed Wheel (b) Steerable Wheel (c) Caster Wheel

Figure 1.12: Types of Conventional Wheels

Additionally, in conjunction with the conventional wheels mentioned earlier, there are
other specialized wheel variants. Notably, the Mecanum (or Swedish) wheel, illustrated
in Figure (1.13), stands out among them. This wheel is fixed and features passive rollers
positioned along its outer circumference. Typically, each roller’s axis of rotation is inclined
at a 45-degree angle with respect to the wheel’s plane. When four of these wheels are
mounted in pairs on two parallel axes, the vehicle gains omnidirectional capabilities.
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Figure 1.13: Mecanum Wheel

1.7 Classification of Mobile Manipulator

The concept of the mobile manipulation consists of associating, in the same system,
one or more means of locomotion with one or more means of manipulation. The means
of locomotion provide the system with a working space limited mainly by its energy
autonomy. The objective of manipulation is ensuring that the system is able to move and
manipulate objects.
Among the systems that currently exist we can mention three main families.

1.7.1 Multiped

As the name suggests, multi-legged mobile manipulators can have one or more legs.
Humanoids are the most popular representatives of this type of manipulator as it can be
seen in Figure (1.14), both with the general public and with researchers, because of the
challenge they represent. From the point of view of manipulation, their possible uses are
limited from an industrial point of view and their main outlet is service robotics.
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(a) Quadruped Robot (b) Hexapod Robots

Figure 1.14: Multiped Robot

1.7.2 Underwater Mobile Manipulators

Underwater mobile manipulators are nowadays the most widely used mobile manipulators
in reseach field for work purposes. Often remotely operated, they are called Remotely
Operated Vehicles (ROV) and allow access to maritime areas not accessible to these
provide sampling, manipulation, measurement and data acquisition capabilities that can
be adapted to the missions required missions. An example is the Victor 6000 as it can
be seen in Figure (1.15)

Figure 1.15: Underwater Mobile Manipulators

1.7.3 Mobile Wheel Manipulators

Wheeled mobile manipulators Figure (1.16) are more common in the industrial field than
those presented previously. This is due particularly due to two facts:

• Their relatively simple mechanical design.

• The natural suitability of their means of locomotion to a wide range of terrains.
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Figure 1.16: Mobile Wheel Manipulators

1.8 Control of Mobile Manipulators

Control of mobile manipulators involves coordinating the motion and manipulation ca-
pabilities of a robotic system that combines both mobility (movement) and manipulation
(grasping, lifting, etc.) functionalities.

1.8.1 Control of the Manipulator Arms

The objective of controlling the manipulator arms is to control the joints that constitute
them so that they follow the predefined paths to reach the final position while respecting
the kinematic constraints linked to the movement.

1.8.2 Control of Mobile Robots

On the mobile robot side, motion control and trajectory tracking are essential for navi-
gating the robot through the environment while avoiding obstacles.

1.8.3 Controlling Both of them

Controlling a mobile manipulator requires management of both mechanical systems de-
signed in a distinct way and reacting differently to external influences. In this type of
platform the notion of redundancy appears, which leads to an infinity of system configu-
rations for a given situation, leading to the design of modes of innovative controls.
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1.9 Applications of Mobile Wheeled Manipulators

Mobile wheeled manipulators can be used in different areas of applications. They are
divided into three categories : logistics applications, support and service.

• Warehousing and Logistics: In warehousing and logistics, these robots can assist in
picking and packing operations, inventory management, and goods transportation.

• Manufacturing: Mobile manipulators can be used in manufacturing environments
for tasks such as picking and placing objects, assembly tasks, and machine tending.

• Healthcare: Mobile manipulators can be employed in hospitals and clinics for tasks
like patient assistance, delivery of supplies, and handling medical equipment.

• Agriculture: In agriculture, these robots can be used for tasks such as harvesting
crops, planting seeds, and monitoring crops for pests and diseases.

• Search and Rescue: Mobile manipulators equipped with sensors and cameras can
be deployed in search and rescue missions to navigate through complex terrains and
manipulate objects to assist in rescue operations.

• Education and Training: Mobile manipulators are used in educational settings to
teach robotics concepts, programming, and automation skills to students.
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Chapter 2

System Design

For building a mechanical structure of a robot, the 3D design is critical step, this last
allows designing and setting the compatible dimensions for the manipulator robot de-
pending on the available materials, also helps in the visualization,the simulation and the
construction. This chapter presents the used designs in the robot manipulator concep-
tion.
We have created a mobile robot manipulator design and modified a 3D model of a ’Brac-
cio TinkerKit’ robotic arm which is an open-source file via the design software and 3D
modeling SolidWorks.

2.1 3D Model

2.1.1 Description

A 3D model is a digital representation of the real robot in three dimensions. The virtual
environment allows us to integrate details , components and change colors or texture.
After defining the characteristics we can simulate the robot or the object also visualize it
or move it.

2.1.2 Designing Software

To design our prototype we used a dedicated software called SolidWorks, it is a high
performance software and it’s well known in the engineering community for its capabilities
to create any imaginable 3D model. It is a computer-aided design (CAD) and engineering
(CAE) used for such fields as mechanics, electronics, architecture, civil engineering and
many others. This last helps to design, create, edit, simulate and explore 3D models.
In robot designing, SolidWorks and other softwares such as Fusion360 provide an ideal
platform which facilitate the process of creating detailed 3D models and assemble the
different parts to be used for the planning and the simulations.
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2.2 Presentation of the 3D Model

The 3D modeling step consist of creating a sophisticated combination of robotics com-
ponents using computer graphics. This digital model represents a mobile robot equipped
with a manipulator arm, which is designed with precision to perform high accuracy
movements. It facilitates the 3D printing, and the understanding of the robot kinemat-
ics, dynamics, and control strategies. This approach reduces time and costs, This step
can help also to predict mechanical problems and in other words "prevention".
We could navigate the robot through a virtual environment and to interact with objects
through the robotic arm.

2.3 Robotic Arm 3D Model

The arm structure needs to be sturdy and durable to handle heavy use but the joints are
flexible and precise to mimic the human movements and interact with delicate objects.
The manipulator arm is built of a multiple joints and links calculated to give the robot
the flexibility to reach and catch objects around the whole robot.
Each movement is a result of a rotation of a servo motor rotating the attached link to its
gear, the motion is controlled via Arduino micro controller.
a detailed view of the internal structure of the arm in the following figure allows a better
understanding of its functionality.
TinkerKit Braccio is a 5 degrees of freedom robotic arm, equipped with 6 rotating joints
and 3 links followed with an utility head known as (the gripper) [4]. The original arm
3D model is equipped with SR 431 and SR 311 type servo motors Figure (2.1).

Figure 2.1: Braccio Robot Equipped with SR311 and SR431
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In the implementation phase, we were obliged to deal with the available servo motors
which are in this case the MG996 and SG90 type. We have modified the model using
SolidWorks in order to the make a placement for the MG996 and SG90 servo motors
Figure (2.2).

Figure 2.2: Robot Manipulator Equipped with MG996 and SG90

2.4 Mobile Robot 3D Model

We have chosen to design our own mobile robot which Responds to the requirements and
the conditions such as the desired dimensions to hold the robotic arm and the different
components including the large ones for example (the lithium battery, the power bank,
L298N driver and the DC motors).
This model is created to merge between the functionality and the look, this combination
is achievable with right chose of dimensions, the number of electrical wires inputs and
their placements, the fixation holes and the different creative esthetic touches.
The following Figures (2.3) and (2.4) represent a well detailed view of all the 3D chassis
model from the main sides.
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(a) Side View (b) Back View

Figure 2.3: 3D Model Representation of the Robot Mobile Chassis

Figure 2.4: Descriptive Drawing of the Robot Mobile Chassis
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2.5 Mecanum Wheels 3D Model

The mecanum wheels are well designed to perform a high precision translation movements
for the mobile robot in the (X;Y) axes panel using rotational movements, this kind of
translation is achievable using 10 rollers attached to each wheel in a 45 degrees position
and they are all motorized using one motor coupled to the centre of the main wheel which
results a fraction force with the ground tangential to the roller.
The rollers are not cylindrical but they have a curved contact surface to make the inter-
action with the ground smooth and to reduce noice and instability.
the mecanum wheels are not identical but there is two different types (left and right)
placed diagonally, each type is fabricated in a separate model.
In the following Figure (2.5) we can see the details 3D model of the mecanum wheels [5].

Figure 2.5: Mecanum Wheel Assembled 3D Model

For a better view we can explore the separated parts of the mecanum wheels in the next
Figure (2.6).

Figure 2.6: Mecanum Wheel 3D Model Separated

21



2.6 Gimbal 3D Model

The gimbal is a mini robot used to allow the cameras or the ultra sonic sensors to rotate
and expand their field of visualisation, it is equipped usually with two axes of rotation to
achieve rotation around the horizontal and the vertical axes, we have designed a gimbal to
control the camera angle separately of the main robot using a servo motor which rotates
around the vertical axis, and we could extract this gimbal transformation matrix in the
camera vision chapter.
The Figure (2.7) provide us with the 3D Model for ensure a better understanding.

Figure 2.7: 3D Model of the Fully Assembled Gimbal

2.7 3D Model Assembly of Mobile Robot Manipula-
tors

The previous parts are assembled respecting the dimensions and the weights distribution
constraints using distributed places of fixation axes along the arm and the twelve chassis
holders to the base, and this design couldn’t be achievable without adding some parts
including the dc motors supports and rotation axes added to the mecanum wheels and
the arm gripper, and it is necessary to mention the holding mediator between the arms
links and the servo motor gear.
Since we did not ignore the esthetic aspects, we added two covers on top of the mobile
robot chassis to hide the raspberry pi controller and the numerous wires heading towards
the Arduino Mega board.
To help visualizing the assembled mobile robot manipulator and different added parts we
have attached the Figures (2.8) and (2.9).
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(a) Front Right View (b) Back Left View

Figure 2.8: 3D Model Representation of the Assembled Mobile Robot Manipulator

Figure 2.9: 3D Model of the Cover and DC Motor Supports
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Chapter 3

Components of Robotics Systems

The manipulator robot is a result of the interaction between the mechanical the electronic
parts including motors, control boards, batteries and power boards and the action depends
on the communication and the compatibility of the components.
In this chapter we are willing to present all the components used in this project mentioning
the causes of use, the advantages and the disadvantages of each component.

3.1 Overview of Motors

Motors are devices that convert electrical energy to a mechanical rotation around a sta-
tionary axis and the first electric magnetic modern machine was built in 1832 by William
Sturgeon.
These devices are generating force and torque for multiple applications starting from
the industrial uses and engineering until the hobbyists, including 3D printers, electric
vehicles, robotics, elevators, conveyor systems, security cameras. it is necessary to under-
stand their functionality, the difference between each motor, their applications and the
necessary drivers to control it to chose the best option.

Figure 3.1: Principles of the Sturgeon Motor
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3.1.1 Direct Current Motor

A dc motor is an electrical machine provide mechanical energy in a rotation form by
creating a magnetic field in its stator using the direct current which is going to attract
and rotate the magnets on the rotor and to keep this rotation continues we use an attached
commutation to the brushes connected with the current source. DC motors are known
for their ability to control the output speed and torque by changing the input voltage
and current and their variety of sizes depending on the utility needs adding to that the
simplicity of installation and finally the low cost the availability.

3.1.2 Stepper Motor

Stepper motors are a DC motors that move in discrete steps. They have multiple coils
that are organized in groups called "phases". By energizing each phase in sequence, the
motor will rotate, one step at a time.
A stepper motor is a brushless, synchronous electric motor that converts digital pulses
produced by the control board into mechanical shaft rotation. The shaft motion is achiev-
able by accumulating the discrete angular movements resulted from sequentially switching
the phase energized.

Figure 3.2: NEMA17 Stepper Motor

Justification

The stepper motors are known for their high precision steps for distances crossing and
its high torque even at the maximum speed but we need to mention that it uses a delay
function to moves controlling a phase and stopping the other at same time which is going
to forbid us from a real time data treatment and built in sensors using to get the position
feedback and calculate the speed, we can not ignore the fact of their high mass value
which is going to consume more current and power and using the forward command by
manipulating the set point we can’t achieve a full control on the robot or its variables.
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3.1.3 JGA25 370 Motor with Encoder

The JGA25-370 DC12V 915RPM Motor with Encoder is a direct current (DC) electric
motor that operates at a voltage of 12 volts. Its maximum rotation speed is 915 revolu-
tions per minute.
It is equipped with an encoder, a device that converts mechanical movement into electri-
cal signals to enable precise measurement of motor speed, direction and position. This
type of motor is widely used in applications requiring precise motion control, such as
mobile robots, drones, autonomous vehicles.

Figure 3.3: JGA25 370 DC Motor

Characteristics

Working Voltage 6 V to 18 V
Nominal Motor Voltage 12 V
No-Load Speed at 12 V 915 RPM

No-Load Current at 12 V 50 mA
Stall Current at 12 V 1200 mA
Stall Torque at 12 V 1 kg.cm

Gear Ratio 1:9.6

Table 3.1: JGA25 370 915RPM Motor Characteristics

Justification

The encoders, integrated into the motors of the mobile robot, measure the position,
speed and direction of rotation. They convert movements into electrical signals, allowing
precise closed-loop control. Incremental encoders track position variations, while absolute
encoders provide the exact angular position. They ensure precise and reliable movements
of the robot. They also provide essential information to correct movement errors in real
time, ensuring efficient and accurate navigation [6].
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3.1.4 Servo Motor

A servo motor is a rotary actuator that allows a precise control of angular position which
is needed for precise angles achievement such as robotic arms. It consists of a motor
coupled to a sensor for position feedback. It also requires a servo controller to complete
the system which uses the feedback sensor to precisely control the rotary position of the
motor [7].

Figure 3.4: MG996R Servo Motor

Servo Motors Working Principle

Servo motors consist of four main components which are: the gear assembly, the position
sensor, the DC motor and the control circuit. The voltage variation changes the output
speed then the error of position is detected by a potentiometer attached to the output
gear which represents the servo motor shaft current position and the potentiometer output
enters an error amplifier. In order to represent the desired setpoint angle or speed we
must apply a reference signal which is in a pulse width form then it gets transformed into
a direct current voltage value and each voltage value is appropriate to an angle degree.
The internal controller compares the setpoint value to the output value then adjust the
output Driving the motor until eliminating the error. If the error is negative the controller
changes the motor direction without causing a full turn problem.
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Figure 3.5: Conceptual Design of the Servo Motor

Characteristics and Features

The MG996R is the used servo motor for the robotic arm motion and it is an upgraded
version of the Towerpro MG995 servo and it has some features such as:

• PCB and IC control system for a better respond time and less static error.

• The gear box and motor are centered to improve the dead bandwidth zone.

Dimension 40mm x 19mm x 43mm
Weight 55g

Operating Speed (4.8V no load) 0.17sec / 60 degrees
Operating Speed (6.0V no load) 0.13sec / 60 degrees

Stall Torque at 4.8V 13 kg-cm
Stall Torque at 6V 15 kg-cm
Operation Voltage 4.8V - 7.2V

Gear Type Metal Gears
Connector Wire 300mm

Table 3.2: MG996R Servo Motor Characteristics and Features

Modified Servos

Modifying the servo motor is an operation consist of soldering a wire with the point
connected to the signal output of the potentiometer attached to the servo motor last
gear, This process will allow us to get the angular position and the speed feedback to test
the internal regulation loop performances including respond time and static error and
even identifying the transfer function of the servo motor and its controller [8].
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Justification

If we chose to use a DC motor we need to deal with the position and the speed control
which is no attainable without a gearbox, a feedback and a controller which are provided
by the servo motor. for any kind of motors in order to generate high torque values we need
to supply a high voltage value which causes the increase of the motor speed forbidden us
from a precise control and the low voltage causes the torque decrease.
This problem can be solved with the servo motors or the stepper motors which are both
widely used in the robotic arms field, and here are a comparison that explain the taken
choice of the servo motors.

Servo Motor Stepper Motor
operates in a closed-loop operates in an open-loop

internal feedback system and less error no feedback system and more error
cheap (in the case of MG996R) expensive
small (in the case of MG996R) bigger then the MG996R

lower torque at low speeds high torque
high torque at higher speeds low torque

require an encoder and a gearbox no need
The speed is higher lower

pulsate or vibrate in the standstill position no vibration or pulsation

Table 3.3: Comparison Between Servo Motors and Stepper Motors

We have chose the MG996R precisely among the other servo motors because unlike the
other models it has a metal gears set instead of plastic fragile once and these gears are
the provider of the high torque values.

3.2 Drivers

3.2.1 A4988

The A4988 is a driver used to control bipolar stepper motors speed and micro stepping,
This last can support maximum voltage and current up to of 35V and 2A with a built in
current regulator, The driver provide us with multiple step modes for a simple control in
case of lacking of a complex microprocessor and it can command each phase separately
using the pins (A1, A2, B1 ,B2) which gives it the ability and change the direction
In another hand, This driver is the available option which can improve step accuracy
reducing motor noice and power dissipation
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Figure 3.6: A4988 Stepper Motor Driver

3.2.2 L298N Double Driver

L298N Dual H-Bridge Motor Controller, typically used to control motor speed and rota-
tion direction. It can also be used for other products such as with LED arrays, relays,
and solenoids, etc. It’s a powerful little motors driver.
It is equipped with a heat sink in order to keep the operational temperature of the driver
which is capable of powering 5-35V motors with a max of 2A by (0V up to 5V) to an
output power supply for the motors (0V up to the maximum voltage supply value)

Figure 3.7: L298N Motor Driver
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3.2.3 DRV8833

The DRV8833 is an optimized motor control driver which is equipped with two NMOS
H-bridge drivers, this last can control inductive loads such as a bipolar stepper motor
or DC motors even a solenoid. The driver operates between 2.7V and 10.8V but after
the testes using the DC supply source, we could use 12 Volts as an operation voltage
without an issue and this driver is able to continuously supply 1.2A in each channel and
it can resist a peak current of 2A as the limit channel current and this driver includes
two channels each one of them can drive and control a DC motor [9].
The driver offers some protection capabilities including the under-voltage lockout, the
over-current and the over-temperature protections offering a safe an efficient module
to use in the robot manipulator. Any of these past protections turn off the drivers
MOSFETs, and after the elimination of the fault the driver continue the control. We
also mention that the DRV8833 has a sleep mode which saves the energy and reduce the
battery consumption time.

Figure 3.8: DRV8833 Motor Driver

Justification

The L298N and the L293D are the most used motor drivers because their simplicity and
availability but their disadvantage is that these past drivers use a bipolar junction transis-
tors BJTs, which makes them less efficient and reliable because in the case of voltage drop
the BJT enters the ON-state and starts consuming energy which is needs to be dissipated
as heat usually causing and overheat and an unnecessary energy consumption. In the
other hand the MOSFETs has a negligible voltage drop leading reduce the temperature
and the energy consumption.
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3.3 Cameras and Sensors

3.3.1 Raspberry Pi V2 Camera Module

The V2 camera Module of the Raspberry pi company is a special small camera developed
for the raspberry Pi boards applications with characteristics such as:

• Resolution: It has an 8-megapixel Sony IMX219 sensor which delivers high quality
images with a resolution of 3280 x 2464 pixels.

• Video Capability: It has the option of high quality recording or high speed captures
for different applications (1080p at 30 frames per second, 720p at 60 fps or 640x480p
at 90 fps).

• Lens: It has no option to add an external lenses but it is equipped with a fixed
focus lens with a focal length of 3.04mm and an aperture of f/2.0 and an horizontal
view of 62.2 degrees.

• Connectivity: The connection is provided via a dedicated camera serial interface
(CSI) port on the Raspberry Pi and a cable a 15 pins ribbon cable for direct
communication.

• Compatibility: It is compatible with all the Raspberry Pi boards models which
includes a camera port.

• Size: designed for development projects provides a small size of 25mm x 23mm x
9mm.

• Software Support: It is supported by Raspbian operating system using the raspistill
or raspivid command line for capturing or recording, it also can be used by the
programming libraries like OpenCV or Picamera.

Applications

The camera used for the robotics projects, prototyping, security systems and embedded
system applications.
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Figure 3.9: Raspberry Pi camera V2

3.3.2 MPU 6050

In robotic applications or any movement control we need a real 3D visualization or image
of the robot state using the MPU sensor orientation. In our project we are interested in
using the MPU6050 in order to measure angular position of the robot mobile to ensure
the position reach with precision, its reachable by fusing the accelerometer and the gyro-
scope data to get reliable values. The MPU6050 is an Inertial Measurement Unit (IMU),
it is an electronic sensor that gives feedback of the acceleration, the angular velocity, the
temperature. This IMU is a 6DOF (degrees of freedom) device includes 3-axis accelerom-
eter and 3-axis gyroscope for each axe X, Y and Z.
The accelerometer and the gyroscope measure the acceleration and the rotational velocity
on the 3-axis using MEMS technology and Coriolis effect.
The MPU6050 is a low-cost high efficiency solution for measuring angular position or
velocity the same as our case, it uses the I2C communication protocol to transfer mea-
surements to the Arduino using two pins only (SDA and SCL) which represents the data
line and their time line, and low supply voltage 3V-5V and GND.
The IMU measures can be approved by fusing and combining the two measurements of
the accelerometer and the gyroscope to decrease the errors and also adding a Bandwidth
Filter helps smoothing out the signal by modifying the cutoff frequency of the low pass
filter which leads the remove high frequency noise [10].
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Figure 3.10: MPU6050 6-Axis Gyroscope and Accelerometer Module

3.3.3 Line-Following Sensor

A line-following sensor is a key component in robotics, enabling a robot to detect and
follow a line on the ground, typically a dark line on a light surface or vice versa. In the
case of the 5-channel line-following sensor, it consists of five infrared (IR) sensors aligned
in a row. These sensors work by detecting the reflectivity of the surface beneath the
robot [11] [12].

Operation of the Sensor

• Detection: Each IR sensor emits an infrared beam and measures the reflected
light. A dark line reflects less light than a lighter surface. When the sensor passes
over the line, it detects the low reflection, and when over a lighter surface, it detects
higher reflection levels.

• Five Channels: The five individual sensors provide multiple detection points. De-
pending on which sensor detects the line, the robot’s control system can determine
the line’s position relative to the sensor array.

• Positioning: If the central sensor detects the line, the robot is properly aligned. If
the line is detected by the left or right sensors, the robot can adjust its movement
to re-center itself over the line.

• Control Mechanism: The sensor is connected to a microcontroller that processes
the data from the sensors. Based on this input, the robot adjusts the motor speeds
to maintain its path along the line. With five sensors, the system provides higher
accuracy and allows smoother adjustments than configurations with fewer sensors.

This sensor setup is particularly useful for tasks such as autonomous navigation, path
tracking, and educational robotics projects. The 5-channel configuration enhances the
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robot’s ability to accurately follow lines, including curves or more complex paths, by
offering more precise feedback and control.

Figure 3.11: Line Follower 5 Channels Infrared Sensor Module

3.4 Battery

11.1 V Lipo Battery to supply all the motors of the robot, Lipo batteries are widely
recognized for their high energy density, lightweight, and ability to deliver high currents,
making them ideal for applications requiring large, consistent power.
Our Lipo battery is characterized by a voltage of 11.1V and a capacity of 5200 mAh.
These features provide stable and durable power, which is responsible for managing and
controlling the robot’s motors. By using this battery, we ensured optimal performance of
the power stage, allowing the robot to operate efficiently and meet power requirements
during mobility operations.

Figure 3.12: LiPo Battery
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3.5 Control Boards

3.5.1 Arduino MEGA 2560

Description

Arduino Mega 2560 is an exemplary development board dedicated for building extensive
applications as compared to other maker boards by Arduino. The board accommodates
the ATmega2560 micro-controller, which operates at a frequency of 16 MHz. The board
contains 54 digital input/output pins, 16 analog inputs, 4 UARTs (hardware serial ports),
a USB connection, a power jack, an ICSP header, and a reset button.

Figure 3.13: Arduino Mega 2560

Tech Specs

The Arduino Mega 2560 is a micro controller board based on the ATmega2560. Here are
its technical specifications
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Microcontroller ATmega2560
Operating Voltage 5V

Input Voltage (limit) 6-20V
Digital I/O Pins 54 (including 15 PWM outputs)

Analog Input Pins 16
Flash Memory 256 KB

SRAM 8 KB
EEPROM 4 KB

Clock Speed 16 MHz
Dimensions 101.52mm x 53.3mm

Table 3.4: Arduino Mega 2560 Tech Specs

Connector Pin-Out

The Arduino Mega 2560 features a versatile pinout design that accommodates a wide
range of applications and connections for various sensors, actuators, and devices. It
includes 54 digital input/output (I/O) pins, numbered from 0 to 53, which can be utilized
for both input and output operations. Notably, pins 0 and 1 are designated for serial
communication, functioning as the transmit (TX) and receive (RX) pins, respectively. For
analog input, the board provides 16 analog pins labeled A0 to A15, capable of reading
varying voltage levels from 0 to 5V; additionally, A0 to A5 can serve as digital pins if
needed.
The Mega 2560 supports Pulse Width Modulation (PWM) output on several digital pins,
specifically 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 44, 45, and 46. For serial communication, it
includes multiple UART interfaces, with dedicated RX and TX pins: 0 (RX0), 1 (TX0),
18 (RX1), 19 (TX1), 16 (RX2), 17 (TX2), 14 (RX3), and 15 (TX3). The board also
features dedicated I2C pins, A4 (SDA) and A5 (SCL), for I2C communication, as well as
SPI pins including 50 (MISO), 51 (MOSI), 52 (SCK), and 53 (SS) for SPI communication.
Powering the Mega 2560 is made simple with a Vin pin that accepts a voltage input of 7-
12V, alongside several ground (GND) pins, a regulated 5V output pin, and a 3.3V output
pin (with a maximum current of 50 mA). The RESET pin allows for easy resetting of the
Arduino board. The Arduino Mega is compatible with a variety of sensors, actuators,
and displays thanks to its large input/output options and specific functionalities, such as
PWM outputs, interrupt inputs, and communication pins, making it suitable for complex
applications. This extensive pin configuration makes the Arduino Mega 2560 an excellent
choice for projects that require numerous peripheral connections. For further details, one
can refer to the official Arduino documentation.
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Figure 3.14: Arduino Mega 2560 Pin-Out

Application

The Arduino is commonly used due its large number of analog and digital inputs/outputs
adding to that being compatible with the most of Arduino shields allowing it to be used
in application as:

• Robotics: the high processing capacity that can handle extensive robotic appli-
cations and the ability to control different types of motors and sensor readings,
making it suitable for the field of robotics.

• 3D Printing:Arduino Mega 2560 is capable to support the necessary algorithms
for 3D printing and we mention the ability to change the code and customize it
according to the requirements.
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• Wi-Fi: the wireless connection between devices offers a variety of applications as
the smart houses control using the Wifi shield.

3.5.2 Raspberry Pi 4 Model B

The Raspberry Pi 4 Model B is a compact single board computer known for its powerful
performance offering a wide range of application and prototyping or even educational
purposes in the fields of embedded systems or real time systems. This computer is
equipped with a Linux operating system called Debian. It can be connected directly to
a typical user interface using HDMI or a user interface accessible via SSH.

Raspberry Pi Characteristics

• Processor: Quad-core ARM Cortex-A72 (ARM v8) 64-bit SoC at 1.5GHz, in order
to secure smooth and fast tasks running for general computing use or multimedia
applications.

• Memory: Among the other versions we chose 8GB of LPDDR4-3200 SDRAM for
high demands applications, including running multiple tasks simultaneously for
example the image processing, the autonomous navigation and the VNC software
at the same time or even using it as a server.

• Graphics: Broadcom Video Core VI GPU, supporting OpenGL ES 3.x, 4Kp60
hardware decode of HEVC video, dual-display output via two micro-HDMI ports
supporting up to 4K resolution each.

• Connectivity:

– Wireless: Dual-band 802.11ac Wi-Fi and Bluetooth 5.0 provide robust wireless
communication.

– Wired: The Gigabit Ethernet supplying high demands network tasks offering
a fast wired connection to the network.

– USB: Two USB 3.0 and two USB 2.0 ports offering fast data transfer.

– GPIO: A 40-pin GPIO for the communication or the connection of sensors,
motors, and other electronics.

• Storage: We can use an all purpose MicroSD card including the user files storage
and the operating system files which can be a Debian, Ubuntu or others. we can
use the USB ports for adding an external storage such as SSDs or flash drivers

• Power: The raspberry Pi gets supplied with energy via a UCB type C connector
offering 5V and 3A for a continuous execution even under heavy tasks load.

• Display and Camera Interfaces: MIPI DSI for display and MIPI CSI for camera,
supporting the Raspberry Pi camera and display accessories.
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Applications

The Raspberry Pi 4 Model B is offering an ideal affordable computer which can be used
for hobbies, education and professional uses for example:

• Learning programming and electronics.

• Building automated systems.

• Building a customized gaming console.

• Prototyping and IoT projects.

• Lightweight server hosting.

Figure 3.15: Raspberry Pi 4 Model B
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Chapter 4

Building and Assembling a Mobile
Manipulator Robot

For our project we ensured to use efficient components and motors to achieve a so-
phisticated functionality and robustness, we have combined the mobility offered by the
mecanum wheeled robot with the Braccio TinkerKit robotic arm reach capabilities. This
combination provides a wide range of applications for precise object manipulation and
movement in diverse directions and ground natures.

4.1 Machines Utilized in the Project

We have used two main machines to create the mechanical part of the robot which are:

CNC Laser Cutting Machine

The CNC laser cutting machine is an automated equipment with a computer-controlled
laser beam used for cutting materials like forex, plastic, wood and aluminum. The use of
the machine needs the creation or importing a model or design into a Computer-Aided
Design (CAD) software such as Solid Works. This design is then converted into a DXF
file, the file is later sent to the machine which uses the information to control the laser
beam so that it cuts material in exact precision according to the design.
In our case study, we applied this technology in creating the mobile robot chassis by
cutting floors from black forex using the CNC laser cutting machine. The use of this
technology enabled us to obtain a precise high quality cuts based on our design details
and to reduce time.

3D Printer

The device used to make three-dimensional objects is a 3D printer by adding material in
layers according to the model created from a digital design. The material resin or plastic
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which is most of the time of the type PLA, Before sending the model to the printer you
need to upload it on CAD software (for example Solid Works) and design the model
according to the printer capacities like size and the maximum smoothness or robustness.
The format of file should be an STL file type, then upload it into a 3D printing software,
then once the piece file is uploaded to the 3D printer the loaded printing material will be
heated and placed layer by layer.
In our case study, we have used the 3D printers during the project conception producing
various parts for mobile robot manipulator like the sides cover, the mecanum wheels, the
robotic arm base, links and gripper, the gimbal robot and the Raspberry Pi cover based
on specific measurements.
The following Figure (4.1) and (4.2) shows an example of the used CNC and 3D printer
machines respectively which are located in the FAB-LAB fabrication laboratory situated
in Tlemcen Algeria.

Figure 4.1: CNC Laser Cutting Machine

Figure 4.2: 3D Printer
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4.2 Robotic Arm

4.2.1 First Robotic Arm Model

During the first days of implementation, we focused on creating a simple to implement
and study 3D model, taking into consideration the dimensional limits. As a result of our
research, we have chosen the 5 degrees of freedom robotic arm shown in the following
figure

Figure 4.3: Design and Structure of the Previous Robotic Arm

Pros and Cons of the Model

From a part the last robotic arm has a number of advantages and we mention the most
important of them including:

• The robotic arm is a well-known in the community of robotics which is going to
help us in finding researches.

• The simplicity to print because of it lacks of sharp details and it reasonable dimen-
sions and it has few pieces to implement.

• The robotic arm uses only servo motors MG995/MG996 and MG09 which are known
for theirs availability and their light weight. From another part we should change
the robotic arm for few reasons such as:

• The robotic arm has an unsuitable reach field which is going to reduce the manip-
ulator capability and the mobile robot dimensions.
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• We took in consideration the load applied on the servo motor shaft which is the only
thing holding the arm from falling apart, and we mention the current consumption
without avail for that cause.

• The robotic arm uses the MG09 in different joints which is not suitable because of
it imprecision and it low torque and the capability of breaking down at any moment
causing random movements capable to destroy the system parts.

4.2.2 Robotic Arm

We 3D printed a robotic arm model composed of 21 separate parts that can be assembled
to offer smooth control of movements. Designed with precision and attention to detail,
including hiding motors and wires, this robotic arm enables numerous applications to
meet various needs.
The following Figure (4.4) and (4.5) shows the robotic arm different part and the final
assembled arm respectively for clarification.

Figure 4.4: Parts of a Robotic Arm

Figure 4.5: Final Assembly of the Robotic Arm
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Pros and Cons of the Model

The distributed load on the arm and the MG995 and modification to hold the MG995
This model unlike the first one for such reasons and we mention their advantages and
disadvantages and we start with:

• This robotic arm as a considerable dimension difference offering a wider range of
reach ability and more strength joints and links.

• The manipulator has a distribution load system for the joints efficient which causes
the stability of movements around the axes and in this way, it applied less pressure
on the motor shaft leading to energy reduction and durability of the components.

• We observe the aesthetic and the appearance difference of the braccio robotic arm

• The model is composed of separated part offering space to hide motors and wires.

• We mention the mass difference which counts as a disadvantage obliging us to use
a high torque servo motor and occupied metallic gear shaft.

4.3 Mobile Robot

As the robotic arm also the mobile robot have seen some changes during the development
from the look and the functionality for example at first it was made of wood equipped
with 4 holes designed to connect the stepper motors shaft the 3d printed mecanum wheels
the ones shown in the Figure (4.6) for the distance crossing as it shown in the Figure (4.7),
but we have changed the stepper motors to the JGA25 370 motors which are significantly
smaller and lighter which offers the option to put them outside the car and benefit from
the new free space.

Figure 4.6: Detailed View of 3D Printed Mecanum Wheels

45



Figure 4.7: Components of the Previous Mobile Robot, Including Motors and Drivers

The mobile robot is the heaviest and most robust part of the robot body, as it should
stabilize movements and prevent shock damage. The robot body can be created using
3D printing and a CNC laser cutting machine and is made of PLA (Polylactic acid).
The 3D printed sides cover is screwed with the forex platform which represents the base
and the top of the chassis. We ensured to calculate and make all mechanical or electrical
needs such as wires inputs to the Arduino and the other components inside, the battery
charger, the Arduino USB type B cable, the battery state switch (consumption / charge
/ OFF), low current 12V adapter for tests, the motor supports and wires placement,
The robotic arm is placed on top of the robot and fixed with 7 metallic screws with
and intermediate part connected directly to the robot base servo motor. All what is
mentioned before in shown in the Figure (4.8) presenting the mobile robot.
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(a) Front View of the Mobile Robot (b) Top View of the Mobile Robot

Figure 4.8: Perspectives of the Mobile Robot

4.4 Architecture

The hardware architecture proposed plays the critical role in the functionality of the
robot to achieve a task that is desired including autonomous navigation and the objects
pick and place. It consists of components and interconnections between electronic circuits
ensuring the desired goal of this combination.
The architecture is composed of high-level control and low-level control. The high-level
segment deals with managing the navigation, guidance algorithms of the robotic platform,
the camera vision object detection, deciding the next desired positions and the trajectory
planning optimization in parallel. while the low-level one ensures execution of orders sent
from high level by piloting four motors of the robotic platform and the 7 motors of the
robotic arm using PWM signals.

4.4.1 High-Level Control

The high-level segment consists of The Raspberry Pi4 model B calculator which commu-
nicates with the main station (PC) via a wireless connection (WIFI) or an HMI (human
machine interface) to insert data and orders.
The Raspberry Pi allows remote control from another computer to set the desired work-
ing area, then this calculator will optimize the trajectory by the A* method and when it
is arrived the camera start scanning the area and share the real time video with operator,
after detecting the object in our case it is represented as an QR code then thank to the
image processing it can define the object coordinate and send it to the Arduino to insert
it into the inverse model of the robotic arm the get the required angles, each time the a
task is done by the low level controller it will notify the Raspberry Pi to secure the task
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sequence.
The Raspberry is powered by a power bank which ensures a secure and a stable 5V power
supply for the Raspberry rather than a Lipo battery of 11.1V. A power bank is a portable
energy storage device used to charge or power electronic devices. It contains an inter-
nal rechargeable battery and has a micro-USB port for connecting various devices. The
power bank we selected has a capacity of 20,000 mAh and provides an output voltage of
5V and equipped with a digital battery display which allows the operator to know the
remaining charge level.

4.4.2 Low-Level Control

for the low-level segment, it is composed of an Arduino Mega microcontroller which
controls the four DC motors and 7 servo motors. To set up an odometry module and
guarantee speed control of the motors, we used four JGA25-370 type motors equipped
with encoders. The 11.1V battery (lithium polymers with a capacity of 5200 mAh) powers
the DC motors and the servo motors using a boost step backward forwards converter to
achieve the stable 5V supply power. This dual power configuration provides protection
for the on-board system by isolating the low-power and high- or medium-power parts,
while ensuring better overall system autonomy. The main role dedicated to this segment
is to ensure low-level control of the robot including the speed control and the achieve the
desired position for the platform and the arm gripper.
The Low level control has too many components which makes the process of wiring
without damaging the parts a complex issue and for that we used the diagram shown in
the Figure (4.9).

48



Figure 4.9: Low-Level Control Wiring

4.4.3 Communication Protocols in Mobile Robot Manipulators

The mobile robot manipulator consists of multiple controllers which need communication
between them to ensure data transmission and receive. The raspberry pi and the Arduino
communication in embedded systems projects is used to combine the powerful multi core
processor of the raspberry pi and the multi-inputs outputs capacity of the Arduino. This
bidirectional interaction and exchange of data and commands is insured with the serial
communication using the USB type-B cable. To ensure a wireless and long distances con-
trol and visualization we used the WIFI connection between the user computer (master)
and the raspberry pi (slave) as a communication method. This was possible using the
ssh and the VNC application which offers a real time view and access to the raspberry
pi to control and modify values [11].
In the next Figure (4.10) we can see the different robot’s components and their role in
control mentioning the used communication types and the content of each signal.
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Figure 4.10: Control Levels and Communication Architecture of the Robot

4.5 Assembly of Mechanical and Electronic Compo-
nents in Mobile Robot Manipulators

After the creation of the mechanical part and the electronic connections we had to as-
semble the two parts to create the mobile robot manipulator. This robot is constructed
of two floors and each one represents a level of command and segmentation. In the first
floor we find the JGA25 370 motors, the power stage, the electronic and control compo-
nents including the power Bank, the Lipo battery, the 12v to 5v boost step-up step-down
converter and, the DRV8833 motors drivers and the Arduino mega the low-level segment
controller, all these components are soldered in one permanent circuit to ensure the sta-
bility and safety and avoid the connections problems. The motors and the circuit are
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attached with bolts to the base floor.
On the second floor theres three main structures the robotic arms with the servo motors
and their wires, the two covers to protect and hide the raspberry bi 4B which is the
high-level segment of command and its USB serial cable and finally the last structure is
the camera gimbal offering the 270◦ angle of vision.
The following Figure (4.11) and (4.12) shows the early mentioned parts assembled and
the electronic circuit respectively.

Figure 4.11: Assembled Mobile Robot Manipulator

Figure 4.12: Electronic Circuit Design and Components
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Chapter 5

Mobile Robot Manipulator Systems:
Control and Integration

Choosing the best components and mechanical parts is not enough in the robot develop-
ment; we need to add another factor, which is robot control.
Controlling a mobile robot equipped with an arm presents a complex and dynamic chal-
lenge in robotics, blending locomotion and manipulation. This system combines two
essential functions: the movement of the mobile base and the precision of the robotic
arm. The mobile robots base allows for navigation in various environments, while the
robotic arm performs tasks such as picking, placing, or interacting with objects. Coor-
dinating these two systems requires advanced control algorithms, sensor integration, and
motion planning to ensure smooth and efficient operation. By leveraging feedback from
sensors such as cameras, LiDAR, or encoders, the robot can perceive its environment,
plan trajectories, and execute tasks with accuracy.

5.1 Control Process in Robotics

The control process involves continuously adjusting and regulating the robot’s parameters
to achieve a desired outcome, such as precise movement or positioning. Controlling and
automating robotic systems is essential, especially for low-level commands such as speed,
position, direction, stability, and arm movement. The complexity of control depends on
the variation of the system’s parameters, but there are key benefits to this approach:

• Energy Efficiency: By dynamically adjusting energy input according to the ma-
nipulator’s load requirements, the controller minimizes power consumption, avoid-
ing waste and enhancing overall energy efficiency.

• Error Elimination: Automated control systems in robotic arms ensure continuous
monitoring and fine-tuning, reducing the likelihood of human error and maintaining
precision in operation.
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• Quality Assurance: Repeated tasks, such as gripping and positioning, benefit
from automation, ensuring that accuracy and repeatability are maintained through-
out the manipulators movements.

• Improved Safety: Safety mechanisms like emergency shutdowns and collision
prevention systems are integral to automated control, reducing the risk of damage
to the robot or its surroundings.

Inputs

The inputs to the manipulator’s control system consist of data from sensors (position, ve-
locity, torque, etc.), energy supplies, and commands that dictate the desired movements.
While the robot follows programmed instructions, it must also adapt to minor variations
in sensor feedback, mechanical components, or load conditions. These variations should
be within tolerance limits to maintain the robot’s proper functioning.

Uncontrolled Variables

Uncontrolled variables in robotic manipulation include external environmental factors,
such as ambient temperature, humidity, or vibrations, which may influence the robot’s
performance. These factors cannot be directly controlled by the robot’s system. Addi-
tionally, variations in the robot’s joints or actuators due to wear and tear, or differences
in operational load, can introduce variability into the system.

Controlled Variables

Controlled variables include the speed, position, direction, and stability of the manipu-
lator’s joints and end-effector. Sensors monitor these parameters and send feedback to
the robot’s control system, which uses algorithms (e.g., PID controllers) to adjust motor
torque, arm position, or joint angles to achieve the desired performance. Advanced con-
trol systems may also incorporate artificial intelligence to optimize control strategies in
real time.

5.2 Controlling a Mobile Robot with an Arm

Controlling a mobile robot with an arm involves complex coordination between the bases
motion and the arms manipulation tasks. The control problem is typically split into two
parts: controlling the mobile base (which often has wheels or tracks) and controlling the
robotic arm (which consists of multiple joints or degrees of freedom).
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Mobile Base Control

The mobile base requires navigation and path-planning techniques, usually handled through
feedback control algorithms. These algorithms use data from sensors like encoders, in-
ertial measurement units (IMUs), or GPS to compute the desired velocity and position
while avoiding obstacles and maintaining stability. Common controllers include PID
(Proportional-Integral-Derivative) controllers or more advanced methods like Model Pre-
dictive Control (MPC). The control architecture must handle external disturbances (like
uneven terrain) and maintain precise positioning for the arm to interact with objects.

Arm Control

The robotic arm, which is attached to the mobile platform, has multiple joints that need
to be controlled in a coordinated manner. Each joint is typically driven by individual
motors, and controlling these requires precise trajectory planning and kinematic control.
Inverse kinematics (IK) is often used to compute the required joint angles to achieve a
specific end-effector position. For dynamic tasks, dynamic control is applied, considering
forces, torques, and inertia to maintain stability, especially when the arm interacts with
the environment.

Unified Control

The key challenge is unifying the control of both systems so that the robot can move and
manipulate simultaneously. This requires integrating data from various sensors (cameras,
LiDAR, etc.) to localize the robot, understand the surroundings, and plan movements.
Advanced control schemes like task-space control or operational space control are often
used to manage the robots interactions with the environment by decoupling the base and
arm controls, allowing them to work harmoniously.
One major challenge in controlling such systems is compensating for the dynamic coupling
between the mobile base and the arm. Movement of the mobile base can affect the stability
and positioning of the arm, and vice versa. Therefore, the control algorithms need to
predict and counterbalance these effects in real-time.

5.3 Control Architecture of Mobile Robotic Manip-
ulators

For our project involving a mobile robot manipulator, we have chosen a hybrid control
architecture that balances strategic planning and real-time adaptability across high-level
and low-level control systems [13].
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High-Level Control

• Trajectory Planning and Target Definition: The high-level control is responsi-
ble for defining the path the manipulator will take, determining joint configurations,
and setting the final target position. This involves solving complex kinematics and
optimizing the movement sequence to ensure efficiency and precision.

Low-Level Control

• Application and Motion Control: The low-level control handles the execution
of the trajectory, translating the high-level commands into precise motor actions
and sensor integration to achieve the desired motion.

• Improvisation and Disturbance Rejection: The low-level control can inde-
pendently handle real-time feedback, such as resisting external perturbations (e.g.,
unplanned forces or disturbances). The system can adjust without needing to wait
for high-level intervention, improving the manipulator’s responsiveness and stabil-
ity.

Advantages of This Approach

• Real-Time Adaptation: The low-level controllers ability to react to unexpected
disturbances (like external forces) ensures robustness and precision. This is partic-
ularly useful in manipulative tasks that require consistent interaction with unpre-
dictable environments.

• Efficiency: The high-level controller can focus on broader goals, leaving real-time,
detailed adjustments to the low-level controller. This reduces the computational
burden on the high-level system, allowing for more efficient control.

• Improvisation: Low-level control can manage perturbations and minor corrections
without needing continuous input from the high-level control, improving the overall
autonomy of the system.

5.4 Low-Level Control

We will focus on the low-level control systems of robotic manipulators due to their signif-
icant impact on the system’s performance and behavior. Low-level control encompasses
the regulation of essential parameters such as speed, position, direction, stability, and
torque. These aspects are crucial because they directly influence the robot’s precision
and adaptability in real-time. The variation in these control parameters is substantial,
and fine-tuning them is vital to achieving optimal performance. By concentrating on low-
level control, we can address the dynamic challenges and fluctuations that arise during
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operation, ensuring that the manipulator responds accurately and efficiently to varying
conditions and tasks. We can handle the changes and challenges that come up during
operation, making sure the robot responds accurately and efficiently to different con-
ditions and tasks. In the following table we can observe the different tasks ,possible
variable regulations and systems that could be done by the robot’s manipulator low-level
segment [14].
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System Description Purpose Regulation
Components

Speed Control
System

Regulates motor speed
controlling joints and
end-effector.

Ensures smooth and
controlled motion,
preventing unsafe
movements.

Encoders, tachometers,
motor drivers.

Position Control
System

Controls the precise
positioning of joints
and end-effector.

Ensures accurate
positioning, critical for
tasks like picking or
placing.

Encoders, resolvers,
feedback loops (e.g., PID
controllers).

Direction Control
System

Manages orientation
and trajectory of arm
and end-effector.

Regulates movement
direction for precise
path planning and
alignment.

IMUs, gyroscopes, control
algorithms.

Stability Control
System

Maintains stability of
the arm, preventing
oscillations or
overshooting.

Ensures steady
operation, especially
with varying loads or
quick movements.

Force/torque sensors,
IMUs, adaptive/robust
control algorithms.

Torque Control
System

Regulates torque
applied by motors to
each joint or axis.

Adjusts force for
moving/holding the
arm, ensuring energy
efficiency and safety.

Torque sensors, current
sensors, motor controllers.

End-Effector
Control System

Regulates actions of
the end-effector (e.g.,
gripper, tool).

Controls gripping force
or tool movements for
specific tasks.

Force sensors, pressure
sensors, motor drivers for
actuators.

Arm Trajectory
Control System

Manages path and
motion planning for
arm movement.

Optimizes path for
efficiency, avoiding
obstacles and
minimizing time.

Path planning algorithms,
kinematic/dynamic
models, position feedback
sensors.

Load
Compensation
System

Regulates manipulator
response when handling
different loads.

Adjusts motor torque,
speed, and stability for
load variations.

Load sensors, force/torque
feedback, dynamic
adjustment algorithms.

Temperature
Control System

Regulates temperature
of motors and
electronics.

Prevents overheating
during prolonged or
intensive operations.

Temperature sensors,
cooling fans, thermal
management systems.

Force Feedback
System

Monitors and regulates
force exerted by the
end-effector.

Ensures correct amount
of force without
damaging objects.

Force sensors, feedback
loops integrated into
control algorithms.

Power/Energy
Management
System

Regulates power
supplied to actuators
and control systems.

Optimizes energy use,
avoiding overloading or
under-powering motors.

Voltage/current sensors,
power distribution units,
energy optimization
algorithms.

Collision
Avoidance System

Regulates robot motion
to avoid collisions with
obstacles or humans.

Enhances safety by
stopping or rerouting
movement to prevent
collisions.

Proximity sensors, vision
systems, real-time control
software.

Vibration
Dampening
System

Regulates vibrations
caused by manipulator
movements.

Minimizes oscillations
or vibrations affecting
precision or mechanical
wear.

Vibration sensors,
damping control
mechanisms.

Grip Force
Control System

Controls gripping force
of the robots gripper.

Prevents damage to
objects while ensuring
a secure grip, adjusting
for material properties.

Pressure sensors, tactile
sensors, motor controllers.

Communication
and Data
Exchange System

Manages data flow
between sensors,
actuators, and control
unit.

Ensures timely data
exchange and control
commands for
coordinated operation.

Data buses,
communication protocols
(e.g., CAN, EtherCAT),
wireless systems.

Table 5.1: Low-Level Control Architecture of the System
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In our system architecture, the low-level control tasks includes motor speed control en-
sures the smooth operation of actuators, maintaining the desired velocity even under
varying load conditions, The regulation of the robot’s speed and position is crucial for
accurate navigation and task execution, while yaw angle control allows for precise adjust-
ments in orientation, essential for tasks requiring directional changes. Additionally servo
motor control, enables fine regulation of speed and position, ensuring that actuators per-
form tasks with high accuracy. As the low-level controller, it is responsible for real-time
execution of these critical functions, ensuring smooth operation and precise movements
by utilizing PID controllers for these key control elements.

5.5 Proportional Integral Derivative (PID) Controller
Overview

The Proportional-Integral-Derivative controller has a rich history dating back to the early
20th century, when it was developed for industrial process control, particularly in the field
of automatic steering for ships by Elmer Sperry in 1911. Its wide adoption is due to its
simplicity and effectiveness, as it requires no complex mathematical model of the motor or
robot it controls, making it particularly advantageous for systems where precise modeling
is difficult or unnecessary [15]. A key reason for choosing PID in modern robotics and
motor control is its ease of implementation and tuning, allowing it to efficiently handle a
variety of tasks, from position control to speed and torque adjustments. Moreover, PID
controllers are highly adaptable to changing conditions, capable of correcting errors in
real-time without needing intricate system knowledge, making them ideal for scenarios
where motor dynamics are unknown or where the system experiences frequent distur-
bances. These benefits, along with its well documented history and proven reliability,
making the PID a solution in control systems for robotics and beyond.

5.5.1 PID Controller Theory

The PID controller is a widely used feedback control mechanism designed to minimize
the error between a desired set-point and a measured process variable. It computes a
control output based on three distinct components which are the proportional, integral,
derivative gains [16].
The overall control output u(t) is given by:

u(t) = Kpe(t) +Ki

∫ t

0

e(τ) dτ +Kd
de(t)

dt
(5.1)
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u(t) is the control output at time t,

e(t) is the error at time t (the difference between the set-point and the process variable),
Kp is the proportional gain,
Ki is the integral gain,
Kd is the derivative gain.

Figure 5.1: Diagram of the PID Controller Implementation

Proportional (P) Component

P (t) = Kpe(t) (5.2)

A proportional controller responds to the current error e(t) by applying a corrective action
that is directly proportional to the error, with the proportional gain Kp determining the
magnitude of this response. A higher Kp results in a stronger correction, which leads to
faster error reduction and a quicker system response. However, excessively high values
of Kp can cause the system to overshoot the target, potentially leading to oscillations or
instability. A balanced Kp is crucial for achieving a stable, responsive system.

Integral (I) Component

I(t) = Ki

∫ t

0

e(τ) dτ (5.3)

An integral controller addresses the accumulation of past errors by integrating the error
over time, producing a corrective action that helps to eliminate steady-state errors. The
integral gain Ki determines how strongly the controller responds to the accumulated error.
While higher Ki values can effectively reduce steady-state error, they may also cause
increased oscillations and a slower system response, as the system may overcompensate
for errors that have already been corrected. Therefore, careful tuning of Ki is essential
for maintaining stability and avoiding excessive oscillations.

Derivative (D) Component

D(t) = Kd
de(t)

dt
(5.4)
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A derivative controller predicts future errors by considering the rate of change of the
error over time. The derivative gain Kd provides a damping effect, helping to reduce
overshoot and improve system stability by slowing down the response as the error de-
creases. However, since the derivative action is highly sensitive to noise in the error signal,
even small fluctuations can result in erratic control actions, making the system unstable.
Proper tuning of Kd is necessary to balance the benefits of damping without introducing
instability from noise sensitivity [17].

5.5.2 PID Controller Tuning

Tuning a PID controller involves adjusting the three parameters proportional gain Kp,
integral gain Ki, and derivative gain Kd to achieve the desired control performance.
Proper tuning ensures that the system responds accurately and stably to changes in
set-point and disturbances. Here are common methods and points for tuning:

Manual Tuning

Manual tuning is a fundamental approach for setting the parameters of a Proportional-
Integral-Derivative (PID) controller to achieve desired system performance. It is a method
that relies on the control engineer’s experience and intuition to adjust the controller pa-
rameters. This approach is often used when automated tuning methods are not available
or practical. The Procedure of manual truning is:

1. Set Ki and Kd to zero. Gradually increase Kp until the system begins to
oscillate.

2. Adjust Ki to eliminate steady-state error while minimizing oscillations.
3. Tune Kd to improve stability and reduce overshoot.

One of the main advantages of this tuning method is its simplicity and intuitive nature,
as it does not require any specialized tools, making it accessible for manual adjustment
of the controller’s gains. However, a significant drawback is that the process can be time-
consuming, as fine-tuning the gains often involves a trial-and-error approach, which may
not result in optimal performance. Achieving the best possible balance between response
speed, stability, and accuracy can be challenging without more sophisticated methods or
automated tools.

Ziegler-Nichols Method

The Nichols-Ziegler method is a classical technique used in control systems engineering
for designing and tuning controllers. Its often applied to the design of Proportional-
Derivative-Integral (PID) controllers. This method involves using Nichols charts, which
are used to visualize the frequency response of a system and to determine the appropriate
controller parameters [18].
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Software-Based Tuning

Software-based tuning utilizes automated tools that leverage algorithms to set PID pa-
rameters by analyzing system performance data. This method provides the benefit of
enhanced precision and speed, allowing for real-time adjustments based on continuous
feedback. However, it also has the drawback of necessitating access to specialized soft-
ware and tools, which may not always be accessible [17].

Model-Based Tuning

Model-based tuning involves creating a mathematical model of the system and applying
optimization techniques to determine the optimal PID parameters. This approach is ad-
vantageous because it allows for highly optimized control, especially for complex systems.
However, it also has some drawbacks, including the need for detailed system modeling and
significant computational resources, which can be demanding and time-consuming [18].

5.5.3 Limitations of PID Controllers

Noise Sensitivity

One issue with the derivative term (Kd) in PID control is that it can amplify noise in
the error signal, which may result in erratic control actions. To mitigate this problem,
filtering techniques can be applied, or a derivative filter can be used to smooth out the
noise and reduce its impact on the control performance [18].

Integral Windup

Integral windup happens when the integral term in a PID controller keeps accumulating
error during saturation, causing slow responses and prolonged oscillations. To fix this,
you can use anti-windup techniques like limiting the integral term or adjusting it based
on system conditions to keep control smooth and stable [18]

Over-Sensitivity to Tuning

Over-sensitivity to tuning occurs when PID parameters react too strongly to changes,
making it hard to find the right balance between responsiveness and stability. To address
this, robust tuning methods can be used to find more stable settings, and adaptive con-
trol strategies can be considered to adjust the parameters dynamically based on system
performance.
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Complexity in Nonlinear Systems

PID controllers may struggle in systems with significant nonlinearity or varying dynamics.
To address this, you can combine PID with other control strategies or use advanced meth-
ods such as adaptive or nonlinear control techniques to better handle complex behaviors
and improve performance.

Limited Performance in Systems with Large Delays

PID controllers can have difficulty managing systems with large time delays or lag. To
improve performance in such cases, techniques like the Smith Predictor or Model Predic-
tive Control (MPC) can be used, as they are designed to better handle and compensate
for delays.

Lack of Optimality

PID controllers may not always provide optimal performance or stability, particularly in
complex systems. To address this, you can explore more sophisticated control approaches
or combine PID with other techniques to enhance overall control effectiveness.

5.6 Motor Control Strategies

To achieve the desired translation and rotation speeds for the robot we need a precise
speed control of its four DC motors. This involves regulating each motor’s speed to
maintain constant rotation, even in the presence of external disturbances, minimizing
internal errors that could compromise the accuracy of the localization system. In the
following sections, we will first explain how we successfully controlled the speed of a
single motor using a PID controller, justify the chosen parameters, and then move on to
implementing speed control for all four motors.
Effective robot motor speed control involves understanding several core principles: Pulse
Width Modulation (PWM) for regulating speed, encoders for measuring and calculating
motor speed, and interruptions for real-time adjustments. Additionally, it encompasses
the methods for changing both speed and direction to ensure precise and responsive
control of robotic systems.

5.6.1 Principle concepts

Encoder and Feedback

The DC motors by their own can’t be feedback controlled but with adding and encoder
we can observe the angular position of the rotor and calculate its speed and use it in a
regulation loop to achieve the best performance possible.
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The Hall effect encoder is a type of position sensor that uses the Hall effect principle to
detect changes in magnetic fields. It typically consists of a Hall sensor and a rotating
magnet, where the sensor measures the magnetic field’s variations as the magnet moves.
These changes are then converted into electrical signals to determine the position, speed,
or direction of a rotating object. Hall effect encoders are commonly used in motor con-
trol, robotics, and industrial automation due to their reliability and precision in harsh
environments [6].
The encouder pulses are detected by the Arduino as an interruption. The interrupt is an
event that changes the order in which the processor carries out instructions. It can either
be planned (intentionally triggered by the active program) or unplanned (resulting from
an event that may or may not be connected to the current program) [19].

Position Measurement

To measure position using the haul effect encoder we need a function beside our loop
function, This function consists of a variable called an increment that we will add to
or subtract of the previous position variable each depending on the direction of the
movement, we have built an interruption function that will be activated each time our
mictrocontroller detects a rising signal in a specified interrupt input pin, this last oper-
ation will pause the principal loop function and enters the interruption function which
will verify the other encoder pin status (B), for example if the B pin is taking the value
0 (LOW), we can conclude that the direction of motion in anti clockwise in this case
we add the increment to the previous position but if its the opposite then the motion is
anti-clockwise and we need to subtract the increment.
To ensure that the position variable is stored and both the loop and interrupt functions
can use it we work with the volatile qualifier, which prevents the compiler from perform-
ing optimizations on the variables,and this optimization can potentially misreading the
position.The ATOMIC BLOCK macro is needed to prevents the interrupt from changing
part of the position variable while it is being read.

Speed Calculation

The speed calculation is based on a mathematical equation consist of defining a time
variable in this case we call it current Time using the function micros() then calculate
w the difference between the previous time and the current one then divide the result
by a large numbre to minimize the deltaT then divide the increments of position (the
variation in position between the previous time and the current time) by the delta which
is represents the difference between the previous position and the current one and how
the velocity change during the deltaT period.
currentTime = microseconds()
DeltaT = (currentTime - previousTime)/106
velocity = increments / DeltaT
previousTime = currentTime
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Directional Movement Control

In the simplest case of driving one DC motor, we can change direction using a HIGH
LOW (1/0) logic where the HIGH state represents applying 5V to the IN1 pin and the
LOW state represents connecting the Ground to the IN2 pin and changing the pins means
changing the direction as it shows in the next table

Input A Input B Motor State
Low (0) Low (0) Motor OFF
High (1) Low (0) Forward
Low (0) High (1) Backward
High (1) High (1) Motor OFF

Table 5.2: Motor Direction Control

Speed Adjustment Techniques

We can change the speed by changing the Pulse Width Modulation (PWM) connected
with the high IN pin offering a full control on the output voltage in a range of (0 to 100)
of the VCC value which is usually 12V and in our case it can rotate the DC motors in
full speed and in any desired speed.

Pulse Width Modulation

PWM signals in The case of the robot manipulator all the motors positions and speed
control commands are analog values so they transferred from the micro controller to the
motor in a Pulse Width Modulation signal format.
Since most micro controllers are equipped with a digital signal generator (1 or 0) only so
it cant generate analog signals which represents the values between the 1 and 0, this issue
exists because the high prices of the Digital-to-analog converters and their considerable
area. As a cost-efficient solution we use the PWM signals.
PWM or Pulse Width Modulation is a method used to generate an analog signal using a
digital one, allowing us to control motors, valves and more, by controlling the delivered
current by switching the ON and OFF power state rapidly. The average power raises
if we keep the on state longer than the off state and the opposite. In this way we can
modify a digital signal to make a variety of average power which means a variety of values
which can be translated to speeds or positions [16].
The most important parameter of the PWM signal is the duty cycle which represents
the time we should keep the digital signal high compared to the low statue in a defined
period of time. The Arduino function analogwrite() is used to generate PWM signal of
values between 0 and 255 which represents the 0 and the 100 duty cycle.
analogWrite(PIN, 64); 25 Duty Cycle or 25 of max speed
analogWrite(PIN, 127); 50 Duty Cycle or 50 of max speed
analogWrite(PIN, 255); 100 Duty Cycle or full speed
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5.6.2 Control System Overview

The DC motor control system is to regulate the motors speed, ensuring it maintains a
specific RPM (Revolutions Per Minute) through a closed-loop control approach. This sys-
tem aims to achieve precise speed control by continuously adjusting the motor’s operation
based on feedback.

Key Components

The system comprises several key components:

• Encoder sensor: Measures motor speed by counting pulses generated by the
rotating motor shaft.

• Arduino board: Processes this data to compute RPM and runs a PID controller
to adjust motor speed.

• DRV8833 motor driver: Converts the Arduino’s PWM signals into a higher
voltage suitable for driving the motor and controls its direction.

• JGA25-370 DC motor: Driven by the DRV8833 based on Arduino signals.

• Power Supply: Provides the necessary voltage for the motor, encoder, and driver
circuitry.

Operation

The inputs to the system include the Encoder Sensor, which provides pulse data for
RPM measurement, and the Setpoint Block, which specifies the target speed. Outputs
include the PWM Signal, which controls motor speed, and the adjusted Motor Speed and
Direction, managed by the DRV8833 driver to drive the JGA25-370 DC Motor.
The control mechanism consists of a PID Controller that adjusts the PWM signal based
on the difference between the actual speed and target RPM. Then using the feedback
loop we can track the error variation for real time adjustment then the Arduino processes
this data to modify the PWM output, which is then sent to the DRV8833 motor driver.
Ensuring alignment with the target RPM and promptly correcting any deviations. The
Arduino board PWM signal is limited to 5V, meaning it can’t directly generate the
higher voltage needed to fully power the motor. Even with a full-duty cycle , the motor
driver can only apply a fraction of the total available voltage. This creates a saturation,
where the system can’t increase the motor speed beyond a certain point, even if the PID
controller demands it. As a result, the motor may not reach the desired speed, especially
at higher setpoints, leading to steady-state errors and performance limitations.
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Figure 5.2: Diagram of the Motor Speed Control System

5.6.3 Tuning and Adjusting PID Controllers

Manual iterative PID tuning of robot DC motors entails adjusting the proportional, inte-
gral, and derivative gains through empirical methods rather than relying on a mathemat-
ical model of the system. This process involves systematically varying PID parameters
and evaluating the motors response to optimize performance metrics such as stability and
responsiveness. In the absence of a precise system model, the iterative approach allows
for empirical refinement of control parameters. Previous research [20], [21] on system
identification and PID tuning provides valuable theoretical and practical insights, which
can inform and streamline the manual tuning process, facilitating more efficient achieve-
ment of desired motor performance outcomes.
In some cases, a PID controller can be simplified to a PI, PD, P, or I controller by exclud-
ing certain actions. The PI controller omits the derivative action, which can be sensitive
to measurement noise. With just Proportional and Integral gains, the focus is on balanc-
ing immediate response and long-term accuracy. To determine the optimal settings, it is
necessary to first evaluate the system’s response in an open-loop configuration, tuning the
Proportional gain (Kp) initially, and then adjusting the Integral gain (Ki). Finding the
right balance between these gains involves iterative testing to ensure the system achieves
a quick, stable and accurate performance.
The PI controller tuning is explained through the next results and graphs.

Results of Open Loop Control

In an open-loop DC motor control system using an Arduino, the inputs are the desired
speed settings and the PWM signal generated by the Arduino. The output is the motor’s
speed, which is adjusted based on the PWM signal. Since there is no feedback on the
actual motor speed, the system assumes the output will match the input settings, but it
cannot compensate for variations in load or performance [21].
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(a) Duty cycle of 13% (b) Duty cycle of 47% (c) Duty cycle of 100%

Figure 5.3: Results of the Open Loop Control System

The graphs in the Figure (5.3) represent the motor speed responses under open-loop
control for different Pulse Width Modulation (PWM) duty cycles, specifically at 13%,
47%, and 100%.

• Graph 1: PWM = 13%
The motor speed gradually increases and stabilizes around 130 RPM. As the motor
accelerates, there is a slow rise in speed, with a small irregular changes after reaching
its peak before it stabilizes. This lower final speed is attributed to the small PWM
duty cycle, where only 13% of the total possible power is applied to the motor.
Consequently, the reduced power supplied to the motor results in a lower stabilized
speed.

• Graph 2: PWM = 47%
The motor speed increases quickly and stabilizes around 500 RPM, significantly
higher than the previous case. It accelerates much faster and reaches a stable speed
with minimal fluctuations. At a moderate PWM value, the motor achieves higher
speed, and the control signal is strong enough to maintain stability.

• Graph 3: PWM = 100%
The motor speed rises rapidly and stabilizes at its maximum value of around 600
RPM. It demonstrates the fastest acceleration and highest final speed, reaching
its peak quickly and remaining stable without noticeable fluctuations. With 100%
PWM, the motor operates at full power, providing a near-instantaneous response
and high stability.

• Observations and Conclusion :
The motor speed increases in relation to the PWM percentage, with higher duty
cycles resulting in higher speeds, generally in a linear fashion in open-loop control.
After a brief period of acceleration, the motor stabilizes with minimal fluctuations.
However, open-loop control lacks adaptability to external factors like load or resis-
tance, making it less flexible than closed-loop control. Overall, while the PWM duty
cycle effectively controls motor speed, the absence of feedback means the system
cannot adjust for variations in external conditions.
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Results of Proportional Gain Tuning

(a) Kp = 0.1 (b) Kp = 0.24 (c) Kp = 0.5

Figure 5.4: Results of Kp Tuning

The provided plots in the Figure (5.4) show the motor speed response under closed-loop
control for different proportional gain values (Kp). The setpoint is 300 RPM, and we
observe how the motor reacts for different values of Kp.

• Graph 1: Kp = 0.1

The motor speed is low and stabilizes around 150 RPM, well below the 300 RPM
target. The low Kp value results in weak corrective action, causing a slow response
and a high steady-state error. The system fails to meet performance requirements.
In conclusion, Kp = 0.1 is too low to achieve the setpoint, leading to insufficient
control action and a large steady-state error.

• Graph 2: Kp = 0.24

The motor speed shows some initial overshoot but stabilizes closer to the 300 RPM
setpoint, leveling out around 225-250 RPM, which is below the target. Despite this
improvement, there is still a noticeable steady-state error, meaning the motor does
not fully reach the setpoint. This indicates that proportional control alone is not
enough to fully eliminate the error, suggesting the need for an integral term for
complete correction over time.

• Graph 3: Kp = 0.5

The motor speed accelerates quickly and overshoots the 300 RPM setpoint, reach-
ing around 600 RPM and remaining there, unable to return to the target. Where
the proportional control signal is too large, preventing the system from stabilizing
at the desired speed. The motor ultimately stabilizes at a much higher speed than
intended, indicating instability caused by excessive proportional gain. In conclu-
sion, a Kp = 0.5 is too large for this system, leading to overshoot and saturation of
the control signal.

• Observations and Conclusion :
At Kp = 0.1, the system is stable but too slow and unable to reach the setpoint,
resulting in a large steady-state error. With Kp = 0.24, the motor speed approaches
the setpoint but still shows a steady-state error, indicating the need for an integral
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term to fully correct it. At Kp = 0.5, the system overshoots significantly and
becomes unstable. As a conclusion The low Kp results in slow performance, medium
Kp improves response but requires further correction, and high Kp causes instability
due to excessive control effort.

Results of Integral Gain Tuning

(a) Ki = 0.01 (b) Ki = 1.2 (c) Ki = 1.3

Figure 5.5: Results of Ki Tuning

The results of the Figure (5.5) are from the three motor speed responses with varying
integral gain (Ki) show how changes in Ki affect the system’s ability to maintain the
motor’s speed close to the 300 RPM setpoint and enhances accuracy but it must be
balanced to avoid instability.

• Graph 1: Kp = 0.24, Ki = 0.01

After the initial spike, the motor speed stabilizes around 225-250 RPM, below
the desired 300 RPM, indicating a steady-state error. The small integral gain
(Ki = 0.01) is insufficient to correct this error over time. Although the system is
relatively stable with low oscillation amplitude, it remains inaccurate and unable
to reach the setpoint, showing that the low Ki fails to eliminate the steady-state
error.

• Graph 2: Kp = 0.24, Ki = 1.2

With Ki = 1.2, the steady-state error is significantly reduced, and the motor speed
oscillates closely around the 300 RPM setpoint. There is a slight initial overshoot
to around 330 RPM, but the system quickly compensates and stabilizes near the
target. While small oscillations indicate minor instability, the system performs well
overall, reaching the setpoint with minimal error.

• Graph 3: Kp = 0.24, Ki = 1.3

With Ki = 1.3, the motor speed far exceeds the 300 RPM setpoint, stabilizing
around 600 RPM, indicating saturation. The controller overcompensates, leading
to excessive motor speeds and an inability to bring the speed back to the setpoint.
This demonstrates that Ki = 1.3 is too high, causing significant overshoot and
saturation.
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• Observations and Conclusion :
The key observations show that with low Ki = 0.01, the system is stable but has a
large steady-state error, keeping the motor speed below the setpoint. At moderate
Ki = 1.2, the system performs best, minimizing the steady-state error with only
slight oscillations near the setpoint. However, with high Ki = 1.3, the system
saturates, causing the motor speed to overshoot and stabilize far above the target.
In conclusion, tuning Ki is crucial for balancing steady-state error and stability,
with Ki = 1.2 offering optimal performance by minimizing error without causing
instability or overshoot.

5.6.4 PID Control Challenges and Solutions

During our robotics project, we faced challenges with PID control, including issues like
windup saturation, varying motor gains, and sliding on different surfaces. We imple-
mented several solutions to address these problems and improve the robots performance.

Windup Saturation

Problem: Windup saturation occurs when the integral term of the PID controller accu-
mulates excessive error during periods when the motor is overloaded or stuck, leading to
a situation where the controllers output becomes saturated. This often happens when the
motor experiences uneven loading, with one side bearing more load than the other, caus-
ing the robot to be stuck or behave erratically. Additionally, startup errors can compound
this issue by introducing additional errors into the system right from the beginning.
Solution: To mitigate windup saturation, the integral term of the PID controller is
conditioned. This involves:

• Conditioning the Integral Term: Initiate the integral term only after a certain
period or threshold, preventing it from building up excessively at startup.

• Limiting the Integral Term: Cap the integral term to a maximum value to
avoid saturation.

• Error Reset: Reset the error term when transitioning between different control
loops (e.g., when shifting from regulating the position to the yaw angle). This
prevents the accumulation of errors that are irrelevant to the current control loop.

Variation in Motor Gains

Problem: Variations in motor characteristics and weight distribution can cause discrep-
ancies in the effective gains of the PID controller across different motors. This challenge
is exacerbated by differences in motor design and the distribution of the robots weight
among the four motors.
Solution: To address this issue:
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• Unified PID Settings: Find a set of PID gains that work reasonably well across
all motors, even if they are not the optimal configuration for each individual motor.
This ensures that the robot maintains consistent performance despite the variations
in motor characteristics.

Surface Changes and Sliding

Problem: Different surfaces can cause the robot to slide, impacting its stability and
control. This variation in traction necessitates testing on a variety of grounds to under-
stand how surface changes affect the robot’s performance.
Solution: To improve performance on varying surfaces:

• Anti-Slide Mecanum Wheels: Replace the 3D printed mecanum wheels with
anti-slide versions. These wheels are designed to provide better traction and reduce
the impact of surface variations on the robots movement.

• Gain Optimization: Recalibrate PID gains specifically for the new anti-slide
wheels to ensure optimal performance on different surfaces.

5.6.5 Conclusion

In conclusion, the motor control system successfully regulates speed with the tuned PID
parameters of Kp = 0.24 and Ki = 1.2. These settings provide balanced responsiveness
and error correction, ensuring the motor maintains the desired speed effectively despite
the Arduino’s PWM limitations and potential saturation at higher setpoints.

5.7 Yaw Angle Control

5.7.1 Yaw Angle Control in Mecanum-Wheeled Robots

Mecanum wheel robots are versatile machines that can move in any directionforward,
backward, sideways, and diagonally. To achieve precise movement and stability, it’s
crucial to control the robot’s yaw angle. The yaw angle measures how much the robot is
rotating around its vertical axis. Properly managing the yaw angle ensures the robot can
turn smoothly and stay on course. This chapter explains the importance of yaw angle
control, how it works, and how it enhances the robots performance in various situations.

What is Yaw Angle and Why Is It Important?

The yaw angle represents the robot’s orientation around its vertical axis. It is mea-
sured in degrees and indicates how much the robot is turning. Controlling the yaw angle
is essential for making accurate turns, aligning with targets, and preventing unwanted
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drifting. When yaw angle is well-controlled, the robot can execute precise movements,
such as turning in place or navigating tight spaces, without losing balance or direction.
Without proper control of the yaw angle, the robot may experience wobbling or drifting,
making it difficult to follow a precise path. This control is particularly important in ap-
plications like warehouses or hospitals, where the robot must move accurately in confined
or busy areas.

How Yaw Angle Control Works

To control the yaw angle, the robot uses feedback from sensors such as gyroscopes or IMUs
(Inertial Measurement Units). These sensors measure the current yaw angle and compare
it to the desired yaw angle [22]. If there is a discrepancy, the robots PID controller adjusts
the speeds of the mecanum wheels to correct the difference. The wheels are adjusted in
coordination to create the right rotational force.

Benefits of Yaw Angle Control

Controlling the yaw angle provides several advantages that enhance the robot’s overall
performance:

• Precise Turns: The robot can make exact turns or spin in place without losing
accuracy.

• Stable Navigation: It helps prevent wobbling or drifting, especially during com-
plex movements.

• Handling Obstacles: When encountering uneven surfaces or obstacles, yaw angle
control helps the robot stay on course and adjust its orientation.

• Quick and Smooth Movements: The robot can change directions quickly and
smoothly, which is crucial in fast-paced environments like automated warehouses.

Resistance to Perturbations

Robots often encounter external forces, such as bumps or obstacles, that can affect their
movement. Yaw angle control helps the robot detect these changes and adjust its wheel
speeds to correct its orientation. This self-correction makes the robot more reliable in
dynamic environments, allowing it to maintain stability even when facing unexpected
disturbances.

5.7.2 Implementation

The asservissement system features two regulation loops designed for precise control of the
robot’s movement and orientation. The first loop, involving an Arduino and MPU6050
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IMU, regulates the robot’s angular position. The input for this loop is the desired angular
position, and the output is the angular velocity needed to achieve that position. The
second loop uses motor speed encoders to monitor and adjust the actual speed of the
motors [23]. Here, the desired motor speed is the input, and the output is the measured
motor speed. Together, these loops ensure the robot accurately follows its intended path
and maintains stable movement by adjusting motor speeds based on both position and
speed feedback.

Figure 5.6: Yaw Angle Regulation System

5.7.3 MPU6050 Setup for Yaw Rate Measurement

Initialization: Configure the MPU6050 to measure yaw rate. The gyroscope in the
MPU6050 outputs raw data representing rotational rates around the X, Y, and Z axes.
For yaw rate control, focus on the Z-axis data.
Data Conversion: Convert the raw gyroscope data to angular velocity. The MPU6050s
sensitivity setting is configured via the GYRO_CONFIG register, with values of ś250,
ś500, ś1000, or ś2000 degrees per second (dps). The conversion formula is:

Angular Velocity (dps) = Raw Gyro Value
Sensitivity Scale Factor

For example, with a sensitivity scale factor of 131 for ś250 dps and a raw Z-axis value of
2048:

Yaw Rate (dps) = 2048

131
≈ 15.6 dps

5.7.4 Yaw Rate Calculation and Integration

Yaw Rate Measurement: Extract yaw rate data from the MPU6050.
Yaw Angle Integration: To compute the yaw angle from the yaw rate, integrate the
yaw rate over time. The formula for updating the yaw angle is:

Yaw Anglenew = Yaw Angleold + Yaw Rate ×∆t
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Where:

• Yaw Anglenew is the updated yaw angle.

• Yaw Angleold is the previous yaw angle.

• Yaw Rate is the current measured yaw rate.

• ∆t is the time interval between measurements.

5.7.5 Calibration and Filtering

Calibration: To correct for biases in the gyroscope readings, calibrate the sensor by
averaging the raw data when the sensor is stationary and subtracting this average from
future readings. This offsets any inherent biases in the gyroscope data.
Filtering: Apply filtering techniques to enhance the accuracy of the yaw angle calcula-
tion. Filters like the Kalman filter reducing noise and improving the robustness of yaw
angle estimation.
In our study, we used two filters for processing MPU6050 data:
The Complementary Filter combines accelerometer and gyroscope data to provide a sta-
ble and accurate estimate of angular position, minimizing drift over time [24].
The Weighted Moving Average (WMA) calculates the average of past values by applying
specific weights to each value. These weights, which are manually set, determine the
relative importance of each value in the average calculation. Typically, the sum of the
weights equals 1 to ensure a proper average. To compute the WMA for n periods, where
xt represents the value at time t and wt is the weight assigned to that value, using the
formula:

WMA =
w1 · x1 + w2 · x2 + · · ·+ wn · xn

w1 + w2 + · · ·+ wn

The key characteristics of WMA include its customizability, as you can adjust the weights
to prioritize certain values over others.

5.7.6 PI Controller

The PI controller adjusts motor speeds to maintain the desired yaw rate by using two
components: the Proportional Term (P), which corrects the error based on the difference
between desired and actual yaw rates, and the Integral Term (I), which addresses cumula-
tive errors over time. By adding the derivative term the system had reacted aggressively
to This involves calculating the yaw error, using it to compute the control output, and
adjusting the PWM signals to the DRV8833 motor driver. Encoder feedback further re-
fines control by measuring actual motor speeds and adjusting PWM signals accordingly
to ensure precise movement and stability.

74



5.7.7 Results of Yaw Angle Control

Figure 5.7: Evaluation of Yaw Angle Correction Results

In The set of graphs shown in the Figure (5.7), we observe the behavior of a closed-
loop control system applied to a robot’s yaw angle and the response of the motors to a
perturbation. Here’s an interpretation of the results, knowing that the goal is to correct
the yaw angle and maintain stability:

• Top Graph: Angle X vs. Time
The yaw angle starts at 0 radians, showing initial stability, but a perturbation at
t = 1 × 106 causes it to drop to nearly -1 radians, indicating a leftward rotation.
The controller begins correcting at t = 2 × 106, gradually bringing the angle back
toward 0 radians, but it stabilizes just below 0 due to a threshold where the control
regulation becomes inactive. In conclusion, the control system responds to the
perturbation and successfully correct the yaw angle as we need. The angle does not
go back to 0 because we pre-set an active interval for the control loop and a dead
zone to not over correct.

• Middle Graph: Motor 1 Speed vs. Time
Motor 1 remains inactive except some tries caused by the proportional term until
t = 2× 106, when the integral term in the closed-loop controller activates, causing
the motor speed to rise to around 40 RPM before decreasing back to 0. This increase
in speed reflects the integral term’s accumulation of error over time, driving the
corrective effort to address the yaw angle error. As the error reduces, the motor
speed decreases, demonstrating the integral term’s effect in the control loop.

• Bottom Graph: Motor 2 Speed vs. Time
Motor 2, like Motor 1, shows no initial activity but responds inversely due to the
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differential drive system. At t = 2× 106, its speed becomes negative, reaching -20
RPM. Motor 2 slows down to help correct the yaw error, and after some oscillation,
its speed returns to zero as the yaw angle stabilizes. In conclusion, Motor 2 acts
in the opposite direction to Motor 1, adjusting its speed to assist in correcting the
yaw angle and gradually returning to zero as the error is minimized.

• General Interpretation
The closed-loop control system effectively detects and corrects the yaw angle per-
turbation, although it doesn’t bring the angle completely back to 0 radians, due
to the control dead zone. Motor 1 speeds up to correct the yaw, while Motor 2 do
the same reaction in the backwards direction. The increase in motor speeds shows
the activation of the integral term, which helps reduce steady-state error. After the
correction, the system stabilizes the yaw angle within a small margin, and motor
speeds return to zero, indicating the control effort has ceased.

5.7.8 Managing Interference Between Yaw Angle and Motor
Speed Loops

In the current control system, both the yaw angle regulation loop and the motor speed
loop can interfere with each other if they operate simultaneously. When the yaw angle
loop adjusts the motor speeds to correct the robots orientation, it can unintentionally
conflict with the motor speed control, which tries to compensate for these changes as a
disturbance. This interaction can cause the robot to continue moving, prompting further
reactions from the yaw angle loop and creating a feedback cycle that disrupts the robots
trajectory.
To address this, separated regulation has been chosen for cases involving large angular
adjustments, where the yaw angle correction can have a significant impact on the tra-
jectory. For small angular deviations, combined regulation is used, where the yaw angle
loop introduces new setpoints to the motor speed control. However, when this combined
regulation is applied to high-angle corrections, it can sometimes lead to abrupt changes in
direction, which may destabilize the robot and disturb its movement. Therefore, careful
tuning is required to maintain stability, especially during high-angle regulation.

5.8 Robot Position Control

Robot position control is essential for ensuring precise and accurate movement in auto-
mated systems. It allows a robot to reach its desired location while compensating for
errors caused by factors like external disturbances or system dynamics. The primary
purpose of position control is to maintain stability, avoid overshoot, and accurately guide
the robot along its intended path [25] [26]. This is especially important in tasks requiring
high precision, such as automated assembly, navigation in crowded spaces, or handling
delicate objects, where precise positioning directly affects performance and efficiency.
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Figure 5.8: Structure of the Position Control System

5.8.1 Position Control Using a PD Controller

The PD controller controls the robot’s position by calculating the velocity needed to reach
the target, based on the position error (the difference between the current and desired
positions). The derivative term stabilizes the robot’s motion by reducing overshoot and
preventing oscillations, reacting to the rate of change in the position error to ensure
smooth movement. The output of the PD controller is the desired velocity, which serves
as the input for the speed control loop.

5.8.2 Why PD Control is Used in Robotics

In robotics, PD control is commonly preferred over PID control, especially for position
control, for several reasons:

Preventing Overshoot and Instability

The integral term accumulates past errors, potentially leading to aggressive corrections
that cause overshoot and instability, which is undesirable for precision in robotic move-
ments.

Handling Dynamic Set-points

Robots often have continuously changing target positions. PD control allows for quick
reactions to these changes, while the integral term, which focuses on eliminating small
steady-state errors, becomes less important when speed and responsiveness are prioritized.

Small Steady-State Error Without I Term

With highly accurate kinematic models, robots often exhibit minimal steady-state errors
without the need for the integral term. The derivative term smooths the approach to the
target, reducing error effectively.
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Faster Response

The integral term can slow down the system by focusing on minor, long-term errors. In
robotics, quick and accurate responses are more critical than eliminating small residual
errors, making PD control more suitable.

Simpler Tuning

PD control is easier to tune than PID because the I term adds complexity and sensitivity,
which can lead to instability. By omitting the integral term, tuning becomes simpler, and
the system is more robust.

Natural Stabilization Due to Friction

In many robots, mechanical friction in joints or wheels naturally reduces small errors.
This makes the I term unnecessary, as the system tends to stabilize on its own.

In conclusion, PD control offers a faster, simpler, and more stable solution for posi-
tion control in robots, making it a better fit for most robotic applications where speed
and precision are key.

5.8.3 Speed Control Using Velocity Feedback

Once the desired robot velocity is computed by the PD controller, it is sent to the speed
control loop. Here, the desired robot speed is compared against the actual speed of
the robot, which is measured using sensors or encoders on the wheels or motors. The
difference between the desired speed (from the PD controller) and the actual speed (from
encoders) is calculated, and this speed error is used to adjust the motor speeds to ensure
the robot moves at the correct velocity.

5.8.4 Inverse Kinematics for Motor Speed Calculation

The robot have multiple wheels and actuators, it is necessary to convert the desired robot
velocity into individual motor velocities. This is done through inverse kinematics, which
takes into account the robot’s configuration (e.g., differential drive, omnidirectional, etc.)
and calculates the appropriate speeds for each motor.

5.8.5 Motor Speed Setpoints and Regulation Loop

The motor velocity commands calculated by the inverse kinematics are sent to the motor
control loop, where each motor’s speed is regulated. The motor controllers typically use
a low-level PID loop to regulate motor speed, ensuring that each motor reaches and
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maintains its desired setpoint velocity. This motor speed regulation loop adjusts the
voltage or current supplied to the motors to precisely control their rotation.

5.8.6 Forward Kinematics for Robot Velocity Calculation

As the motors spin, their actual speeds are measured and converted back into the robot’s
overall velocity using forward kinematics. This process transform the individual motor
speeds into the actual linear and angular velocities of the robot. The forward kinematics
calculation considers the geometry of the robot (e.g., wheel radius, wheel separation, etc.)
to compute the true velocity of the robot based on the motor speeds.
The actual robot velocity calculated from forward kinematics is then used in two critical
ways:

• Speed Feedback for Speed Control: This velocity is compared to the desired
velocity (from the PD controller) in the speed control loop to continuously adjust
the motor speeds.

• Position Feedback for Position Control: At the same time, the robot’s velocity
is integrated over time to calculate the robot’s position. By summing the velocity
over small time intervals, the robot’s position is continuously updated. This position
feedback is then sent back to the PD controller, completing the control loop.

5.8.7 Position Integration and Closing the Loop

The robots actual position, obtained by integrating the velocity, is fed back to the PD
position controller, where it is compared against the desired position. The difference
between the actual position and the desired position generates a new position error, and
the PD controller updates its output accordingly. This process is repeated continuously,
forming a closed-loop system that ensures the robot maintains accurate control over its
position.

5.8.8 Results of the Controller

We conducted a simulation to explore and test all possible scenarios, ensuring a thorough
evaluation of the controller’s reliability. This approach allowed us to analyze the sys-
tem’s performance under various conditions. The details of these simulations and their
outcomes are extensively explained in the masters thesis, After conducting several itera-
tive tests, we identified that the suitable values for the PD controller gains are Kp = 1
and Kd = 2. These gains were found to produce the desired system behavior, allowing the
controller to effectively compute the necessary velocity for reaching the target position
while maintaining stable control over the robot’s movement. and these are the results:
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Position Control Without Perturbation

(a) Position Variation (b) Speed Variation

Figure 5.9: Results of Position and Speed Variation Without Perturbation

These graphs represent in the Figure (5.9) are the simulation of a mobile robot equipped
with mecanum wheels under position control, with the system being analyzed using a
Proportional-Derivative (PD) controller. Below, we interpret each set of graphs and
discuss how the PD controller influences system performance.

• First Graph: Position Control (X, Y, θ)

– X (Blue curve): The robots movement in the X direction shows a smooth
rise, stabilizing around 10m. The curve follows a classic first-order system
behavior with no significant oscillations, indicating the robot smoothly ap-
proaches its target position in the X direction.

– Y (Orange curve): The movement in the Y direction stabilizes around 5m,
following a stable path but at a slower rate than the X direction.

– θ (Green curve): The Z-axis (which might represent orientation or height)
rises to about 3.14rad and stabilizes, indicating that the robot achieves the
required Z-axis position or angle change.

Interpretation: The overall system behavior shows a stable response in each axis.
The lack of overshoot or oscillations in the X, Y, and θ directions indicates that the
PD controller is well-tuned, avoiding excessive overshoot while ensuring the robot
reaches its target. The rise times for X, Y, and θ differ, showing the robot takes
varying amounts of time to stabilize in each direction.

• Second Graph: Speed Control (Vx, Vy, W)

– Vx (Blue curve): The linear velocity in the X direction starts high, peaking
around 1.4 units, and then decays exponentially as the robot approaches the
target position. This indicates that the robot starts fast and gradually reduces
its speed as it nears the target.

– Vy (Orange curve): The Y velocity peaks later than the X velocity, indi-
cating the robot takes more time to initiate significant movement in the Y
direction. The velocity decreases similarly to Vx but with a delay and smaller
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amplitude and this is because the high value of X setpoint compared to the
Y.

– W (Yellow curve): The angular velocity peaks sharply before quickly set-
tling to 0. This initial peak suggests the robot is correcting its orientation as
it aligns to the desired direction during movement.

Interpretation: The speed control graph shows the PD controller adjusting ve-
locity based on positional error. The robot starts with high speed to correct larger
errors and gradually slows down as it nears the desired position.

• Conclusion
The PD controller appears well-tuned for the system, achieving smooth stabilization
without overshoot or oscillations. The rise times are appropriate, though slightly
slower in the Y and θ directions, due the different set points. The position and
velocity control graphs show that the PD controller provides stable and effective
control over the robot’s movement in all directions. The robot accelerates to correct
the error and decelerates smoothly as it approaches the target. . Overall, the PD
controller ensures the robot reaches its target position without overshoot, delivering
smooth control.

Position Control with Speed Perturbations

(a) Position Variation (b) Speed Variation

Figure 5.10: Results of Position and Speed Variation With Perturbation

The provided graphs in the Figure (5.10) represent the position and speed control of
a robot, with perturbations affecting the motor speed output during the control loop.
Below is an interpretation of the graphs and key observations:

• Position Control (First Graph) X, Y, and θ: The first graph shows the robots
position in the X and Y axes, along with its orientation θ.

– The X and Y values demonstrate that the robot is successfully moving towards
its target, with both position variables rising smoothly at first.

– Theta increases at a slower rate, reflecting a slower angular change compared to
the linear movements. This is consistent with how the robot moves, adjusting
orientation as it approaches its target.
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– However, as the system faces a speed perturbation, the X values experience
slight oscillations. These are caused by disturbances in the motor speed, show-
ing how external factors affect position accuracy.

• Speed Control (Second Graph)
The second graph plots the velocity of the robot in the X (Vx), Y (Vy), and angular
velocity(W).

– Initially, all velocities experience a peak, indicating the robot is accelerating
towards the target. This is followed by a gradual deceleration as the robot
approaches the setpoint.

– Vx shows significant oscillations after around 5 seconds, indicating that motor
speeds are being disrupted by perturbations in the control loop, due to external
disturbances.

– Vy and W also experience some small irregular changes, but these are less
pronounced than the oscillations seen in Vx. The angular velocity (W) sta-
bilizes quickly, indicating that the robots rotational speed is less impacted by
the perturbation compared to its linear velocity in the X direction.

• Observations and Conclusion
The control system initially performs well, with smooth position and speed behavior
in the first 5 seconds, indicating proper functioning in the absence of disturbances.
However, after this phase, the system experiences motor speed oscillations, partic-
ularly in the forward (Vx) direction, due to a perturbation and it is appeared only
in the X axis because of the robot model where the perturbations get canceled in
between because of the negative signs in the Vy and Wz equations as it shows in
the following equations:

Vx =
r

4
(ẇFL + ẇFR + ẇRL + ẇRR) (5.5)

Vy =
r

4
(−ẇFL + ẇFR − ẇRL + ẇRR) (5.6)

ωz =
r

4(L+W )
(−ẇFL + ẇFR + ẇRL − ẇRR) (5.7)

– Vx is the linear velocity in the x-direction.

– Vy is the linear velocity in the y-direction.

– ωz is the angular velocity about the z-axis.

– r is the radius of the wheels.

– L and W are the length and width of the robot.

– ẇFL, ẇFR, ẇRL, ẇRR are the rotational velocities.
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These oscillations cause minor fluctuations in the X, showing that the system’s
speed control struggles to compensate for the disturbance. The forward motion of
the robot appears more sensitive to speed variations than its lateral or rotational
movements.

Position Control with Speed Feedback Perturbations

(a) Position Variation (b) Speed Variation

Figure 5.11: Results of Position and Speed Variation with Feedback Perturbation

The graphs provided in the Figure (5.11) show the position and speed feedback during
the robot’s position control, with the control loop encountering a perturbation affecting
the speed feedback. Below is an interpretation of the results:

• Position Control (First Graph)
The position control graph displays the robot’s X, Y, and θ as it follows the desired
trajectory. The X, Y, and θ values rise steadily before stabilizing, but small os-
cillations appear after approximately 10 seconds. These oscillations indicate that,
while the robot is reaching the target positions, the control system is experiencing
minor disturbances.

• velocity Control (Second Graph)
The speed feedback graph shows the robot’s velocity in the X, Y, and angular
directions (Vx, Vy, and W) as it responds to the control loop. They display a
significant oscillations, particularly after the first few seconds, indicating that the
feedback system is struggling to maintain stable velocities, due to perturbations in
the control loop. Suggesting that the control system is less effective in managing
noises or disturbances in the feedback loop.

• Observations and Conclusion
The system is achieving the desired position and orientation, but it struggles with
instability and oscillations due to feedback disturbances. These perturbations, par-
ticularly in the speed feedback (Vy and angular velocity W), affect the robot’s
overall control performance.
While the robot reaches its target positions (X, Y, and Theta), the small oscilla-
tions indicate that the position control is not fully robust. Further tuning of the
PD controller or speed control loop, as well as improvements in feedback filtering,
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could help reduce these oscillations and improve both position and speed control
stability.

5.8.9 Conclusion

As a result, the robot position control system effectively stabilizes the robot’s motion and
ensures precise movement toward the target. By continuously adjusting for the rate at
which the robot approaches its destination, the system minimizes overshoot and prevents
oscillations, leading to smoother deceleration near the target. This approach enhances
both positioning accuracy and overall stability, making the system more efficient and
reliable in dynamic environments.

5.9 Servo Motor Regulation in Robotic Manipula-
tors

Servo motors play a crucial role in robotics, particularly for applications demanding
precise control over position, speed, and torque. The MG996R servo motor, with its
superior torque, speed, and precision compared to the MG90, is highly favored for tasks
involving robotic arms. Its capability to handle heavier loads and deliver accurate control
makes it ideal for high-performance tasks. In contrast, the MG90, while smaller and
lighter, lacks the torque and precision required for advanced projects, often making it
less suitable for demanding applications. Achieving smooth and precise movements is
vital for enhancing system efficiency and accuracy in robotic arms.

5.9.1 MG996R Servo Motor Identification

Modeling the MG996R Servo Motor Mathematically

Modeling the MG996R servo motor involves understanding its dynamics and response to
control inputs. And these are the steps we followed to identify the MG996R servo motor.

1. Define the System

• Inputs: PWM signal (control input), typically ranging from 500ţs to 2500ţs.

• Outputs: Angular position of the servo motor.

2. Collect Data

• Input Data: Record the PWM pulse widths sent to the servo.

• Output Data: Measure the resulting angular positions of the servo at various
time intervals.
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3. Choose a Model Structure

• Linear Time-Invariant (LTI) Models: Suitable for simplicity, especially
if the servo operates within its linear range.

• Nonlinear Models: Consider if the servo exhibits nonlinear behavior at
certain control inputs or conditions.

4. Linear Model Identification

• Transfer Function Model
1. Determine Transfer Function Form:

G(s) =
K

Ts+ 1
(5.8)

where K is the steady-state gain and T is the time constant.
2. Estimate Parameters:

– Steady-State Gain (K): Measure the angular position for a con-
stant PWM input. K is the ratio of the change in angle to the change
in PWM input.

– Time Constant (T): Analyze the response time of the servo to a
step input to estimate how quickly the servo reaches its new position.

3. Fit the Model:
– Use methods such as least squares to fit the estimated transfer func-

tion parameters to the experimental data.

Read, Write, and Analyze Data from Arduino

MATLAB support package for Arduino lets you write MATLAB programs that read and
write data to your Arduino and access connected devices such as motors, LEDs, and
I2C devices. Because MATLAB is a high-level interpreted language, prototyping and
refining algorithms, and you can see results from I/O instructions immediately, without
recompiling. MATLAB includes thousands of built-in math, engineering, and plotting
functions that you can use for your Arduino programming [27].

Figure 5.12: Connecting MATLAB to Arduino

• Interactively read and write sensor data without having to wait for code compila-
tion.
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• Develop and analyze algorithms using thousands of pre-built functions for signal
processing, machine learning, mathematical modeling, and more.

• Rapidly visualize your data with MATLAB’s extensive range of plotting options.

Results of Identification

We have used the MATLAB support package for Arduino to read the inputs signals and
the angular position of the servo motor provided by the modified servo motor and in the
following Figure (5.13) we can see Simulink blocks used in this process then in the Figure
(5.14) we can see the resulting signal.

Figure 5.13: MATLAB Blocks for Reading and Filtering Servo Position

(a) Before Filtering (b) After Filtering

Figure 5.14: Evaluation of Servo Motor Step Response

• Filtration
The provided graphs in the Figure (5.14) show the behavior of a servo motor subject
to noise and then the filtered result after applying a filter. Lets analyze the details
of each scenario and draw conclusions.

– The First Graph (Servo Motor with Noise)
The servo motor starts at 90 degrees, with the feedback signal initially stable.
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It is then commanded to move to 0 degrees, causing a sharp drop in the
command signal, during which the feedback shows some oscillations and noise
before eventually reaching the 0-degree position. At time t = 0, the servo
is commanded to move to 180 degrees, noise causes fluctuations during the
movement. The servo ultimately reaches close to 180 degrees but with a small
steady-state error of 1-2 degrees. Noise is evident throughout the movement,
particularly during transitions and even after the system stabilizes.

– After Applying a Filter (Second Graph)
The filtered feedback signal greatly reduces noise, making the servo’s move-
ment smoother and more stable. Transitions between positions, like from 90
to 0 degrees and 0 to 180 degrees, are much cleaner, with fewer disturbances.
While there’s still a small steady-state error of 1-2 degrees at 180 degrees, it’s
more noticeable now that the noise is reduced. The filter may have slightly
slowed the feedback, but the servo still responds well to commands and reaches
the target positions with minimal issues.

– Observations and Conclusion
Before filtering, the servo motor experienced significant noise, especially dur-
ing position transitions, leading to fluctuations in the feedback signal that
impacted precision. After applying the filter, the noise was greatly reduced,
resulting in smoother motion and more accurate feedback. However, a small
steady-state error of 1-2 degrees remained, likely due to servo controller lim-
itations, the remaining error suggests that further control changements may
be needed to fully address this issue.

Figure 5.15: Results of the Strecj Identification Method
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• The Strecj identification method results
The graph in the Figure (5.15) shows the step response of a system (blue line) and
its corresponding identified model (red line). The purpose of system identification
is to create a mathematical model (the red curve) that closely mimics the behavior
of the real system (the blue curve) in response to an input, in this case, a step
input. In the case of our study the resulting system transfer function from the
identification is :

g2(s) =
180 · e−0.15s

(1 + 0.167s)3

The blue curve rise smoothly and stabilize at 180 degrees in about 1.3 seconds
without overshoot or oscillations, indicating stability. The red curve, showing the
identified model’s response, closely follows the system’s behavior but with a slightly
faster rise time at the start. This initial discrepancy suggests the model overesti-
mates the system’s speed early on, though both curves eventually converge at the
same target value, showing that the model accurately captures the steady-state
behavior. Overall, the model provides a good fit, though it may need refinement to
better match the early dynamics.

Figure 5.16: Results of the Broida Identification Method

• The Broida identification method results
This graph shown in the Figure (5.16) represents the step response of a system
identified using the Broida method, which is a system identification technique used
to approximate the transfer function of a system based on its step response. In this
case, the system is likely approximated using a first-order model with a time delay.
In the case of our study the resulting system transfer function from the identification
is :

H(s) =
180 · e−0.15s

0.5s+ 1

The system’s step response rises smoothly from 0 to the final value of 180 units

88



without overshoot or oscillations, indicating a stable first-order system. The min-
imal time delay suggests the system responds immediately, with a time constant
of around 1.2 seconds, reaching 63% of the final value by that point. The system
converges to the expected steady-state value of 180 units, confirming that the iden-
tified model accurately reflects the systems behavior. The absence of oscillations
reinforces that the Broida method provides a good approximation of a first-order
system, with minimal dead time and predictable, smooth response characteristics.

5.9.2 Challenges in Speed Control

The MG996R is primarily designed for position control, which can limit its effectiveness
in precise speed regulation. Without modifications or external control, it may struggle
to maintain consistent speeds, particularly in applications that demand slow, steady
movements.
For these reasons we chose to implement a PID controller [28] and it’s gain are tuned
according to the identified model based on the strecj method.

Figure 5.17: Implementation of PID Control on the Servo Motor

The provided graph in the Figure (5.17) depicts the performance of a servo motor con-
trolled by an external PID controller, featuring three distinct lines.

• The consigne (blue line) represents the target or desired position for the servo motor,
set at approximately 180 degrees and held constant throughout the operation.

• The feedback filter (orange line) shows the motors actual response under PID con-
trol. Initially, the motor moves quickly toward the target, demonstrating improved
speed and stability. However, after a period of oscillation, the feedback stabilizes
below the setpoint, indicating the presence of a steady-state error.

• The error (yellow line) visualizes the difference between the target and actual posi-
tion. The error initially spikes as the motor adjusts but fails to reach zero, showing
that the steady-state error persists.
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The system shows improved stability and speed with the PID controller, as the feedback
signal settles without further oscillations and responds quickly to changes. However,
a significant steady-state error persists, meaning the feedback does not fully reach the
desired setpoint of 180 degrees. While the controller enhances speed and stability, this
steady-state error is problematic for precision applications, indicating the need for further
tuning of the PID gains, especially the integral component, to improve accuracy.

5.9.3 PID Control for Servo Motor Speed

The MG996R servo motor features an internal control system that uses a proportional
(P) controller. This controller continuously compares the servo’s current position, as
measured by a feedback potentiometer, with the target position set by the input PWM
signal. It adjusts the motor’s power output to reduce the error, which is the difference
between the actual and desired positions. This straightforward control approach is effec-
tive for most standard positional control applications.
If an external PID (Proportional-Integral-Derivative) controller is added to the system, it
introduces additional layers of control, creating a dual control loop, where both systems
may try to adjust the position simultaneously. For example:

• The external P controller might try to correct the position, while the internal
P controller is already doing the same. This can lead to overcorrection or even
oscillations if the gains of both controllers are not properly tuned.

• The external D term could conflict with the internal P controllers response, as the
derivative component anticipates future changes in error, possibly destabilizing the
servos already tuned internal loop.

• The external I term might accumulate error corrections, which the internal P con-
troller cannot account for, potentially causing sluggish response or oscillations.

The interaction between an external PID controller and the internal P controller of the
servo requires careful calibration. If both controllers are not properly tuned to work in
harmony, it may result in slower response times, increased oscillations, or even instabil-
ity in the servos performance. To avoid these issues, the external PID controller should
complement the internal P controller by addressing its limitations, such as accommodat-
ing longer time constants or providing finer precision, rather than merely duplicating its
efforts and potentially causing conflicting adjustments.

5.9.4 Discretizing Cubic Trajectories for Speed Control

Polynomial Trajectory Control

Since PID gains values didn’t fit the system we have to find an optimal gains which work
in complementary with the servo motor control, this process could be time consuming for
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these reasons we chose another control logic named the Cubic Trajectory Discretization
for Speed Control [29].
Using cubic polynomial trajectories allows for smooth and continuous motion by inter-
polating between positions over time. This method is particularly beneficial in robotic
arms, where smooth acceleration and deceleration prevent abrupt movements and im-
prove system efficiency.

Cubic Polynomial Equation

The cubic polynomial trajectory equation is as follows:

θ(t) = a0 + a1t+ a2t
2 + a3t

3

Where:

• θ(t) represents the motor position at time t,

• a0, a1, a2, a3 are coefficients determined by initial and final conditions (positions,
velocities, and accelerations).

Trajectory Discretization

By breaking the trajectory into discrete intervals, the motor follows a smooth and consis-
tent path. This ensures steady control of speed and position, avoiding sudden movements,
and providing precise motion throughout the entire operation.

Implementing the Polynomial Trajectory for Robotic Arms

• Choosing Final Time and Step Sizes
Final time and step sizes are essential for smooth motion. The final time affects
movement speed, while step size determines trajectory discreteness and motion
smoothness.

• Ensuring Smooth Transitions
Cubic polynomial control ensures gradual acceleration and deceleration, preventing
sudden speed changes that could damage the motor.

• Simulation and Real-World Implementation
Simulate cubic trajectory control to validate its effectiveness before real-world appli-
cation, ensuring smooth and precise movement for robotic arms using the MG996R.
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Chapter 6

Camera Vision

Camera vision, also known as computer vision, is a field of artificial intelligence that en-
ables machines to interpret and make decisions based on visual data from the real world.
It encompasses various processes, including image acquisition, preprocessing, feature ex-
traction, and interpretation. The ultimate goal is to replicate the capabilities of human
vision, allowing machines to understand scenes, recognize objects, and make decisions
based on visual input.

Applications

• Autonomous Vehicles: Computer vision is essential in self-driving cars for object
detection, lane detection, and traffic sign recognition.

• Robotics: In robotics, vision systems enable robots to navigate, recognize objects,
and interact with their environment.

• Medical Imaging: Vision techniques are used to analyze medical images for di-
agnostics, such as detecting tumors in MRI scans.

• Surveillance: Camera vision systems are widely used for monitoring and security
purposes, such as face recognition in CCTV footage.

Challenges

• Variability in Lighting: Changes in lighting conditions can drastically affect
image quality and, consequently, the performance of vision algorithms.

• Object Occlusion: Objects in a scene may be partially hidden, complicating
recognition and analysis.

• Real-Time Processing: Many applications require real-time processing of visual
data, demanding high computational power and efficient algorithms.
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6.1 Pinhole Model

The pinhole model provides a simple but powerful framework for understanding how
cameras project 3D scenes onto 2D images. The model assumes that all rays of light pass
through a single point (the pinhole) before striking the image plane. This model forms
the basis of most computer vision algorithms dealing with image formation [30].
The next Figure (6.1) shows an explanation of the pinhole model.

Figure 6.1: Overview of the Pinhole Model

6.1.1 Mathematical Model

The pinhole camera model is defined by the following projection equation:

uv
1

 = K

[
R t

0 1

]
Xw

Yw

Zw

1


Where:

• [Xw, Yw, Zw] are the world coordinates of a point.

• [u, v] are the image coordinates on the 2D image plane.

• K is the intrinsic camera matrix.

• [R | t] is the extrinsic matrix representing the camera’s position and orientation.

• s is a scaling factor.

6.1.2 Practical Implications

The pinhole model provides a foundational understanding that helps in designing more
complex models and algorithms. However, real cameras have lenses, leading to distor-
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tions that the pinhole model doesn’t account for, necessitating more advanced calibration
techniques.

6.2 Camera Calibration

Camera calibration is a critical process in computer vision, where the goal is to determine
the camera’s intrinsic and extrinsic parameters. Calibration ensures that measurements
and reconstructions from images are accurate [30], which is crucial for applications like
3D modeling, augmented reality, and robotics.

6.2.1 Intrinsic Parameters

The intrinsic parameters define the internal characteristics of the camera and include:

• Focal Length (fx, fy): The distance between the camera lens and the image sensor,
affecting the field of view.

• Principal Point (cx, cy): The point where the optical axis intersects the image
plane.

• Skew Coefficient α: Accounts for non-perpendicularity between the x and y pixel
axes, which is often negligible in modern cameras.

6.2.2 Extrinsic Parameters

The extrinsic parameters describe the camera’s position and orientation relative to the
world coordinate system. They consist of:

• Rotation Matrix R: Describes the camera’s orientation in space.

• Translation Vector t: Defines the camera’s position in the world.

6.2.3 Calibration Process

• Data Collection: Images of a known calibration pattern (e.g., a checkerboard)
are captured from different angles.

• Feature Extraction: Key points on the calibration pattern are detected in the
images.

• Optimization: The intrinsic and extrinsic parameters are estimated by minimiz-
ing the difference between the observed image points and the projected points
calculated using the pinhole model.
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6.3 Extrinsic Parameters

Extrinsic parameters describe how the camera is positioned and oriented in the world.
These parameters are essential for tasks like 3D reconstruction, where understanding the
camera’s viewpoint is necessary to accurately map the environment [31].

6.3.1 Rotation Matrix R

The rotation matrix R is a 3x3 matrix that describes how the camera’s coordinate system
is rotated relative to the world coordinate system. It can be decomposed into three
rotation angles (roll, pitch, yaw) corresponding to rotations around the x, y, and z axes.

6.3.2 Translation Vector t

The translation vector t is a 3x1 vector that describes the camera’s position relative to
the world coordinate system. It indicates how far the camera is displaced along the x, y,
and z axes from the origin of the world coordinate system.

6.3.3 Mathematical Representation

The transformation from world coordinates to camera coordinates is given by:Xc

Yc

Zc

 = R

Xw

Yw

Zw

+ t

Where [Xc, Yc, Zc] are the coordinates in the camera frame, and [Xw, Yw, Zw] are the world
coordinates.

6.4 Intrinsic Parameters

The intrinsic parameters of a camera define the geometric properties of the camera’s
imaging process. They describe how the 3D world is mapped to the 2D image plane,
independent of the camera’s position and orientation [32].
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6.4.1 Intrinsic Matrix K

The intrinsic matrix K is a 3x3 matrix that encapsulates the camera’s internal charac-
teristics:

K =

fx α cx
0 fy cy
0 0 1


• Focal Length (fx, fy): Determines the camera’s field of view and magnification.

• Principal Point (cx, cy): The coordinates of the optical center on the image plane.

• Skew Coefficient α: Represents the skew between the image axes.

6.4.2 Calibration of Intrinsic Parameters

The intrinsic parameters are usually calibrated using images of known patterns (e.g.,
checkerboards), where the camera captures multiple views of the pattern, and the pa-
rameters are optimized to minimize the projection error.

6.4.3 Practical Considerations

• Lens Distortion: Real cameras often introduce distortions, especially near the
edges of the image. These distortions are typically modeled using additional pa-
rameters, such as radial and tangential distortion coefficients.

• Aspect Ratio: In some cameras, the pixel aspect ratio (the ratio of the width to
the height of a pixel) is not 1, which needs to be considered in the intrinsic matrix.

6.5 Transformation from World Coordinates (X,Y, Z)

to Image Coordinates (U, V )

The transformation from 3D world coordinates to 2D image coordinates is a key operation
in computer vision, underlying tasks such as rendering, scene understanding, and object
detection. This transformation involves both the intrinsic and extrinsic parameters of
the camera.
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6.5.1 Mathematical Transformation

The transformation is expressed as:

uv
1

 = K
[
R t

]

Xw

Yw

Zw

1


Where:

• K is the intrinsic matrix.

• [R | t] represents the extrinsic parameters.

• [Xw, Yw, Zw] are the world coordinates.

• [u, v] are the image coordinates.

• s is a scale factor that depends on the depth of the point in the scene.

6.5.2 Steps in the Transformation

1. World to Camera Coordinates: The world coordinates [Xw, Yw, Zw] are first
transformed to camera coordinates using the extrinsic parameters:Xc

Yc

Zc

 = R

Xw

Yw

Zw

+ t

2. Projection onto Image Plane: The camera coordinates are then projected onto
the image plane using the intrinsic parameters:uv

1

 = K

Xc

Yc

Zc



6.5.3 Challenges

• Depth Information: The transformation inherently loses depth information,
making it difficult to recover 3D positions from 2D images without additional data.

• Distortion Correction: Real cameras often introduce distortions that must be
corrected for accurate projection.
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6.6 Transformation from Image Coordinates (U, V ) to
World Coordinates (X,Y, Z)

The reverse transformation, from image coordinates to world coordinates, is more complex
and typically requires additional information. This process is fundamental in tasks like
3D reconstruction, where the goal is to recover the 3D structure of a scene from its 2D
projections.

6.6.1 Mathematical Approach

To perform this transformation, the depth Zc of the point must be known. Given the
image coordinates [u, v], the world coordinates [Xw, Yw, Zw] can be recovered using:Xw

Yw

Zw

 = R−1

K−1

susv
s

− t


Where:

• R−1 is the inverse of the rotation matrix.

• K−1 is the inverse of the intrinsic matrix.

• t is the translation vector.

6.6.2 Techniques for Depth Estimation

• Stereo Vision: Uses two or more images taken from different viewpoints to trian-
gulate the depth of points in the scene.

• Structure from Motion (SfM): Estimates depth by analyzing the motion of
objects between consecutive frames in a video sequence.

• LiDAR: A sensor-based approach that directly measures the distance to objects,
providing accurate depth information.

6.6.3 Challenges

• Ambiguity: Without depth information, multiple world points can correspond to
the same image point, leading to ambiguity.

• Accuracy: Small errors in calibration or depth estimation can lead to significant
inaccuracies in the recovered world coordinates.
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6.7 Chessboard Camera Calibration with MATLAB
Toolbox

Chessboard camera calibration is a crucial process in computer vision, used to estimate
both the intrinsic and extrinsic parameters of a camera. These parameters are neces-
sary for accurate 3D reconstruction, object tracking, or other vision-based applications.
Below is a breakdown of the process and how it’s done using the MATLAB Camera
Calibration Toolbox [33].

6.8 Preparation: Capturing Chessboard Images

The calibration process starts by capturing several images of a flat chessboard pattern.
The chessboard is typically a square grid with alternating black and white tiles. The cor-
ners of these tiles serve as feature points. To ensure accurate calibration, the chessboard
is imaged from different orientations and distances, providing a variety of perspectives
for the calibration process. More images generally lead to a better calibration, especially
when taken from different angles and distances.
The following Figure (6.2) is an example of the chessboard images taken.

Figure 6.2: Chessboard Image
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6.9 Loading Images into MATLAB

Once the images are captured, they are loaded into MATLAB through the Camera
Calibration Toolbox. The toolbox can be accessed through MATLABs Apps tab or
programmatically via scripts. The images should be in a common format like PNG or
JPEG. The toolbox includes functionality to automatically detect chessboard corners in
each image, which are the critical points for calibration.

6.10 Corner Detection and Point Extraction

The next step is automatic corner detection. MATLABs toolbox uses image processing
algorithms to identify the intersection points of the chessboard tiles. These points are
treated as known features because the distances between them are consistent and can be
mapped in both the image and the real world. It is important to ensure good lighting
and focus to maximize corner detection accuracy. If necessary, manual adjustments can
be made to correct any misdetections.
The Figure (6.3) shown here is an example of corner detection and point extraction.

Figure 6.3: Corner Detection

6.11 Optimization and Reprojection Error

After estimating the intrinsic and extrinsic parameters, MATLAB performs an optimiza-
tion to minimize the reprojection error, which is the difference between the observed
corner positions and their projected locations based on the estimated camera model.
The toolbox uses a nonlinear least-squares algorithm to refine the parameters, ensuring
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accurate calibration. Low reprojection errors indicate a well-calibrated camera. The fol-
lowing Figure (6.4), (6.5) and (6.6) show the The mean error reprojection visualization,
the camera position estimation and the chessboard position estimation.

Figure 6.4: Visualization of Mean Error Re-projection

Figure 6.5: Camera Position Estimation
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Figure 6.6: Extrinsic Parameter Estimation

6.12 Final Calibration Results and Usage

Once the calibration process is completed, MATLAB provides a camera model that in-
cludes the estimated intrinsic and extrinsic parameters, along with lens distortion coeffi-
cients. This calibrated model can be used to correct distorted images, project 3D points
onto the 2D image plane, or map 2D image points back to 3D world coordinates.
For our case of study these are the calibration results:

Intrinsic Matrix K

• Focal lengths: [fx, fy] = [504.3079, 505.2568]

• Principal point: [cx, cy] = [320.6196, 241.4465]

• Skew: s = 0

So, the intrinsic matrix K is:

K =

504.3079 0 320.6196

0 505.2568 241.4465

0 0 1



Extrinsic Matrix [R|t]

For each rotation vector and translation vector pair, you need to:
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1. Convert the Rotation Vector to a Rotation Matrix R: Use Rodrigues’
rotation formula or a library function like cv2.Rodrigues in OpenCV.

2. Form the Extrinsic Matrix: Combine the rotation matrix R and the translation
vector t into a 4x4 matrix.

Example for a Single Extrinsic Parameter Set
Given:

• Rotation vector: [−0.0010, 0.0871, 3.1164]

• Translation vector (in millimeters): [104.2676, 61.9279, 254.7238]

Result Interpretation:
The intrinsic matrix K will remain as:

K =

504.3079 0 320.6196

0 505.2568 241.4465

0 0 1


For the extrinsic matrix, it will be a 4x4 matrix of the form:

[E] =


R11 R12 R13 tx
R21 R22 R23 ty
R31 R32 R33 tz
0 0 0 1


Where R is the 3x3 rotation matrix obtained from Rodrigues’ formula and tx, ty, tz are
the components of the translation vector.
This process can be repeated for each set of rotation and translation vectors to obtain
their respective extrinsic matrices.
Since we need to know the coordinate of the object referring to the robotic arm base we
multiply the found extrinsic matrix with the matrix that represents the position of the
camera referring to the base and this reference is the world coordinate reference. The
matrix is:

[T ] =


0 0 1 92.5

0 −1 0 0

1 0 0 139

0 0 0 1


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General Conclusion

The research project focused on the design, development, and control of a mobile robot
equipped with a manipulator arm and mecanum wheels, yielding several significant out-
comes across its various chapters.
Chapter 1: General Overview of Robotics The research successfully provided a com-
prehensive understanding of the evolution of robotics. It highlighted how robots have
evolved from performing repetitive tasks in industrial settings to more dynamic and intel-
ligent applications such as mobile manipulation. The review of various robotic structures
demonstrated the versatility and potential of robots in modern applications.
Chapter 2: System Design A key result from this chapter was the successful creation
of detailed 3D models for the robotic system components. The design process allowed
the team to simulate the robots movements and refine the mechanics before the physical
assembly, ensuring smoother functionality. This simulation stage was crucial for mini-
mizing errors during the physical build phase.
Chapter 3: Components of the Robot This chapter’s major result was finding the most
suitable components like motors, control boards, and sensors, which were essential for the
robots functionality. By selecting appropriate types of motors and sensors, the project
achieved a high level of control and responsiveness in the robot’s movements and decision-
making processes. The successful integration of these components formed the backbone
of the robots operational capabilities.
Chapter 4: Assembly of the Robot The assembly process revealed several practical chal-
lenges, such as aligning electronic and mechanical parts, but these were overcome to create
a functional system. The successful assembly of the robot demonstrated the project’s ca-
pability to translate theoretical designs into a working prototype, with all components
interacting seamlessly.
Chapter 5: Robot Manipulator Control A key result here was the implementation and
fine-tuning of the PID controller, which significantly improved the robots movement pre-
cision and stability. The research showed how the PID controller effectively managed the
robots manipulator arm and mecanum wheel movement, ensuring smooth motion and
precise task execution. The chapter also showcased how control challenges, such as yaw
control, were addressed through sensor integration, resulting in a stable and responsive
robot.
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Chapter 6: Camera Vision The research achieved successful integration of camera vision
systems into the robot, enhancing its ability to perceive and respond to its environment.
The calibration and processing of visual data allowed the robot to perform tasks like
navigation and object detection with greater accuracy. This outcome demonstrated the
potential of combining camera vision with robotic systems for more intelligent and au-
tonomous behaviors.
Overall, the project achieved its goal of designing a functional robotic system with ad-
vanced control mechanisms. The use of 3D modeling, sensor integration, and control
algorithms like PID highlighted the projects ability to combine both theoretical knowl-
edge and practical application. Each chapter contributed valuable insights into robotics,
from design to real-time control, with promising results for future development in robotic
systems capable of complex tasks.
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