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Abstract

This thesis investigates the intelligent flux-oriented control of active and reactive pow-
ers in a Doubly Fed Induction Generator (DFIG) to optimize its performance. The study
begins with a comprehensive review of the state-of-the-art in Doubly-fed induction ma-
chines, focusing specifically on generators. It then gets into Artificial Neural Networks,
first as a concept and then as an advanced control strategy for our system. After that,
it also explores the Adaptive Neuro-Fuzzy Inference System (ANFIS), theoretically, and
then its application to our control system in a similar manner.

Various tests were conducted to evaluate the efficiency and robustness of both control
strategies. At the end, a comparative analysis was performed to highlight the strengths
and weaknesses of each approach. Simulation results in the MATLAB/SIMULINK en-
vironment demonstrate that both controllers deliver excellent performance in term of
robustness. However, ANFIS exhibits a slight edge regarding response time and robust-
ness.

The findings underscore the potential of intelligent control techniques in optimizing
DFIG-based wind turbines; This improvement is attributed to the adaptive and flexible
nature of intelligent controllers, which better handle the complexities and uncertainties
inherent in wind energy systems.

Keywords : Doubly-fed induction generator (DFIG), flux-oriented control, Artificial
Neural Networks, MLP, Neuro-fuzzy, ANFIS.
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Résumé

Cette thèse étudie la commande vectorielle intelligente des puissances active et réactive
dans une Génératrice Asynchrone à Double Alimentation (GADA) pour optimiser ses
performances. L’étude débute par une revue complète de l’état de l’art des machines
asynchrones à double alimentation, en se concentrant spécifiquement sur les géneratrices.
Elle aborde ensuite les réseaux de neurones artificiels, d’abord en tant que concept, puis
en tant que stratégie de contrôle avancée pour notre système. Après cela, elle explore
également le système d’inférence neuro-flou adaptatif (ANFIS), théoriquement, puis son
application à notre système de contrôle de manière similaire.

Divers tests ont été menés pour évaluer l’efficacité et la robustesse des deux stratégies de
contrôle. Une analyse comparative a été réalisée à la fin pour mettre en évidence les forces
et les faiblesses de chaque approche. Les résultats de simulation dans l’environnement
MATLAB/SIMULINK montrent que les deux contrôleurs offrent d’excellentes perfor-
mances en termes de robustesse. Cependant, l’ANFIS présente un léger avantage, notam-
ment en ce qui concerne le temps de réponse et la robustesse.

Les résultats soulignent le potentiel des techniques de contrôle intelligent pour optimiser
les éoliennes à base de DFIG, Cette amélioration est attribuée à la nature adaptative et
flexible des contrôleurs intelligents, qui permettent une meilleure gestion des complexités
et des non-linéarités inhérentes aux systèmes d’énergie éolienne.

Mots clés : Generatrice asynchrone à double alimentation (GADA), Commande vec-
torielle, Réseaux de neurones artificiels, MLP, Neuro-flou, ANFIS.
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ملخص

التغذية مزدوج اللاتزامني للمولد الفعالة غير والقدرة الفعالة للقدرة الذكي الشعاعي التحكم الاطٔروحة هذه تتناول
المزدوجة، التغذية ذات التحريض آلات في التطورات لاحٔدث شاملة بمراجعة الدراسة تبدأ ادٔائه. تحسين بهدف (DFIG)
تحكم كاستراتيجية ثم كمفهوم اؤلاً الاصطناعية، العصبية الشبكات تتناول ثم المولدات. على خاص بشكل التركيز مع
على بتطبيقه ثم نظريًا ،(ANFIS) التكيفي الضبابي العصبي الاستدلال نظام تستكشف ذلك، بعد لنظامنا. متقدمة

مماثلة. بطريقة لدينا التحكم نظام

مقارنة بدراسة قمنا النهاية، وفي المذكورة. التحكم استراتيجيات صلابة و كفاءة لتقييم متنوعة اختبارات اجٕراء تم
انٔ MATLAB/SIMULINK بيئة في المحاكاة نتائج تظُهر منهج. كل في والضعف القوة نقاط على الضوء لتسليط
والصلابة. الاستجابة زمن حيث من طفيفة ميزة ANFIS يُظهر ذلك، ومع ممتازًا. ادٔاءً تقدم التحكم وحدات من كلا

مزدوج اللاتزامني المولد على القائمة الرياح توربينات تحسين في الذكية التحكم تقنيات امٕكانات على النتائج تؤكد
مع الافٔضل التعامل من تمُكن التي الذكية، للمتحكمات للتكيف والقابلة المرنة الطبيعة الٕى التحسن هذا يرجع التغذية،

الرياحية. الطاقة انٔظمة في الطبيعية الخطية غير والعوامل التعقيدات

الاصطناعية، العصبونية الشبكات ، الشعاعي التحكم ،(DFIG) المزدوجة التغذية ذو التحريض مولد مفتاحية: كلمات
.ANFIS ، MLP،الضبابي العصبي النظام
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General Introduction

Context

The global shift towards renewable energy sources has highlighted the importance of
advanced technologies for improving efficiency and adaptability. Among these, the Doubly
Fed Induction Generator (DFIG) stands out, particularly in wind energy conversion.
Renowned for its versatility in operating across a broad range of wind speeds, the DFIG
is a cornerstone in modern variable-speed wind turbines, enhancing energy conversion
processes and promoting sustainable solutions.

In recent years, the adoption of DFIGs has surged due to their ability to manage
varying operational speeds and conditions efficiently. This adaptability not only boosts
the efficiency of wind energy systems but also reduces operational complexities and costs
by minimizing reliance on heavy energy converters. This context focuses on advanced
control strategies for DFIGs, aiming to streamline their operation and maximize efficiency
in wind energy conversion.

Problem Statement

Precisely controlling the Doubly Fed Induction Generator (DFIG) is crucial for opti-
mizing wind turbine performance. Despite its advantages, such as reduced operational
costs and enhanced energy output, the DFIG’s dynamic and complex nature requires so-
phisticated control strategies. Active power control directly impacts the turbine’s energy
output and efficiency, while reactive power control is essential for maintaining voltage
stability and power quality in the electrical grid. The interactions between active and
reactive power flows in DFIGs present significant challenges, especially under varying
wind conditions and grid disturbances. These issues highlight the need for advanced
control strategies to adjust the powers dynamically, ensuring efficient energy conversion,
enhanced grid support, and extended generator lifespan.
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General Introduction

Objectives

This thesis aims to enhance the control of Doubly Fed Induction Generators (DFIGs)
in variable-speed wind turbines by developing and validating advanced intelligent control
strategies. Focusing on Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy
Inference Systems (ANFIS), the study seeks to address the operational complexities of
DFIGs, improving their dynamic performance, robustness, and overall efficiency. Through
extensive simulation in the MATLAB/SIMULINK environment, in the aim of contributing
to optimizing wind energy conversion and advancing renewable energy technologies.

Structure & Organization

Organized into three main chapters, this thesis thoroughly examines various aspects of
DFIG control, contrasting classical approaches with advanced methods such as Artificial
Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS):

Chapter 1 establishes the foundation by providing a comprehensive review of the state-
of-the-art in doubly-fed induction machines, focusing specifically on generators. It covers
configurations of DFIGs, their operating modes, and working principles. Additionally, it
discusses the applications of DFIGs and their modeling, including simplifications and the
ABC model.

Chapter 2 provides an in-depth analysis of artificial neural networks for controlling
DFIGs. It covers the basics of neural networks, including historical context, network
architectures, and learning methods. The chapter then focuses on the development and
implementation of ANN-based controllers, presenting simulation results and performance
evaluations.

Chapter 3 explores the ANFIS approach for controlling DFIGs. It begins with an
introduction to fuzzy logic and neural networks, followed by a detailed explanation of the
ANFIS architecture and learning algorithms. The chapter then discusses the application
of ANFIS to DFIG control, presenting simulation results and comparing the performance
of ANFIS with the previous ANN controller and the traditional PI also.

At the end, a general conclusion summarizes the work conducted throughout the thesis
and offers insights into potential future research directions.
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Chapter 1

Doubly-Fed Induction Generator
(DFIG): State-of-the-art.
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Chapter 1. Doubly-Fed Induction Generator (DFIG): State-of-the-art.

1.1 Introduction

The Doubly-Fed Induction Machine (DFIM) has been the subject of extensive research,
particularly in its operation as a generator (DFIG) for renewable energy applications. Its
ability to efficiently harness wind energy and convert it into electrical Power has made it
a cornerstone of modern wind turbine technology.

In this chapter, we will present the state-of-the-art DFIG systems used in various
applications, configurations, and operational modes in wind turbines. We introduce a
comprehensive dynamic model of its components, starting with the main mathematical
equations that define the relationship between voltage and fluxes within the generator.
The Park transformation and the selection of reference frames are also discussed, as they
are crucial for simplifying the machine’s dynamic equations, making the analysis and
control of the DFIG more intuitive and efficient. Then, we will explore control strategies
to optimize the efficiency and reliability of wind energy generation.

1.2 Description of the Doubly-fed induction genera-
tor (DFIG)

A doubly-fed induction machine (DFIM) is nothing more than a wound rotor induction
machine. The term ”doubly-fed” indicates that the machine is connected to the grid
through its stator and rotor (Figure 1.1), with this connection being made either without
or with static converters, leading to various structures. It was used for years in the
past for applications requiring speed control. However, working as a generator, this
machine enables an important feature: it can produce Power at both subsynchronous and
supersynchronous speeds. Because of this trait, wind turbines can operate efficiently in
various velocities. [1]

Figure 1.1: Symbol of the Doubly-fed induction machine.

A DFIG has a stator identical to a squirrel cage induction or synchronous machine.
The rotor differs significantly, as it is not composed of magnets or a squirrel cage but of
three-phase windings arranged similarly to the stator windings. (Figure 1.2)
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Figure 1.2: Structure of the Doubly-fed induction machine. [2]

As shown in Figure (1.3), the rotor windings are connected in a star configuration,
and the three phases are connected to a system of sliding contacts (brushes and collector
rings) that allow access to the rotor voltages and currents.

Figure 1.3: Wound rotor principal.

1.3 Configurations of Doubly-Fed Induction Machines

Today, the Doubly-Fed Induction Machine (DFIM) is the most commonly used variable-
speed machine in wind energy production due to its characteristics. The DFIM with a
wound rotor has a three-phase stator identical to conventional induction machines but
with a different rotor design. In this design, the rotor windings are connected in a star
configuration, and the ends are connected to slip-rings. Brushes rub against these rings
during machine operation. While the stator windings are directly connected to the grid,
the rotor windings pass through bidirectional power converters to control slip variation.
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Figure 1.4: Standard wounded rotor DFIG for Wind turbine. [3]

In this system, the stator is directly connected to the power grid, while the rotor is
connected to a voltage-source converter (back-to-back), serving as a frequency converter.
The term ”Doubly-fed” refers to the stator voltage drawn from the grid and the rotor
voltage provided by the converter. This setup enables variable-speed operation within a
specific operating range. The converter compensates for the difference between mechanical
and electrical frequencies by injecting a variable-frequency current into the rotor. (Figure
1.4)

1.3.1 DFIG with Rotor Energy Dissipation

Figure (1.5) illustrates the technology that allows for a limited speed variation of ap-
proximately 10% around the synchronous speed by changing the rotor resistance. The
stator is directly connected to the grid, and the rotor is connected to a rectifier. [4]
Besides the limited speed variation range, this solution’s drawback is the dissipation of
rotor power in the rotor resistance in the event of a high slip.

Figure 1.5: DFIG with slip control through dissipation of rotor energy. [3]
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1.3.2 DFIG - Krammer structure

To enhance the efficiency of the previous system configuration, the structure (Figure
1.6) employs both a diode bridge and a thyristor bridge. The diode bridge rectifies the
voltages between rings. The thyristor inverter applies a variable voltage to this rectifier
by controlling the firing angle of the thyristors. This setup allows for adjusting the
conduction range of the diodes, thereby varying the Power extracted from the rotor circuit
and, consequently, the slip of the asynchronous generator. However, a drawback of this
configuration is that the power supply does not allow for the electrical speed control of the
machine. Additionally, the three-phase inverter used in this structure injects significant
amplitude low-frequency harmonic currents. [5]

Figure 1.6: DFIG Krammer structure. [3]

1.3.3 DFIG - Scherbius Structure with Cycloconverter

To enable bidirectional energy flow between the rotor and the grid, this topology re-
places the rectifier-inverter combination with a cycloconverter. The speed variation range
is doubled compared to the Kramer structure. [5]

Figure 1.7: DFIG Scherbius Structure with Cycloconverter. [3]
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This setup is also known as the Scherbius static topology. Formally, the Scherbius
principle is based on the use of rotating machines instead of power converters. (Figure
1.7)

1.3.4 DFIG - Scherbius Structure with PWM converters

This configuration involves using two IGBT-based three-phase bridges controlled by
pulse width modulation (PWM). This choice allows for two degrees of freedom for each
converter: control over the flux and rotational speed of the asynchronous generator on
the machine side and control over the active and reactive powers transferred on the grid
side. [5] [4] (Figure 1.8)

Figure 1.8: DFIG Scherbius Structure with PWM. [3]

However, it is noteworthy that operating the grid-side inverter with PWM allows for a
more precise extraction of currents.

There are several configurations of doubly-fed induction machines, with the most promi-
nent ones outlined above. Table (1.1) summarizes the primary distinctions between these
configurations.
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Table 1.1: Main Characteristics of Different Structures of the Doubly Fed Induction
Machine (DFIM). [5]

Technology Type of
DFIM

Converter
Used

Power Trans-
fer

Rotor Speed
Variation

Brushless ma-
chine with dou-
ble fed induc-
tion

Double winding
on the stator

PWM converter
on the stator
and grid side

Bidirectional
transfer of slip
energy

Variable 25%

Double fed by
rotor and sta-
tor, with energy
dissipation

Single winding
on the stator
and wound ro-
tor

Rectifier for
slip control
with chopper
connected to a
resistive load

Unidirectional
transfer of slip
energy

Variable 25%

Double fed by
rotor and sta-
tor, with slip
energy recov-
ery (Kramer
system)

Single winding
on the stator
and wound ro-
tor

Diode rectifier
and thyristor
inverter

Unidirectional
transfer of slip
energy

Variable 25%

Double fed by
rotor and sta-
tor, with slip
energy recovery

Single winding
on the stator
and wound ro-
tor

Scherbius cyclo-
converter

Bidirectional
transfer of slip
energy

Variable 50%

Double fed by
rotor and sta-
tor, with slip
energy recovery

Single winding
on the stator
and wound ro-
tor

Dual PWM
converter

Bidirectional
transfer of slip
energy

Variable 50%

1.4 Operating Modes of DFIG

The slip s is defined as the ratio of the difference between the synchronous angular
frequency ωs and the electrical angular frequency of the rotor ωr, to ωs:

s =
ωs − ωr

ωs

(1.1)

According to the slip s, three different operating modes are possible for the DFIG [6]:

• Sub-synchronous operation: ωr < ωs ⇒ s > 0

• Synchronous operation: ωr = ωs ⇒ s = 0

• Super-synchronous operation: ωr > ωs ⇒ s < 0
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1.4.1 Subsynchronous Motor Operation

In subsynchronous motor operation, Power is supplied by the grid to the stabilizer,
while slip power passes through the rotor and is reintroduced to the grid. Thus, the
operation occurs below the synchronous speed, as depicted in Figure (1.9). While the
conventional squirrel-cage asynchronous machine can function in this mode, slip power is
dissipated as Joule losses in the rotor.

Figure 1.9: Subsynchronous Motor Operation of the DFIG

1.4.2 Supersynchronous Motor Operation

In Supersynchronous motor operation, Power is supplied by the grid to the stator,
and the grid also supplies slip power to the rotor. Thus, the operation occurs above the
synchronous speed, as illustrated in Figure (1.10).

Figure 1.10: Supersynchronous Motor Operation of the DFIG
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1.4.3 Subsynchronous Generator Operation

In subsynchronous generator operation, Power is supplied to the grid by the stator.
The stator also supplies slip power. The rotor absorbs the slip power, and the direction
of the magnetic field is the same as that of the stator field. Thus, generator operation
occurs below the synchronous speed, as depicted in Figure (1.11).

Figure 1.11: Subsynchronous Generator Operation of the DFIG

1.4.4 Supersynchronous Generator Operation

In supersynchronous generator operation, Power is supplied to the grid by the stator,
and slip power is recovered via the rotor and fed back into the grid. Thus, generator
operation occurs above the synchronous speed, as depicted in Figure (1.12).

Figure 1.12: Supersynchronous Generator Operation of the DFIG

So, to recapitulate:

• For Motor Operation (Pm > 0), the machine is delivering mechanical Power and
receiving electric Power from the grid, as shown in the table below:
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Table 1.2: Motor Operational Modes of DFIG

Mode Pm Ps PR

Subsynchronous: s > 0 and ωm < ωs Pm > 0 Ps > 0 PR > 0

Supersynchronous: s < 0 and ωm > ωs Pm > 0 Ps > 0 PR < 0

• For Generator Operation (Pm < 0), the machine is receiving mechanical Power
and delivering electric Power to the grid, as shown in the table below:

Table 1.3: Generator Operational Modes of DFIG

Mode Pm Ps PR

Subsynchronous: s > 0 and ωm < ωs Pm < 0 Ps < 0 PR > 0

Supersynchronous: s < 0 and ωm > ωs Pm < 0 Ps < 0 PR < 0

1.5 Working principals

An induction generator consists of a stator and a rotor. In a Doubly Fed Induction
Generator (DFIG), both the stator and rotor have three sinusoidally distributed windings.
These windings correspond to three phases, labelled a, b, and c, and are separated by an
angle of 120°. The stator includes p pairs of poles.

The rotor is connected to the grid through converters. A three-winding transformer
gives different voltage levels for stator and rotor side. A schematic of such a system is
presented in Figure (1.13). When the machine produces energy, only a small part of the
generated power flows from the rotor to the grid. The converters can then be chosen in
accordance with this small rotor power. This means smaller converters compared to fully
rated converters, and this decreases costs. [7]

Figure 1.13: DFIG associated with its converters.
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The stator windings are connected to the power grid, which sets the frequency of the
stator current fs. This results in the stator currents creating a rotating magnetic field
within the air gap. The speed of this rotating field, ωs, is directly proportional to fs:

ωs = 2πfs (1.2)

When the rotor rotates at a speed different than the synchronous speed ωs, a change
in magnetic flux occurs. According to Faraday’s law of induction, this change generates
currents in the rotor windings. The electrical speed of the rotor, ωr, is related to the
mechanical speed of the rotor ωm by the number of pole pairs P :

ωr = P · ωm (1.3)

The flux linked by the rotor windings changes with time if ωr ̸= ωs. The machine
operates usually as a generator if ωr > ωs and as a motor otherwise. In the case of the
DFIG, however, it can operate in sub-synchronous mode as a generator [7] , The slip, s,
represents the speed difference between the rotor and the synchronous speed ωs:

s =
ωs − ωr

ωs

(1.4)

Equation (1.4) defines slip s in terms of the rotor’s electrical speed ωr and the syn-
chronous speed ωs.

For a generator, the slip is usually negative, while it is positive for a motor. The currents
induced in the rotor windings oscillate at an angular velocity given by the difference
between the synchronous speed and the rotor speed. The rotor current frequency, fr, is:

fr = s · fs (1.5)

If the rotor rotated at synchronous speed ωs, there would be no change in magnetic
flux, and hence, no electrical currents would be induced in the windings. Therefore, the
machine always operates at a speed different from the synchronous speed.

The rotor-side inverter regulates the rotor currents. As shown in Equation (1.5), by
controlling the rotor currents, the slip s and thus the speed of the machine can be managed
[7].

1.6 Applications of the DFIM

The Doubly Fed Induction Machine (DFIM) occupies a significant place in industrial
applications due to its numerous advantages. Indeed, the DFIM is widely used as a
generator in renewable energy applications, particularly in wind power systems [8]. Addi-
tionally, its operation as a generator makes the DFIM a serious alternative to conventional
synchronous machines in many decentralized power generation systems, such as
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• On-board power generators for ships or aircraft;

• Hydraulic power plants with variable flow and speed;

• Generator sets where reducing speed during low consumption significantly reduces
fuel consumption.

The DFIM can also be used in other significant applications requiring high starting
torque, such as [6]:

• Metallurgy with coil winders and unwinders;

• Traction, including urban transport or maritime propulsion applications;

• Lifting applications such as elevators and hoists.

It should be noted that the DFIM’s applications as a motor are relatively limited. The
primary applications are in electric traction and pumping systems.

1.6.1 Advantages and Disadvantages of the DFIG

In this section, we briefly introduce the main advantages and disadvantages of the Dou-
bly Fed Induction Generator (DFIG) when used in the field of variable speed applications
[9]

1.6.1.1 Advantages

Among its numerous advantages, we can mention:

• The ability to modify the characteristics of the rotor winding of the machine, notably
by connecting rheostats to limit the current, increase torque during startup, and
extend the speed variation range.

• The accessibility to the stator and rotor offers the opportunity to have great flex-
ibility and precision in controlling the flux and the electromagnetic torque, and
consequently for well controlling the transfer of active and reactive Power.

• The possibility of operating the DFIG as an active filter for current harmonics
thanks to the rotor currents’ indirect control of active and reactive powers.

• The converter on the rotor side is sized for a third of the DFIG’s nominal Power,
which effectively divides their price by three compared to converters sized for nom-
inal power, thus improving the efficiency of the conversion system.
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• In generator mode, the powering of the rotor circuit with variable frequency allows
delivering a fixed frequency to the stator even in case of speed variation.

• The ability to operate at constant torque beyond the nominal speed.

• Operation in a degraded mode, if one of the two inverters fails, is more flexible than
that of a single-feed machine.

• The DFIG has a slightly higher power density than other large power machines,
making it competitive for high powers (> 1MW).

1.6.1.2 Disadvantages

Compared to other machines, the DFIG presents disadvantages mainly related to the
slip-ring system:

• It is more significant than a squirrel-cage Induction Motor (IM) of equivalent power
due to the presence of the slip-ring system.

• The additional cost incurred by maintenance due to the use of the gearbox and the
slip-ring system of the DFIG, compared to other machines such as the permanent
magnet synchronous machine and the switched reluctance machine.

• The multi-converter aspect increases the number of converters (rectifiers and two
inverters or one rectifier and two inverters) and consequently the price, although
some studies claim the opposite.

1.7 Modeling of Doubly Fed Induction Generators

As introduced earlier, the doubly fed induction machine (DFIM) is an induction wound
rotor machine with a construction very similar to that of the traditional squirrel-cage
machine. It consists of two sets of three-phase windings: a stator and a rotor.

1.7.1 Simplifying Assumptions for DFIG Modeling

The DFIG system is characterized by its high order, nonlinearity, and time-varying na-
ture. To simplify the process of dynamic analysis, we introduce the following assumption:
[10]

• Three-phase generator windings are balanced with a Y connection, with 120◦ phase
shift between each other in space. The induced magneto-motive force is distributed
in sinusoidal form along the air gap.
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• The magnetic saturation of the stator and the rotor core is neglected.

• The iron loss of both the stator and the rotor core is neglected.

• The stator or rotor winding parasitic resistances do not change with temperature
or frequency.

To simplify the analysis, all electrical variables on the rotor side are converted to the
stator side [10], and the positive reference direction is chosen to be the direction in which
Power or current enters the stator or rotor of the DFIG.

1.7.2 ABC (abc) Model

Based on the previously stated assumptions, the DFIG can be modeled as three static
windings positioned on the stator (ABC) and three windings positioned on the rotor (abc)
rotating at an angular frequency of (ωr), as illustrated in Figure (1.14).

Figure 1.14: DFIG stator and rotor windings.

In Figure (1.14), vsa, vsb, vsc and vra, vrb, vrc are three-phase stator voltages and three-
phase rotor voltages, respectively.

The following equations describe a three-phase symmetrical doubly fed induction gen-
erator.
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1.7.2.1 Electrical relations

The voltage relations on rotor and stator sides are:
[Vs] = [Rs] · [Is] +

d

dt
[φs]

[Vr] = [Rr] · [Ir] +
d

dt
[φr]

(1.6)

With :

[Vs] =

Vas

Vbs

Vcs

 [Is] =

IasIbs

Ics

 [φs] =

φas

φbs

φcs

 [Rs] =

Rs 0 0

0 Rs 0

0 0 Rs



[Vr] =

Var

Vbr

Vcr

 [Ir] =

IarIbr

Icr

 [φr] =

φar

φbr

φcr

 [Rr] =

Rr 0 0

0 Rr 0

0 0 Rr


The subscripts r and s denote rotor and stator quantities, respectively.

The subscripts a,b and c are used for phases a, b and c quantities,respectively.

The symbols v and i are for voltages and currents and φ represents flux linkages.

The stator and rotor winding resistances are Rs and Rr. (They are assumed to be
equal for all phase windings).

1.7.2.2 Magnetic relations

The flux linkages are coupled to the currents by the inductances:{
[φs] = [Lss] · [Is] + [Msr] · [Ir]
[φr] = [Lrr] · [Ir] + [Mrs] · [Is]

(1.7)

With:

[Lss] =

 ls Ms Ms

Ms ls Ms

Ms Ms ls

 ; [Lrr] =

 lr Mr Mr

Mr lr Mr

Mr Mr lr


Where Lss, Lrr are respectively the self-inductances of the stator and rotor phases.
Ms, Mr - the mutual inductances between the stator and rotor phases.
[Msr] is the transpose of [Mrs] - the matrix of mutual inductances or stator-rotor coupling
matrix, which is given by the formula (1.8):

[M ] = [Msr] = [Mrs]
T = Mmax

 cos(θ) cos
(
θ + 2π

3

)
cos

(
θ − 2π

3

)
cos

(
θ − 2π

3

)
cos(θ) cos

(
θ + 2π

3

)
cos

(
θ + 2π

3

)
cos

(
θ − 2π

3

)
cos(θ)

 (1.8)
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Where Mmax is the maximum mutual inductance between a stator phase and a rotor
phase.

By replacing (1.7) in (1.6) , we get the following :
[Vs] = [Rs] · [Is] +

d

dt
([Lss] · [Is] + [Msr] · [Ir])

[Vr] = [Rr] · [Ir] +
d

dt
([Lrr] · [Ir] + [Mrs] · [Is])

(1.9)

It is noticed that both the stator flux and the rotor flux change with rotor angle θr.
Therefore, DFIG model in ABC (abc) frame is a time-dependent system. Thus, an-
alyzing its dynamics in abc-reference frame is more complicated. We will employ the
dq0-transformation to eliminate the time dependency.

1.7.2.3 Mechanical relations

In the above section, the electrical dynamics of the DFIG have been developed in the
stator reference frame. A model of the mechanical dynamics is given here to complete
the model. The dynamics of the generator shaft relate to the rotor speed and the electro-
magnetic torque: [11]

Te = Tr + fr · Ω + J · dΩ
dθ

(1.10)

With:

• Te - the electromagnetic torque of the machine;

• Tr - the resisting torque;

• fr - the coefficient of viscous friction of the DFIG;

• Ω - the rotation speed of the axis of the DFIG;

• J - the inertia of the rotating parts.

The following relation gives the expression of the electromagnetic torque:

Te = P · [Is]T · d

dθ
[M ] · [Ir] (1.11)

Where P is the number of pole pairs of the DFIG.

1.7.3 dq-reference frame

Switching to a more suitable reference frame is convenient for generating a simpler
model. One such reference frame is the so-called dq-reference frame.
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Figure 1.15: abc to dq transformation

The original ABC variables must be transformed into d, q variables (Figure 1.15), but
this transformation depends on the speed of rotation of the D,Q coils. Hence, each
reference frame has its own transformation. [12]
In general, for any arbitrary value of θ, the transformation of stator ABC phase variables
[FABC ] to d,q stator variables [Fdq] is carried out through Park’s transform as follows:

[Fdq] = [Pθ][FABC ] (1.12)

where P (θ) is the rotation matrix which transforms the abc-quantities into the dq-reference
frame:

P (θ) =

√
2

3

 cos(θ) cos
(
θ − 2π

3

)
cos

(
θ + 2π

3

)
− sin(θ) − sin

(
θ − 2π

3

)
− sin

(
θ + 2π

3

)
1√
2

1√
2

1√
2

 , (1.13)

with

• θ = θs when the stator quantities are of interest,

• θ = θr when the rotor quantities are interesting.

The notation [FABC ] represents a vector quantity, which may be a current, voltage, or
flux.

1.7.4 dq Model

The DFIG (Doubly Fed Induction Generator) modeling is fundamentally the same as
that of the traditional asynchronous machine. However, the distinction lies in that the
rotor windings are not short-circuited, which means that the rotor voltages are not zero.
The mathematical model is created by applying Park’s transformation, which involves
transforming the three-phase winding system of ABC axes into an equivalent two-phase
winding system of dq axes, making the same magneto-motive force rotate at the same
speed as the stator field. (Figure 1.16)
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Figure 1.16: DFIG model after PARK transform

As introduced earlier, the Park equation to pass from ABC reference to dq reference
and vice versa is :

[Fdq] = [Pθ][FABC ] ↪→ [FABC ] = [Pθ]
−1[Fdq]

Park’s transformation, applied to the stator equations, gives us:

[Vsdq0 ] = [P (θs)] · [Vsabc ] ⇒ [Vsabc ] = [P (θs)]
−1 · [Vsdq0 ]

[Isdq0 ] = [P (θs)] · [Isabc ] ⇒ [Isabc ] = [P (θs)]
−1 · [Isdq0 ]

[φsdq0 ] = [P (θs)] · [φsabc ] ⇒ [φsabc ] = [P (θs)]
−1 · [φsdq0 ]

Park’s transformation, applied to the rotor equations, gives us:

[Vrdq0 ] = [P (θr)] · [Vrabc ] ⇒ [Vrabc ] = [P (θr)]
−1 · [Vrdq0 ]

[Irdq0 ] = [P (θr)] · [Irabc ] ⇒ [Irabc ] = [P (θr)]
−1 · [Irdq0 ]

[φrdq0 ] = [P (θr)] · [φrabc ] ⇒ [φrabc ] = [P (θr)]
−1 · [φrdq0 ]

1.7.4.1 Electrical relations

By applying Park transform to the equation (1.6) , we get :

[P (θs)]
−1 · [Vsdq0 ] = [Rs] · [P (θs)]

−1 · [Isdq0 ] +
d

dt
[P (θs)]

−1 · [φsdq0 ]

[P (θr)]
−1 · [Vrdq0 ] = [Rr] · [P (θr)]

−1 · [Irdq0 ] +
d

dt
[P (θr)]

−1 · [φrdq0 ]

(1.14)

[Vsdq0 ] = [Rs] · [Isdq0 ] + [P (θs)] ·
d

dt
[P (θs)]

−1 · [φsdq0 ]

[Vrdq0 ] = [Rr] · [Irdq0 ] + [P (θr)] ·
d

dt
[P (θr)]

−1 · [φrdq0 ]

(1.15)

With:

d

dt
[P (θs)] =

dθs
dt

0 −1 0

1 0 0

0 0 0

 ;
d

dt
[P (θr)] =

dθr
dt

0 −1 0

1 0 0

0 0 0

 (1.16)
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By consequence, the voltage equations of the stator and rotor of the DFIG are given by:
[11] 

Vsd = RsIsd +
dφsd

dt
− φsq

dθs
dt

Vsq = RsIsq +
dφsq

dt
+ φsd

dθs
dt

Vrd = RrIrd +
dφrd

dt
− φrq

dθr
dt

Vrq = RrIrq +
dφrq

dt
+ φrd

dθr
dt

(1.17)

Vsd, Vsq, Vrd and Vrq are respectively the direct and quadrature stator and rotor voltages;

Isd, Isq, Ird and Irq are respectively the direct and quadrature stator and rotor currents;

φsd, φsq, φrd and φrq are, respectively, the direct and quadrature stator and rotor fluxes
of the system;

θs, θr are the electrical angles that form the axes of the stator and the rotor with the
direct axis of Park’s two-phase reference frame.

1.7.4.2 Magnetic relations

By applying the same approach, we get :

[P (θs)]
−1 · [φsdq0 ] = [Lss] · [P (θs)]

−1 · [Isdq0 ] + [Msr] · [P (θs)]
−1 · [Irdq0 ]

[P (θr)]
−1 · [φrdq0 ] = [Lrr] · [P (θr)]

−1 · [Irdq0 ] + [Mrs] · [P (θr)]
−1 · [Isdq0 ]

(1.18)

As a consequence, the flux equations of the stator and rotor of DFIG are given by:
φsd = LsIsd +MIrd

φsq = LsIsq +MIrq

φrd = LrIrd +MIsd

φrq = LrIrq +MIsq

(1.19)

Ls, Lr are, respectively, the cyclic stator and rotor inductances;

M is the mutual inductance.

1.7.4.3 Electromagnetic torque relation

The electromagnetic torque can be obtained, from several equal expressions, from the
stator flux and currents by:

Te = P · (φsdisq − φsqisd) (1.20)

It can also be expressed in terms of the rotor currents and stator fluxes by:

Te = P · M
Ls

(Irdφsq − Irqφsd) = P · M
Ls

(φqsidr − φdsiqr) (1.21)
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This equation is used in field-oriented (vector) control of active and reactive stator powers
with the orientation of the stator flux, which will be studied in the following chapter.

The active and reactive powers of the DFIG of the stator and the rotor, respectively,
are defined by: [13] 

Ps = VsdIsd + VsqIsq

Qs = VsqIsd − VdsIsq

Pr = VrdIrd + VrqIrq

Qr = VrqIrd − VrdIrq

(1.22)

1.7.4.4 Choice of reference

The analysis of the DFIG based on Park’s transformation leads to relationships related
to the chosen frame of reference. (Figure 1.17)

Depending on the objective of the application considered, the following three possibili-
ties appear:

• The (d-q) axis reference frame fixed to the stator : This reference frame is
used to analyze transient states with large speed variations or study rotor quantities
regardless of the supply frequency. (θs = 0, θr = θ)

• The (d-q) axis reference frame fixed to the rotor: This reference frame is
employed to study transient states, especially when studying rotor faults such as
rotor bar breakages or imbalances of rotor windings. (θr = 0, θs = θ)

• The (d-q) axis reference frame fixed to the rotating field: This reference
frame is primarily used for machine control. In this frame, the model quantities are
constant in steady state because the frequency of the rotating field equals that of
the stator quantities; hence:

dθs
dt

= ωs,
dθ

dt
= ωs − ωr (1.23)

where ωs is the synchronous angular speed of the stator’s rotating magnetic field.

The rotor angular speed (rotational speed) is expressed by:

ωr = ωs − ω′
r ⇒ θr = θs − θ (1.24)

where ω′
r is the angular speed in the (d-q) reference frame fixed to the rotor.
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Figure 1.17: Illustration of Park’s Reference Frames: Stator (sα − sβ), Rotor (rα − rβ),
and Rotating (d− q) frames.

The reference frame fixed to the rotating field will be considered in the following work, as
it is ideally suited to synthesizing the various control strategies considered in this study.

1.8 Flux-Oriented Control of the DFIG

1.8.1 Model of the DFIG with Stator flux-oriented control

To achieve decoupled stator reactive power and rotor speed control, we choose in the
dq0-reference-frame the stator flux phis aligned with the d-axis, so we have: [14]

{
φsd = φs

φsq = 0
(1.25)

The equation system can be simplified to the following form:



Vsd = Rsisd

Vsq = Rsisq + ωsφs

Vrd = Rrird +
dφrd

dt
− ωrφrq

Vrq = Rrirq +
dφrq

dt
+ ωrφrd

(1.26)

If we neglect the stator winding resistance, an assumption often accepted for large
power machines used in wind energy generation, the voltage equations of the machine
reduce to the following form:
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Vsd = 0

Vsq = Vs = ωsφs

Vrd = Rrird +
dφrd

dt
− ωrφrq

Vrq = Rrirq +
dφrq

dt
+ ωrφrd

(1.27)

The flux equations become:


φsd = φs = Lsisd +Msird

0 = Lsisq +Msirq

φrd = Lrird +Msisd

φrq = Lrirq +Msisq

(1.28)

The expression for the electromagnetic torque then becomes:

Te = −P
M

Ls

φsirq (1.29)

Assuming that the electrical grid is stable leads to a constant stator flux φs. This shows
that the electromagnetic torque Te is directly proportional to the rotor current irq in
quadrature.

The active and reactive stator powers in the orthogonal reference frame are given by:

{
P = Vsisq

Q = Vsisd
(1.30)

Therefore, the active Power P and reactive Power Q are functions of the stator currents
isd and isq respectively, over which we have direct control.

From the expressions of the stator fluxes, we can write:


isd =

Vs

Lsωs

− M

Ls

ird

isq = −M

Ls

irq

(1.31)

By substituting the direct and quadrature stator currents with their expressions from
the flux equations into the equations for active and reactive Power, we obtain:


P = −VsMs

Ls

irq

Q = −VsMs

Ls

ird +
V 2
s

Lsωs

(1.32)
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The control of active and reactive stator power is decoupled. The active Power is di-
rectly proportional to the quadrature rotor current, and the reactive Power is proportional
to the direct rotor current to a preset constant ( Vs²

Lsωs
) imposed by the grid.

1.8.2 Expressions of Rotor Voltages

To control the machine, it is necessary to establish the correlation between the currents
and rotor voltages applied to it [15]. By substituting the stator equation (1.31) into the
flux equations to obtain the rotor fluxes, then the result into the rotor voltage equation,
we find :


Vrd = Rrird +

(
Lr −

M2

Ls

)
dird
dt

− sωs

(
Lr −

M2

Ls

)
irq

Vrq = Rrirq +

(
Lr −

M2

Ls

)
dirq
dt

+ sωs

(
Lr −

M2

Ls

)
ird + s

MVs

Ls

(1.33)

In steady state, the terms involving the derivatives of the phase-shifted rotor currents
disappear. Thus, we can write:


Vrd = Rrird − sωs

(
Lr −

M2

Ls

)
irq

Vrq = Rrirq + sωs

(
Lr −

M2

Ls

)
ird + s

MVs

Ls

(1.34)

The rotor voltages are linked to the stator’s active and reactive powers. This also means
that we can implement vector control since, close coupling effects aside, each axis can be
independently controlled, each with its own controller. (Figure 1.18)

Figure 1.18: Direct vector control of DFIG [16]

25



Chapter 1. Doubly-Fed Induction Generator (DFIG): State-of-the-art.

The blocks C1 and C2 in Figure (1.19) represent the active and reactive power con-
trollers. Their nature will be discussed in the upcoming chapters.

Figure 1.19: Direct vector control of DFIG

This method is referred to as the direct method because the power controllers directly
control the rotor voltages of the DFIG.

1.9 Conclusion

In this chapter, we’ve covered the basics of the Doubly Fed Induction Generator (DFIG).
We explained how it works and described its mathematical model. This model hinges
on the electrical and mechanical equations derived from Park’s transformation within
the rotating reference frame linked to the rotating field. Additionally, we provided an
overview of field-oriented control, which will be utilized throughout the rest of this thesis.

In the forthcoming chapter, we will explore intelligent neural control techniques to reg-
ulate active and reactive stator powers, improving the DFIG’s performance in real-world
applications regarding time response, steady-state error, and overall system stability.
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Chapter 2

Artificial Neural Networks (ANN)
Control of DFIG Powers.
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2.1 Introduction

Artificial neural networks (ANNs) represent a powerful computational technique that
emphasizes numerical learning over symbolic learning and arithmetic operations over logic-
based rules. Traditionally, ANNs have been employed in various domains, such as pattern
recognition, speech recognition, and optimization. However, their exceptional learning
capabilities make them highly suitable for process regulation and control.

This chapter focuses on the application of neural control to regulate the stator powers
of the Doubly-Fed Induction Generator (DFIG). The objective is to fine-tune the active
power to align with the turbine’s reference output, thereby maximizing the efficiency
of the wind energy system while dynamically adjusting the reactive power to maintain
optimal performance and achieve a desirable power factor on the stator side.

After introducing the neural control approach and detailing the structure and properties
of neural networks, we present simulation results and robustness tests to evaluate the
effectiveness of the neural control method. The results demonstrate the potential of
ANNs in enhancing the performance and reliability of DFIG-based wind energy systems.

2.2 Principle of Artificial Neural Networks

Artificial neural networks (ANNs) constitute a family of functions that enable the con-
struction of various models and controllers through learning. Inspired by the behavior of
a biological neural network, ANNs are composed of systems of interconnected nonlinear
operators organized in layers. (Figure 2.1) Each neuron receives one or more inputs, per-
forms a weighted sum of the inputs, adds a bias, and then applies an activation function
to produce an output.

Figure 2.1: Neural Networks structure.

This method is highly valued in fields where it is necessary to model complex, robust
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functions, requiring high adaptability and management of unstructured data.
Several application domains are feasible for ANNs, for example:

• Pattern recognition.

• Computer vision.

• Machine translation.

• Time series prediction.

• Dynamic system modeling.

• Image classification.

• Machine learning.

2.2.1 Brief History [17]

• 1943: McCulloch and Pitts present the first formal neuron.

• 1949: Hebb proposes a learning mechanism.

• 1958: Rosenblatt presents the first artificial neural network: the Perceptron.
The visual system inspires it and has two layers of neurons: perceptive and decision-
making. Widrow presented the ADALINE (ADAptive LINear Element) model dur-
ing the same period. This will be the basic model for multilayer networks.

• 1969: Minsky and Papert publish a critique of perceptrons, showing their limita-
tions, which decreases research on the subject.

• 1972: Kohonen presents his work on associative memories.

• 1982: Hopfield demonstrates the importance of using recurrent networks for un-
derstanding and modeling memory functions.

• 1986: Werbos’s backpropagation algorithm, which enables training the hidden lay-
ers of multilayer networks, becomes popular thanks to Rumelhart.

Neural networks have since been extensively studied, and numerous applications have
been found.
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2.2.2 Biological Neuron Topology

The human brain consists of two lateral hemispheres connected by the corpus callosum
and other axonal bridges. It weighs less than two kilograms and contains a trillion cells,
of which 100 billion are neurons organized into networks. Neurons are nerve cells that
can be broken down into four main parts (Figure 2.2) :

• Dendrites: These are the branches where other cells make synaptic contact and
signal reception occurs through the dendrites.

• Cell Body (Soma): This is the processing unit of the neuron.

• Axon: Messages accumulated in the cell body travel along the axon; information
transmission occurs via the axon.

• Synapses: These are the points of connection through which the cell communicates
with other cells, allowing signals to pass from one cell to another.

When stimulated, a neuron sends electrical impulses, or action potentials, to other
neurons. These impulses travel along the neuron’s single axon and are converted into
chemical signals at the contact points between neurons and synapses. When the accumu-
lation of excitations reaches a certain threshold, the neuron delivers an action potential
of approximately 100 millivolts and a duration of 1 millisecond. [18]

Figure 2.2: Neuron anatomy. [19]

2.2.3 Formal Neuron

A formal/artificial neuron is a very simple processor (simulated on a computer or im-
plemented on an integrated circuit) that roughly mimics the structure and function of a
biological neuron. The first version of the formal neuron, [20], developed by McCulloch
and Pitts, appeared in 1943.
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It is a binary automaton that performs a weighted sum of its inputs, known as the
potential, and compares this potential to a threshold (zero): if it is higher, the output is
+1, and the neuron is active; if it is lower, the output is -1, and the neuron is inactive.
[20] These days, different kinds of neurons work better for tasks like signal processing or
classification. Their output is not the sign of their potential but a nonlinear differentiable
function f of this potential, like a hyperbolic tangent.
The function in question is referred to as the activation function of the neuron (Figure
2.3).

Figure 2.3: Sketch of an artificial neuron. [21]

• The neuron’s inputs are (x1, x2, . . . , xn).

• Along with the inputs, the neuron receives a bias; typically, its value is set to 1.

• The weights are represented by (w0, w1, w2, . . . , wn).

• The product of weight and input gives the signal strength. [22]

• A neuron receives multiple inputs from various sources and produces a single output.
[22]

2.2.4 Activation Functions

Different transfer functions that can be used as neuron activation functions are listed
in Table (2.1).
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Table 2.1: Different transfer functions used as activation functions. [21]

Function Equation Description

Threshold (Hard Limit) f(x) =

0 if x < 0

1 if x ≥ 0
Outputs 0 or 1 based on the
input threshold

Linear f(x) = x Outputs the input directly
Sigmoid f(x) = 1

1+e−x Outputs a value between 0
and 1

The most commonly used activation functions are the ”threshold” (also known as ”hard
limit”), ”linear,” and ”sigmoid” functions. (Figure 2.4)

Figure 2.4: Activation functions: (a)-threshold; (b)-linear; (c)-sigmoid.

In our case, multilayer networks often use the log-sigmoid transfer function (logsig)
illustrated in Figure (2.5). [23]

Figure 2.5: sigmoid activation function. [23]
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2.3 Neural Network Architectures

The architecture of a neural network depends on the task to be learned. A neural
network generally consists of multiple layers of neurons, from inputs to outputs. There
are two main types of neural network architectures: feedforward and recurrent neural
networks.

2.3.1 Feedforward Neural Networks

The feedforward neural network is one of the most basic artificial neural networks. In
this ANN, the data or the input provided travels in a single direction. It enters the ANN
through the input layer and exits through the output layer, while hidden layers may or
may not exist. So, the feedforward neural network only has a front-propagated wave and
usually does not have backpropagation. [24]

2.3.1.1 Single-Layer Neural Networks

The structure of a single-layer network is such that neurons organized in the input are
fully connected to other neurons organized in the output by a modifiable layer of weights
(Figure 2.6).

Figure 2.6: Single-Layer Neural Network.

2.3.1.2 Multi-Layer Neural Networks

Neurons are arranged by layer. There are no connections between neurons in the same
layer; connections are made only with neurons in subsequent layers. Typically, each
neuron in a layer is only connected to all neurons in the next layer. This allows us to
introduce the concept of the direction of information (activation) flow within a network
and thus define the concepts of input and output neurons. By extension, the set of input
neurons is called the input layer, and the set of output neurons is called the output layer.
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Intermediate layers with no contact with the outside are called hidden layers. [25]
Figure (2.7) represents a feedforward neural network with a specific structure that is very
frequently used: it includes inputs, two hidden layers of neurons, and output neurons.
The neurons in the hidden layer are not connected to each other.
This structure is called a Multilayer Perceptron (MLP).

Figure 2.7: Multilayer Neural Network.

2.3.2 Recurrent Neural Networks

Unlike feedforward neural networks, where the connection graph is acyclic, recurrent
neural networks can have any connection topology. The Recurrent Neural Network saves
the output of a layer and feeds this output back to the input to better predict the outcome
of the layer. The first layer in the RNN is quite similar to the feedforward neural network,
and the recurrent neural network starts once the output of the first layer is computed.
After this layer, each unit will remember some information from the previous step to
perform computation as a memory cell. [24] (Figure 2.8).

Figure 2.8: Multilayer Neural Network.

In this thesis, we will use the Multilayer Perceptron (MLP) neural network architecture.
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2.4 Learning in Neural Networks

Learning in a neural network means changing its behavior to allow it to approach
a defined goal. This goal is typically the approximation of a set of examples or the
optimization of the network’s state based on its weights to achieve the optimum of a
predefined economic function. There are three main types of learning: supervised learning,
unsupervised learning, and reinforcement learning [26].

2.4.1 Supervised Learning

Supervised learning is the adaptation of a network’s synaptic coefficients (weights) so
that, for each example, the network’s output corresponds to the desired output.

2.4.2 Unsupervised Learning

Learning is unsupervised when the weights’ adaptation depends only on the network’s
internal criteria. Adaptation is made solely with input signals, with no error signal or
desired output being considered.

2.4.3 Reinforcement Learning

Learning is reinforcement-based when the neural network interacts with the environ-
ment. The environment rewards a satisfactory response from the network and assigns a
penalty otherwise. The network must discover the reactions that give it the maximum
rewards.

The choice of using a particular neural network architecture or learning type depends on
the application and the processing capabilities of the system on which these architectures
will be implemented. In our case, MultiLayer Perceptron (MLP) is a supervised learning
neural network.

2.5 Backpropagation

Backpropagation is currently the most commonly used rule for supervised learning in
neural networks; it is a technique for calculating derivatives that can be applied to any
different function structure. It is generally used for multilayer neural networks, also called
perceptrons. [27]
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2.5.1 Principle of Backpropagation

Consider a non-recurrent multilayer network with m inputs and n outputs, composed
of l layers (l− 1 hidden layers + output layer). The following equations give the states of
the neurons in layer k: [27]

Ok
i (t) = fk[S

k
i (t)] for i = 1, . . . , nk (2.1)

Sk
i (t) =

nk−1∑
j=0

W k
ijO

k−1
j (t) for k = 1, 2, . . . , l (2.2)

Where for layer k:

• fk: the activation function;

• nk: the number of neurons;

• Ok
i : the output of neuron i;

• W k
ij: the synaptic weight of the relation between neuron i in layer k and neuron j

in the previous layer k − 1. (Figure 2.9)

Figure 2.9: Sub/superscription of variables in feedforward NNs. [19]

A representative set of learning samples is available: a set of input/output pairs. The
objective is to adapt the weights W to minimize the mean value of the global quadratic
error over the entire learning set, expressed by: [27]

E =
1

2

T∑
t=1

E(t)E(t)t =
1

2

T∑
t=1

[yd(t)− y(t)][yd(t)− y(t)]t (2.3)

Where:
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• yd: is the desired output vector;

• y: is the output vector of the neural network;

• T : is the length of the learning set.

The learning operation begins with a random choice of the initial values of the weights.
At each step, the samples are presented to the network input. After propagation, the
network output and the corresponding global error are available.

By backpropagation of the global error, the error gradients for all weights are calculated,
and the parameters are adjusted in the direction opposite to these error gradients, for
example, by applying the following adaptation rule:

W k
ij(n) = W k

ij(n− 1) + ∆W k
ij(n) (2.4)

∆W k
ij(n) = −µ

∂E

∂W k
ij(n)

(2.5)

which is known as the MIT rule, steepest or gradient descent. [27]

The adjustment of biases is done in the same manner as the weights.

µ is the learning rate (positive constant), and n is the iteration number.

2.5.2 Learning Algorithm

Step 1:

• Initialize the weights W k
ij with small values, typically in the range [−1, 1].

Step 2:

• Present an example and calculate the output and the corresponding error using
equations (2.1), (2.2), (2.3), (2.4), and (2.5).

Step 3:

• Compute the partial derivatives of the error for each weight.

– For the first technique:

∗ Set ∆W k
ij(n) = [∆W k

ij(n)]P

∗ Go to Step 4

– For the second technique:
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∗ If P ̸= T , return to Step 2
∗ Otherwise, ∆W k

ij(n) =
∑T

t=1[∆W k
ij(n)]

Step 4:

• Adjust the parameters using equation (2.4).

Repeat Steps 2 to 4 until the maximum number of iterations is reached or the error
threshold is achieved. [19]

In its basic form, the backpropagation algorithm uses the technique of gradient descent,
which is among the simplest but is generally inefficient because it uses little information
about the error surface. In the literature, there are a large number of more sophisticated
techniques derived from it, some of which can be mentioned:

• Gradient descent with variable learning rate;

• Resilient backpropagation;

• Fletcher-Reeves algorithm;

• Quasi-Newton algorithm;

• Levenberg-Marquardt algorithm.

Among these, the Levenberg-Marquardt (LM) algorithm stands out for its compu-
tational speed compared to the basic backpropagation method. In our work, we opted for
the LM algorithm to exploit its capability to leverage second-order information, such as
the Hessian matrix or its approximation, thereby enhancing the training process efficiency.

2.6 Development of the Neural Controller

Before designing the neural networks, it is essential to construct the training dataset.
We collected several samples of input and output observations over a total duration of 5
seconds. The input and output variables were stored in input and output matrices. This
step allows the neural networks to use these matrices in the supervised learning process
to mimic the control law closely.

The two input signals and the target output are exported to the workspace. In our
application, we wrote a small code (see Appendix B) and employed the ”Neural Networks”
toolbox available in MATLAB [23] to create and train the MLP (Multilayer Perceptron)
neural network using the previously defined dataset.
Figure (2.10) illustrates our MLP network topology.
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Figure 2.10: Topology of the neural network.

Each neural network fulfils a well-defined function depending on its selected architec-
ture, such as the number of hidden layers and neurons in each hidden layer. The challenge
lies in finding the architecture that yields the best results. We conducted several tests
to determine the optimal network architecture to address this. We found that the most
effective choice was a neural network with one (1) input layer using ’logsig’, one (1) output
layer using ’purelin’, and two hidden layers containing ten (10) and twenty-five (25) neu-
rons respectively also using ’logsig’ and ’tansig’ sigmoid functions for activation (Figure
2.11).

Figure 2.11: MLP structure (1-10-25-1).
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It is also essential to determine other parameters of the neural network. Training
was achieved by presenting 564.888 examples to the network with a maximum error of
10−12 and a maximum iteration count of 1500. The training method was backpropaga-
tion, specifically the Levenberg-Marquardt (LM) algorithm. This algorithm is known for
its speed and excellent convergence towards a minimum quadratic error, especially for
function approximation problems with fewer network weights than a few hundred.

Additionally, a cross-validation approach was employed, where the dataset was divided
into three subsets: 70% for training, 15% for validation, and 15% for testing. This allowed
for a thorough evaluation of the model’s performance and generalization ability

Figure (2.12) and Figure (2.13) show the error evolution over the iterations for both
Active and reactive power’s MLP.

The results are pretty good considering the large size of the dataset (564888x1 double)
for both the input and the output of each. The training process achieves an error of 0, 0086
at the 200th iteration for Active Power and 0, 0027 at the 480th iteration for Reactive
Power, indicating good learning performance.

Figure 2.12: MLP learning for Active Power.
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Figure 2.13: MLP learning for Reactive Power.

Discussion

• The best validation performance for both models is remarkably low, indicating a
robust mean squared error (MSE) in the order of (10−3); This low MSE signifies
strong performance on the validation set, reflecting the network’s ability to gener-
alize effectively.

• The training error, represented by the blue line, shows a consistent decrease, stabiliz-
ing at a minimal value. This trend highlights the effectiveness of the LM algorithm
in minimizing the error during the training phase.

• The validation error (green line) closely follows the training error, also stabilizing
at a low value. This behavior suggests that the network maintains a high level of
generalization, avoiding overfitting to the training data.

• The test error (red line) remains low, further corroborating the model’s robustness
and ability to perform well on unseen data.

• Both models terminated training after reaching the optimal error rates at 200 and
480 epochs, respectively. This early stopping criterion prevents overfitting and
conserves computational resources, ensuring efficient training processes

To complete the analysis, we also present the regression plots for both Active Power
(Figure 2.14) and Reactive Power (Figure 2.15) . The regression coefficients (R) values
indicate the goodness of fit of our regression model to the data.
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Figure 2.14: Regression plot for Active Power.

Figure 2.15: Regression plot for Reactive Power.

These values indicate the goodness of fit of our regression model to the data. For Active
Power, the training R value is 0.9793, and for Reactive Power, it is 0.9829.
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These high R values suggest that our regression model provides a solid fit for the training
data, indicating the effectiveness of our ANN controller in capturing the relationship
between the input and output variables.

To summarize, Figure (2.16) illustrates a flowchart of the general principles and steps
in designing the ANN controller.

Figure 2.16: ANN Design Flowchart.

2.6.1 Simulation Results

To validate the direct control technique for active and reactive powers of the DFIG
using ANN controllers, a simulation study was conducted in the SIMULINK/MATLAB
environment. (Figure 2.17)
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Figure 2.17: Simulink diagram of DFIG powers control using ANN controller.

To evaluate our control chain, the regulation of this system uses reference power values
shown in the table below:

Table 2.2: Active and reactive power references.

Time Interval (s) Pref (W) Qref (Var)
[0s − 3s] -4000 0
[3s − 4s] -7500 0
[4s − 5s] -7500 -2000

The parameters of the DFIG used for the simulation are detailed in Appendix A. Several
tests were performed to assess the influence of the chosen neural control on the system’s
dynamic and static performance. The tests aimed to evaluate if the ANN controller meets
key requirements such as:

• Good system response without overshoot;

• Minimal steady-state error with effective disturbance rejection;

• Robustness against parametric variations of the DFIG.

44



Chapter 2. Artificial Neural Networks (ANN) Control of DFIG Powers.

2.6.1.1 Setpoint Tracking Test

Figure 2.18: Active and Reactive powers direct control with ANN Controller.

Interpretation:

The simulation results depicted in Figure (2.18) demonstrate that the DFIG system,
controlled by the ANN controller, successfully tracks the setpoint references for both
active power (Ps) and reactive power (Qs).

• The active power (Ps) quickly aligns with the reference (Pref) with a slight initial
deviation. This initial error is rapidly corrected, indicating a quick response time.

• When the reference power changes at 3 seconds from -4000 W to -7500 W, the
system adapts promptly. The detailed zoom in the plot highlights a small transient
response, which is swiftly damped out, showcasing the system’s ability to handle
setpoint changes with minimal overshoot and negligible steady-state error.
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• Similarly, the reactive power (Qs) follows its reference (Qref) effectively from the
beginning. The initial response shows a minor deviation, which is corrected swiftly.

• When the reactive power setpoint changes at 4 seconds to -2000 Var, the system
responds quickly and accurately. The zoomed-in section illustrates a brief transient
that is quickly dampened, demonstrating the controller’s ability to handle reactive
power adjustments efficiently.

• The results also highlight the decoupling between the d-axis and q-axis controls.
Changes in active power do not induce oscillations in reactive power and vice versa.
This is crucial for the stability and performance of the DFIG system, ensuring that
the control of one power component does not adversely affect the other.

• The system shows a minimal response time, rapidly reaching the setpoints without
significant delays; both active and reactive power settle closely to their respective
references, with almost negligible steady-state error; the plots show an absence
of significant overshoot during setpoint changes, contributing to the stability and
reliability of the control system.

In conclusion, the ANN controller demonstrates efficient control over the DFIG system,
providing precise setpoint tracking for both active and reactive powers with minimal
transient effects, excellent decoupling of control axes, and rapid adaptation to setpoint
changes.

2.6.1.2 Robustness Test

a) To evaluate the system’s ability to reject disturbances and track reference signals, a
disturbance was introduced at (t = 2.5 s). This disturbance corresponds to a sudden
step change in the rotational speed of the DFIG shaft, increasing from 140 rad/s
to 185 rad/s. The objective was to verify if the system could compensate for this
disturbance and maintain the reference value trajectory.
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Figure 2.19: Active and Reactive powers after applying a disturbance (ANN).

Interpretation: The results demonstrate the DFIG system’s ability to rapidly
track reference signals for both active and reactive powers, even under disturbance
conditions. At t = 2.5 s, a sudden step change in the rotational speed of the DFIG
shaft induces a temporary deviation in stator power outputs. However, the system
quickly compensates for this disturbance, with both active (Ps) and reactive (Qs)
powers realigning with their respective reference signals within milliseconds. This
quick realignment, without additional overshoot, underscores the robustness of the
ANN controller.

Furthermore, the test reveals effective decoupling between the d and q control axes.
In other controllers, changes in active power minimally influence reactive power and
vice versa, but here, this wasn’t the case, indicating that the controller successfully
isolated the two power components. This robustness in maintaining decoupled con-
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trol actions is crucial for ensuring stable and accurate power regulation in varying
operational conditions.

Overall, the system’s ability to handle disturbances and swiftly return to the desired
performance metrics highlights the efficacy of the ANN controller in maintaining
robust and reliable control over the DFIG’s power outputs.

b) Given that the machine’s parameters are not always precisely known and can vary
with operating conditions (e.g., heating, load variation, magnetic saturation), an-
other robustness test included varying the parameters of the DFIG model. Figure
(2.20) shows the behavior of the direct control when the rotor resistance Rr is
increased by 100% of its nominal value, simulating overheating of the DFIG.

Figure 2.20: Active and Reactive powers after changing the parameter Rr (ANN).

Interpretation: The simulation results reveal that a 100% increase in rotor resis-
tance Rr caused only a slight increase in response time and error for both active
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and reactive powers. Despite the significant parametric variation, the ANN con-
troller effectively maintained control, demonstrating its good robustness. The active
power (Ps) and reactive power (Qs) continued to follow their reference signals with
minimal performance degradation closely.

The slight increase in response time and error indicates that while the system is
sensitive to extreme changes in rotor resistance, the overall impact on performance
is minimal. This resilience is critical in practical applications where parameter
variations are inevitable due to factors like overheating or wear and tear. The
ability of the ANN controller to adapt and maintain effective control under these
conditions underscores its robustness and reliability, making it a suitable choice for
the DFIG power control in real-world scenarios.

2.7 Conclusion

In this chapter, we introduced artificial neural networks, their principles, structure,
and various architectures. We designed a Multilayer perceptron Artifical neural network
controller for the field-oriented control of active and reactive powers of the DFIG. The re-
sults were very promising, demonstrating the controller’s effectiveness in terms of response
time, steady-state error, and robustness against disturbances and parametric variations.
However, some disadvantages of the ANN controller were identified, such as the sensitiv-
ity to the quality and quantity of training data (in our case, the data set is relatively too
large.) and the potential for over-fitting if not adequately regularized.

To counter these issues, the next chapter will explore the use of an ANFIS controller, a
control system based on neural networks and fuzzy logic, aiming to leverage the strengths
of both approaches for improved performance.
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3.1 Introduction

The need for advanced control techniques in wind energy conversion systems, particu-
larly those utilizing Doubly-Fed Induction Generators (DFIGs), has become increasingly
evident in the quest to enhance performance and reliability. While Artificial Neural
Networks (ANNs) have shown considerable promise in controlling the active and reactive
powers of DFIGs, their limitations, such as sensitivity to initial conditions and dependency
on training data quality, necessitate the exploration of alternative control strategies. This
chapter introduces an alternative approach: the Adaptive Neuro-Fuzzy Inference System
(ANFIS) as a robust and versatile control methodology for DFIGs.

In this chapter, we begin by discussing the fundamental principles of ANFIS, including
its structure, functioning, and advantages over traditional control methods. We then
provide a comprehensive description of the design and implementation of an ANFIS-
based controller specifically tailored for the direct control of active and reactive powers
in DFIGs. Following this, simulation results are presented to evaluate the performance of
the ANFIS controller under various operating conditions, disturbances, and parametric
variations. A comparative analysis with the previously studied ANN controller is also
included to highlight the relative merits and potential enhancements offered by the ANFIS
approach.

Through this exploration, we aim to demonstrate that ANFIS can significantly im-
prove the robustness, adaptability, and overall control quality of DFIG systems, thereby
contributing to more efficient and reliable wind energy generation.

3.2 Definition

Adaptive Neuro-Fuzzy Inference System (ANFIS) combines the strengths of artificial
neural networks (ANN) and fuzzy logic to create a powerful hybrid approach for handling
complex, non-linear systems (Jang 1993). Fuzzy logic excels at transforming qualita-
tive human knowledge into precise quantitative analysis. However, it lacks a structured
method for transforming human thought processes into a rule-based fuzzy inference sys-
tem (FIS) and requires considerable time to fine-tune membership functions (MFs) (Jang
1993). On the other hand, ANN demonstrates superior learning capabilities, allowing
it to adapt effectively to its environment [28]. By integrating these two methodologies,
ANFIS employs ANN to automatically adjust the MFs, thereby enhancing the efficiency
and accuracy of the fuzzy logic rule determination process.

ANFIS leverages the adaptive learning capabilities of neural networks and the trans-
parent, rule-based reasoning of fuzzy logic systems. This hybrid approach offers a robust
control strategy capable of managing the non-linearities, uncertainties, and complex dy-
namics inherent in the operations of Doubly-Fed Induction Generators (DFIGs).
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Figure 3.1: Principle of Neuro-fuzzy.

3.3 Advantages and Disadvantages of Fuzzy Logic &
Neural Networks

The simultaneous use of neural networks and fuzzy logic allows us to leverage the
advantages of both methods: the learning capabilities of the former and the readability
and flexibility of the latter.

To summarize the contributions of neuro-fuzzy systems, Table (3.1) presents the ad-
vantages and disadvantages of fuzzy logic and neural networks.

Neuro-fuzzy systems are created to synthesize the advantages and overcome the dis-
advantages of neural networks and fuzzy systems. Learning algorithms can be employed
to determine the parameters of fuzzy systems. This effectively automates the creation or
improvement of a fuzzy system using methods specific to neural networks. An important
aspect is that the system remains interpretable in terms of fuzzy rules, as it is based on
a fuzzy system.

Table 3.1: Comparison between Fuzzy Logic and Neural Networks

Neural Networks Fuzzy Logic
Advantages

No rule-based knowledge is required Prior knowledge of rules can be used
No mathematical model required No mathematical model required
Various learning algorithms available Simple interpretation and implementa-

tion
Disadvantages

Black box (lack of traceability) Cannot learn
Adaptation to different environments is
difficult and requires relearning

Rules must be available

Internal knowledge cannot be used
(learning from scratch),

Difficult adaptation to changing envi-
ronments

No guarantee of learning convergence No formal methods for adjustment
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Neuro-fuzzy systems combine the strengths of neural networks and fuzzy logic to create
a powerful and flexible approach to modeling and control. They can learn and adapt like
neural networks while maintaining the interpretability and ease of use associated with
fuzzy logic systems.

3.4 Fuzzy Inference System

A Fuzzy Inference System (FIS) is built on three main components: basic rules (which
consist of ”If-Then” fuzzy logic rules), fuzzy set membership functions, and reasoning
mechanisms that use fuzzy inference techniques to produce outputs from the basic rules
[28]. Figure (3.2) illustrates the structure of the fuzzy inference system.

FIS operates by converting the input containing actual values into fuzzy values through
the process of fuzzification. The membership function used in this process assigns fuzzy
values ranging between 0 and 1.

Figure 3.2: Fuzzy Inference System

The basic rules and databases together form the knowledge base, which is crucial for
decision-making. The database typically includes definitions such as parameters of fuzzy
sets for every linguistic variable. Developing a database involves defining a universe,
determining the number of linguistic values for each variable, and establishing membership
functions. Based on the rules, it contains fuzzy logic operators and conditional ”If-Then”
statements.

Basic rules can be derived either from human expertise or through automatic generation
using numerical input-output data. There are several types of FIS, with the Takagi–
Sugeno and Mamdani models being the most common. The Takagi–Sugeno model is
particularly prevalent in the application of ANFIS methods [28].
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3.5 Adaptive Network

An adaptive network is a type of feed-forward neural network with multiple layers, as
shown in Figure (3.3).

Figure 3.3: Adaptive Network. [27]

These networks often use supervised learning algorithms during the learning process.
An adaptive network’s architecture consists of several adaptive nodes interconnected di-
rectly without associated weight values. Each node performs different functions and tasks,
and the output depends on the incoming signals and parameters available at the node.
The learning rule used affects the node parameters, which in turn helps minimize errors
in the adaptive network’s output [28].

3.6 ANFIS Architecture

As introduced in the definition, Adaptive Neuro-Fuzzy Inference System (ANFIS) in-
tegrates the strengths of Artificial Neural Networks (ANN) and Fuzzy Inference Systems
(FIS). ANFIS operates within the framework of the Sugeno fuzzy inference system. Its
architecture resembles that of a multilayer feedforward neural network, with the primary
distinction being that the links in ANFIS indicate the flow of signals without associated
weights [28].

To illustrate the basic concept of ANFIS, consider two input variables, x and y, and
one output variable, f . The system is governed by two fuzzy if-then rules as follows:

• Rule 1: If x is A1 and y is B1, Then f1 = p1x+ q1y + r1

• Rule 2: If x is A2 and y is B2, Then f2 = p2x+ q2y + r2

Here, A1, A2, B1, B2 are the membership functions for inputs x and y, respectively, and
p1, q1, r1, p2, q2, r2 are the parameters identified through training [29].

54



Chapter 3. Adaptive Neuro-Fuzzy Inference System (ANFIS) Control of
DFIG Powers.

3.6.1 ANFIS Layers

The ANFIS architecture is composed of five layers, each performing a distinct function
in the fuzzy inference process. These layers are illustrated in Figure (3.4).

Figure 3.4: Sugeno fuzzy model and the corresponding ANFIS architecture. [27]

3.6.1.1 Layer 1: Fuzzification

In this layer, each node represents a membership function that outputs the degree of
membership of the input variable. The membership functions can be of various types,
such as Gaussian or bell-shaped functions. The output of each node is calculated as: [28]

O1
i = µAi

(x), i = 1, 2 (3.1)

O1
i = µBi−2

(y), i = 3, 4 (3.2)

Where µAi
and µBi−2

represent the membership functions for the fuzzy sets Ai and Bi .
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3.6.1.2 Layer 2: Rule Firing Strengths

This layer contains fixed nodes that calculate the firing strength of each rule by mul-
tiplying the corresponding membership values from Layer 1. The output of each node is
given by: [29]

O2
i = wi = µAi

(x) · µBi
(y), i = 1, 2 (3.3)

Where wi represents the firing strength of the i-th rule.

3.6.1.3 Layer 3: Normalization of Firing Strengths

The nodes in this layer are also fixed. Each node normalizes the firing strength by
dividing the firing strength of each rule by the sum of all firing strengths: [28]

O3
i = w̄i =

wi∑
j wj

(3.4)

This normalization ensures that the firing strengths are proportionate.

3.6.1.4 Layer 4: Defuzzification

This layer contains adaptive nodes that calculate the contribution of each rule to the
overall output. The output of each node is determined by: [29]

O4
i = w̄ifi = w̄i(pix+ qiy + ri) (3.5)

Where w̄i is the normalized firing strength from Layer 3, and pi, qi, ri are the consequent
parameters.

3.6.1.5 Layer 5: Output Layer

The single node in this layer is fixed and computes the final output by summing the
contributions from all rules: [28]

O5
i =

∑
i

w̄ifi (3.6)

This sum provides the overall output of the ANFIS model.

ANFIS’s layered approach combines fuzzy logic’s interpretability with neural networks’
learning capabilities, making it a robust tool for modeling and controlling complex sys-
tems.
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3.7 Learning Algorithm of ANFIS

The learning algorithm of the Adaptive Neuro-Fuzzy Inference System (ANFIS) uses
neuro-adaptive learning techniques to model data sets effectively. These techniques adjust
the membership function parameters to match the input/output data best, enhancing the
model’s accuracy during the learning process [30].

To address real-world problems efficiently, the ANFIS learning algorithm tunes all
adjustable parameters to make the ANFIS output match the training data. A hybrid
learning algorithm, which combines the least squares method (LSM) and the gradient
descent method (GDM), is used to improve convergence. In the forward pass, LSM iden-
tifies the best values for the consequent parameters in Layer 4 while keeping the premise
parameters fixed. The gradient vector helps measure how well the fuzzy inference system
models the input/output data [31].

Once the optimal consequent parameters are determined, the backward pass begins. In
this phase, errors are propagated back through the network, and the premise parameters
are updated using the gradient descent method. This two-pass hybrid algorithm combines
LSM for consequent parameter optimization and GDM for premise parameter tuning,
effectively merging aspects of backpropagation and least squares estimation [30].

The table below summarizes the two passes in the hybrid learning algorithm for ANFIS:

Forward Pass Backward Pass
Premise Parameters Fixed Gradient Descent

Consequent Parameters Least Squares Fixed
Signals Node Outputs Error Signals

Table 3.2: Passes of the hybrid learning algorithm for ANFIS [30].

In this batch training process, the output error is used to adjust the premise pa-
rameters using a standard backpropagation algorithm, minimizing the mean square error
function:

E(θ) =
m∑
i=1

(zi − aTi θ)
2 = eT e = (z − Aθ)T (z − Aθ) (3.7)

where e = z − Aθ represents the error vector for a specific choice of θ. Minimizing
this squared error using the least squares estimator (LSE) is fundamental to the hybrid
algorithm, ensuring efficient training of the ANFIS [30].

Overall, the hybrid learning algorithm distinguishes between linear and nonlinear pa-
rameters, iteratively updating nonlinear parameters through gradient descent and optimiz-
ing linear parameters through least squares. This approach facilitates faster convergence
and improves the accuracy of the ANFIS model.
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3.8 Application of ANFIS Controller in DFIG

An Adaptive Neuro-Fuzzy Inference System (ANFIS) controller was implemented to
enhance the control of the Doubly-Fed Induction Generator (DFIG). The ANFIS approach
combines the learning capabilities of neural networks with the fuzzy logic inference system,
providing a suitable control strategy for the active and reactive powers in our DFIG
system.

Figure 3.5: ANFIS Controller structure for the DFIG system.

3.8.1 Data Collection and Preprocessing

Similar to the ANN controller development, the first step in designing the ANFIS
controller involved constructing the training dataset. From the same first controller used
to train ANN previously, we collected several samples of input and output observations
over a total duration of 5 seconds (564888x1 double). The input and output variables were
stored in input and output matrices, respectively, which were then used in the supervised
learning process of the ANFIS model.

3.8.2 Initial FIS Structure Generation

To generate the initial FIS structure, a grid partitioning method was employed. This
method divides the input space into fuzzy regions defined by membership functions. And a
rule is created for every possible combination of these MFs. Each rule’s output corresponds
to one output MF.
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The structure of ANFIS consists of a single input (error e) and a single output. The
number of epochs (iterations) used in this experiment is 100, with an error tolerance
of 0.0001. The input was given ten (10) membership functions, providing a detailed
representation of the input space. (Figure 3.6)

Figure 3.6: ANFIS Structure.

3.8.3 ANFIS Training in MATLAB

The ANFIS controller was designed and trained using a script that we’ve written (see
Appendix B) and the ANFIS toolbox available in MATLAB. (Figure 3.7)

Figure 3.7: ANFIS GUI ’anfisedit’ in MATLAB.
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The training process involved adjusting the parameters of the membership functions
and the fuzzy rules to minimize the error between the predicted and actual outputs. For
this purpose, the hybrid learning algorithm, combining the least squares method and
gradient descent (backpropagation), was used. The least squares method optimizes the
consequent (output) parameters, while backpropagation fine-tunes the premise (input)
parameters.

During training, the ANFIS model iteratively adjusted its parameters to reduce the
mean squared error (MSE) between the predicted and actual outputs. The process con-
tinued until the error converged to a minimal value, indicating a well-trained model.

After training, the ANFIS produced a new FIS, which was tested using the ’evalfis’
function to predict the outputs based on the input data. The evaluation process involved
feeding the input data into the trained ANFIS model and comparing the predicted outputs
with the actual outputs. This step is crucial for assessing the model’s performance and
its ability to generalize to new, unseen data.

Figure 3.8: Training Data vs ANFIS Output.
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Figure (3.8) illustrates this comparison: training data points are represented by circles,
and the new FIS output points are depicted by stars. The circles and stars appear al-
most superimposed, indicating minimal adjustments made by the ANFIS during training.
While these adjustments are not easily visible in the graph, they are evident in the new
FIS’s membership functions, where subtle modifications were made to the MFs and rules
during the training process.

The validation performance of the ANFIS model indicated a low mean squared er-
ror (MSE), 0.00035 for Active Power and 0.00057 for Reactive Power, suggesting strong
generalization to the validation set. (Figure 3.9)

Figure 3.9: ANFIS controller training results : (a)- Active Power, (b)-Reactive Power.

To complete the analysis, we also present the regression plots for both active and reac-
tive powers. The regression coefficients (R) indicate the goodness of fit of our regression
model to the data. (Figure 3.10)

Figure 3.10: Regression plots: (a) Power, (b)-Reactive Power.

These values indicate the goodness of fit of our regression model to the data.
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For Active Power, the training R value is 0.989, and for Reactive Power, it is 0.99.
These high R values suggest that our regression model provides a solid fit for the training
data, indicating the effectiveness of our ANFIS controller in capturing the relationship
between the input and output variables.

To summarize, Figure (3.11) illustrates a flowchart of the general principles and steps
in designing the ANFIS controller.

Figure 3.11: ANFIS Algorithm Flowchart.

3.8.4 Simulation results

The numerical simulation of our model was conducted in the MATLAB/SIMULINK
environment, with the parameters of the DFIG detailed in Appendix A.
Below, in Figure (3.12), we present our Simulink implementation of active and reactive
powers control of the DFIG using ANFIS controllers.
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We use two neuro-fuzzy controllers, one for active power control and the other for
reactive power control. Both networks have a single input, which is the difference between
the reference power and the measured power. The outputs of the two networks represent
the control applied to the DFIG, which is Vqr (for the first network) and Vdr for the second
network.

Figure 3.12: Simulink diagram of DFIG powers control using ANFIS.

This step aims to control the doubly-fed induction generator using neuro-fuzzy con-
trollers. Various tests will be applied to demonstrate the performance of this control
method.

3.8.4.1 Setpoint Tracking Test
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Figure 3.13: Active and Reactive powers direct control with ANFIS Controller.

Interpretation: Based on the curves in Figure (3.13), it is evident that the ANFIS
controller achieves excellent decoupling between the active and reactive stator power com-
ponents, maintaining both at their desired values. This controller demonstrates a small
but significant improvement over the ANN controller introduced in the previous chapter.
The enhancements include rapid response during transient states and setpoint changes,
no overshoot, and a near-zero error between the setpoint values and the measured values.

3.8.4.2 Robustness Test

a) To evaluate the system’s ability to reject disturbances and track reference signals,
a disturbance was introduced at (t = 2.5 s). This disturbance corresponds to a
sudden change in the rotational speed of the DFIG shaft, increasing from 140 rad/s
to 185 rad/s. The objective was to verify if the system could compensate for this
disturbance and maintain the reference value trajectory.
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Figure 3.14: Active and Reactive powers after applying a disturbance (ANFIS).

Interpretation: The active and reactive powers exhibit perfect superposition with
their reference signals without any additional overshoot. Notably, the decoupling
between the two control axes (d and q) remains unaffected by the disturbance,
highlighting the robustness of the controller and its convenience for direct vector
control.

At ( t = 2.5 , s ), the disturbance impacts the stator powers. Still, both active and re-
active powers swiftly realign with the reference signal trajectory within milliseconds,
demonstrating the ANFIS controller’s superior disturbance rejection capabilities.

b) To verify the robustness of the ANFIS controller against parameter variations, we
conducted the same simulation for power control with a 100% variation in rotor
resistance (2×Rr).
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Figure 3.15: Active and Reactive powers after changing the parameter Rr (ANFIS).

Interpretation: The results in Figure (3.15) clearly indicate no undesirable ef-
fects on the dynamic responses during parameter variations of the DFIG. The plots
for the original Rr and the variation 2×Rr are almost identical. This observation
underscores the robustness of the ANFIS controller in handling parametric varia-
tions. The controller effectively maintains system stability and performance despite
changes in machine parameters. Moreover, we note that the decoupling between
control variables also remains unaffected by these variations. Such robustness is
essential for ensuring reliable and efficient operation in practical applications where
parameter fluctuations are inevitable.
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3.9 Comparative Study

3.9.1 Controllers Performance

In this section, we compare the performance of Artificial Neural Network (ANN) and
Adaptive Neuro-Fuzzy Inference System (ANFIS) controllers in controlling the active and
reactive powers of a Doubly Fed Induction Generator (DFIG). The comparison is based
on several key metrics, including training speed, number of epochs required, regression
coefficient (R), and Root Mean Square Error (RMSE).

Table (3.3) and Table (3.4), respectively, present the comparison of ANN and ANFIS
controllers based on the metrics for active and reactive power control.

Table 3.3: Comparison of ANN and ANFIS Controllers for Active Power Control

Metric ANN ANFIS
Training Speed (s) 95 458
Number of Epochs 200 100
Regression Coefficient (R) 0.979 0.98
RMSE 0.0086 0.00035

Table 3.4: Comparison of ANN and ANFIS Controllers for Reactive Power Control

Metric ANN ANFIS
Training Speed (s) 142 893
Number of Epochs 480 100
Regression Coefficient (R) 0.982 0.99
RMSE 0.0027 0.00057

Discussion

For active power control, the ANN controller requires 200 epochs to converge, while the
ANFIS controller requires only 100 epochs. This indicates that ANFIS is more efficient in
terms of the learning process, converging faster than ANN. However, this efficiency comes
at the cost of training speed, with ANN completing the training in 95 seconds compared to
458 seconds for ANFIS. This significant difference suggests that ANN is computationally
more efficient per epoch.

Despite the faster training speed of ANN, the performance in terms of accuracy shows
a nuanced picture. The regression coefficient for ANN is 0.979, slightly lower than the
0.98 achieved by ANFIS. Similarly, the RMSE for ANN is 0.0086, higher than the 0.00035
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for ANFIS. These results indicate that while ANN trains faster, ANFIS provides slightly
better accuracy and lower prediction error for active power control.

For reactive power control, the contrast between ANN and ANFIS becomes more pro-
nounced. The ANN controller requires 480 epochs to converge, significantly more than
the 100 epochs required by the ANFIS controller. In terms of training speed, ANN again
demonstrates superior computational efficiency, completing training in 142 seconds com-
pared to 893 seconds for ANFIS.

Accuracy metrics further underscore the differences: ANN achieves a regression coeffi-
cient of 0.982 and an RMSE of 0.0027, while ANFIS achieves a regression coefficient of
0.99 and an RMSE of 0.00057. This illustrates that ANFIS not only converges faster but
also provides substantially better accuracy and lower error for reactive power control.

The choice between ANN and ANFIS controllers involves balancing training speed,
convergence efficiency, and accuracy. ANN’s faster training speed is advantageous in sce-
narios where computational resources or time are limited. This speed advantage, however,
is offset by the need for more epochs and slightly lower accuracy compared to ANFIS.
ANFIS, on the other hand, excels in accuracy and efficiency of convergence, making it
better suited for applications where precision is paramount. However, its longer train-
ing times indicate a higher computational burden, which might be a limiting factor in
real-time or resource-constrained environments.

3.9.2 Control Results

As shown in the previous chapter, we initially implemented an Artificial Neural Net-
work (ANN) controller to enhance the performance of the direct vector control system.
The ANN controller’s learning capabilities allow it to effectively manage non-linearities,
resulting in improved system performance in terms of regulation accuracy and response
time.

To optimize the control strategy further, we subsequently implemented an Adaptive
Neuro-Fuzzy Inference System (ANFIS) controller in this chapter. The ANFIS controller
integrates the strengths of both neural networks and fuzzy logic, providing superior per-
formance through adaptive learning and precise real-time adjustments.

The results obtained from the ANN and ANFIS controllers will be compared with those
of the conventional PI controller to demonstrate their advantages better.

Figure (3.16) illustrates the comparison between the control results of active and reac-
tive powers; it highlights a substantial decrease in the response time of active and reactive
powers, as well as an absence or quasi-absence of overshoot and a nearly negligible error
when employing the intelligent approaches.
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Figure 3.16: Comparison between PI, ANN, and ANFIS for Active and Reactive powers
control.

Tables (3.5) and (3.6) present a comparison of the performance metrics for Classical PI,
ANN, and ANFIS controllers in controlling the active and reactive powers, respectively.
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Controller Response Time Overshoot Steady-state Error
Classical PI 40 ms 2% 0.1%

ANN 10 ms 0% 0.09%
ANFIS 5 ms 0% 0.05%

Table 3.5: Control results with Classical PI, ANN, and ANFIS Controllers for Active
Power

Controller Response Time Overshoot Steady-state Error
Classical PI 60 ms 11% 0.125%

ANN 10 ms 0.35% 0.1%
ANFIS 3 ms 0% 0.04%

Table 3.6: Control results with Classical PI, ANN, and ANFIS Controllers for Reactive
Power

Discussion

The comparative analysis of the control strategies for the DFIG, as illustrated in Tables
(3.5) and (3.6), underscores the superior performance of the ANFIS controller in terms
of response time, overshoot, and steady-state error for both active and reactive power
control. The ANFIS controller demonstrates the fastest response times, with 5 ms for
active power and 3 ms for reactive power, significantly outperforming both the ANN
and PI controllers. This rapid response is crucial for adapting to dynamic changes and
maintaining system stability.

Moreover, the ANFIS controller achieves zero overshoot in both active and reactive
power control, a critical factor for preventing system stress and ensuring stable operation.
In contrast, the PI controller shows significant overshoot, particularly in reactive power
control (11%), which indicates a less precise handling of dynamic conditions.

In terms of steady-state error, the ANFIS controller again leads with the lowest values,
highlighting its precision in maintaining desired outputs. While the ANN controller also
shows improvements over the PI controller, it is still slightly less accurate than ANFIS,
particularly in reactive power control.

Overall, the ANFIS controller’s combination of neural network learning capabilities and
fuzzy logic’s adaptability allows it to effectively manage the complexities of DFIG control,
outperforming both the classical PI and ANN controllers in various critical performance
metrics.
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3.10 Conclusion

In this chapter, we introduced an advanced intelligent vector control approach for the
doubly fed induction generator (DFIG) using a neuro-fuzzy controller. Our designed con-
trol system demonstrated superior performance in tracking reference signals accurately.
The results indicate that the ANFIS controller not only achieves highly satisfactory ref-
erence tracking but also significantly enhances system dynamics compared to the ANN
controller.

Additionally, a comprehensive comparative study was conducted at the end of this
chapter to evaluate the controllers’ performance. This study compared the number of
epochs necessary, training time, and regression coefficients between the ANN and ANFIS
controllers. The results demonstrated that ANFIS requires fewer epochs and less training
time while achieving higher regression coefficients, indicating better training efficiency
and accuracy.

In terms of control results, the comparative analysis showed that both ANN and ANFIS
controllers significantly outperformed the conventional PI controller regarding overshoot,
response time, and steady-state error. Among the intelligent controllers, ANFIS demon-
strated slightly better performance than ANN, particularly in minimizing overshoot and
achieving faster settling times.

In conclusion, the proposed ANFIS controller offers a highly effective and robust control
strategy for vector-controlled generators. Its ability to deliver high dynamic performance
and adapt to varying parameters makes it a valuable asset for modern power systems,
providing a viable and advanced alternative to traditional control methods.
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General Conclusion

This thesis aimed to develop and validate advanced control strategies for a doubly-fed
induction generator (DFIG) used in wind energy conversion systems. The research encom-
passed the application of two intelligent control techniques to enhance the performance
and reliability of DFIG-based wind turbines.

In Chapter 1, we provided an in-depth review of DFIG configurations, operating modes,
and working principles, setting the stage for the control strategies explored in the subse-
quent chapters.

Chapter 2 focused on the implementation and analysis of artificial neural network
(ANN) control for DFIGs. We detailed the structure and operation of ANN controllers,
their training processes, and their application to DFIG control. The results indicated
that ANN control offers good dynamic performance and robustness compared to known
conventional methods.

Chapter 3 introduced the adaptive neuro-fuzzy inference system (ANFIS) control for
DFIGs. This chapter detailed the ANFIS architecture, learning algorithms, and appli-
cation to DFIG control. The simulation results demonstrated that ANFIS control out-
performs the ANN controller, providing superior tracking accuracy and robustness under
varying operational conditions.

Perspectives

The successful implementation of advanced control strategies for DFIGs in this study
opens several avenues for future research and development:

• Using deep learning control strategies that can be more suitable for such large
datasets typically available in wind energy systems.

• Exploration of hybrid control systems combining multiple intelligent techniques to
leverage their complementary strengths.

• Experimental validation of the proposed control strategies using hardware imple-
mentations to bridge the gap between simulation and real-world application.

• Investigation of the integration of these advanced control techniques with emerging
technologies such as IoT and smart grids to optimize overall system performance
and reliability.

This research contributes to the field of wind energy by demonstrating the potential of
advanced control strategies to improve the efficiency and reliability of DFIG-based wind
turbines, paving the way for more robust and sustainable renewable energy solutions.
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Appendix A

Parameters of the DFIG and Wind
Turbine

In this appendix, we provide a detailed listing of the parameters used in our study for
the Doubly Fed Induction Generator (DFIG) and the attached wind turbine.

Parameter Symbol Value
DFIG Parameters

Nominal Power Pn 8.5 kW
Supply Voltage Vs 220V/380V
Supply Frequency f 50 Hz
Number of Pole Pairs p 2
Stator Phase Resistance Rs 0.455 Ω

Rotor Phase Resistance Rr 0.62 Ω

Stator Phase Inductance Ls 0.084 H
Rotor Phase Inductance Lr 0.081 H
Mutual Inductance Msr 0.078 H
Rotor Inertia Moment Jr 0.3125 Kg.m2

Friction Coefficient fg 6.73×10−3 N.m.s−1

Wind Turbine Parameters
Nominal Power Pn 10 kW
Number of Blades P 3
Blade Diameter R 3 m
Gearbox Ratio G 5.4
Turbine Inertia Moment Jturbine 3.1959 Kg.m2

Viscosity Coefficient fturbine 0.0073 N.m.s−1

Table A.1: Parameters of the DFIG and Wind Turbine
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Matlab Scripts

1 % REACTIVE POWER ANN TRAINING (same for Active Power)
2

3 % Define the network architecture
4 hiddenLayerSizes = [10,25]; % 10 neurons in the first hidden layer, 25 in

the second
5 net = feedforwardnet(hiddenLayerSizes , 'trainlm'); %Levenberg -Marquardt

backpropagation
6

7 % Setting activation function for hidden layers
8 net.layers{1}.transferFcn = 'logsig';
9 net.layers{2}.transferFcn = 'tansig';

10

11 % Setting activation function for output layer
12 net.layers{3}.transferFcn = 'purelin';
13

14 % Setting up training parameters
15 net.trainParam.show = 1; % result of error (mse) at each iteration
16 net.trainParam.epochs = 1000; % maximum number of training epochs
17 net.trainParam.goal = 1e-12; % Stopping criterion based on (mse) goal
18

19 % Dividing the data into training , validation , and test sets
20 net.divideParam.trainRatio = 70/100; % 70% of data for training
21 net.divideParam.valRatio = 15/100; % 15% of data for validation
22 net.divideParam.testRatio = 15/100; % 15% of data for testing
23

24 % Training the network
25 [net, tr] = train(net, in_Q', out_Q ');
26

27 % Exporting the trained network to Simulink
28 gensim(net, -1);

Listing B.1: MATLAB script for training an ANN for reactive power control.
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1

2 % ACTIVE POWER ANFIS (same for Reactive power)
3 tic
4 % Extract input and output data
5 data_P = [in_P, out_P];
6 inP = data_P(:, 1);
7 outP = data_P(:, 2);
8

9 % Create a grid partitioning option
10 opt_P = genfisOptions('GridPartition');
11

12 % Setting the number of MFs
13 opt_P.NumMembershipFunctions = 10;
14

15 % Generate the initial FIS structure for active power
16 fis_P = genfis(inP, outP, opt_P);
17

18 % Train the ANFIS model for active power with more epochs
19 trainOptions = anfisOptions('InitialFIS', fis_P, 'EpochNumber', 100, '

DisplayANFISInformation', 1, 'DisplayErrorValues', 1, 'DisplayStepSize',
1, 'DisplayFinalResults', 1);

20

21 fis_P = anfis(data_P, trainOptions);
22

23 % Evaluate the ANFIS model for active power
24 anfisOut_P = evalfis(fis_P, inP);
25

26 % Calculate the correlation coefficient (R) between actual and predicted
outputs

27 R_P = corrcoef(outP, anfisOut_P);
28 R_value_P = R_P(1,2); % Extract the correlation coefficient
29

30 disp(fis_P);
31 disp('ANFIS training completed successfully.');
32 disp(['Correlation coefficient (R) for active power: ', num2str(R_value_P)

]);
33

34 % Plot the initial ANFIS results for active power
35 subplot(2,1,1);
36 plot(inP, outP, '*r', inP, anfisOut_P , '.b');
37 title('Default ANFIS P');
38 legend('Training Data', 'ANFIS Output');
39

40 toc

Listing B.2: MATLAB script for ANFIS training for Active power control.
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