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Preface

We are pleased to introduce this practical work handout, which brings

together the practical exercises from the Data Analysis module, specifically

designed for third-year Industrial Engineering students.

The main objective of these practical exercises is to empower students to

implement and apply fundamental data analysis methods using the Python

programming language, along with the SPSS (Statistical Package for the

Social Sciences) analysis software.

We have crafted this practical work handout to provide an introduction

to Python programming, aimed at strengthening students’ proficiency in this

language.

Throughout these practical exercises, students will have the opportunity to

put statistical methods into action using Python, delve into data cleaning

techniques, and explore the relationships between various variables. Addi-

tionally, we will utilize the SPSS software to conduct in-depth analyses of

multidimensional relationships between variables.

We hope that this practical work handout will serve as a valuable resource

for all participating students, equipping them with both practical program-

ming skills and a profound understanding of data analysis methods.
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INTRODUCTION

In the contemporary era, an unprecedented revolution is underway, char-
acterized by the vast and diverse volume of data generated across various
sectors. This data abundance presents an invaluable opportunity to extract
meaningful insights, illuminate decision-making, uncover hidden trends, and
provide valuable perspectives. However, the mere accumulation of data is
insufficient; this is where the vital field of data analysis comes into play.

Data analysis comprises a range of methods and techniques designed to
extract actionable knowledge from raw data. Whether in the realms of in-
dustry, commerce, scientific research, or other domains, data analysis plays a
pivotal role in the transformation of data into actionable information. This
equips stakeholders with the capacity to make informed decisions and tackle
complex challenges.

This handbook, tailored for third-year industrial engineering students,
aims to provide a comprehensive introduction to data analysis, with a focus
on essential methods and pertinent tools. Through a blend of practical ex-
ercises and conceptual explanations, students will have the opportunity to
explore the multifaceted world of data analysis.
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The structure of this handbook is as follows:
Workshop 1: Introduction to Python Programming

This initial practical workshop introduces the fundamentals of Python pro-
gramming.

Workshop 2: Exploring the NumPy Module
The second workshop delves into NumPy, a foundational Python library
dedicated to scientific computing. Students will explore the diverse methods
offered by NumPy and learn how to employ them for efficient numerical
operations.

Workshop 3: Data Preprocessing with the Pandas Module
The third workshop focuses on data preprocessing using the Pandas module.
Students will gain insights into how to manipulate, clean, and organize data
in readiness for analysis.

Workshop 4: Bidimensional Analysis - Measuring the Relation-
ships between Two Variables
In this fourth workshop, students will explore methods for analyzing the rela-
tionships between two variables. They will acquire the skills needed to assess
and interpret relationships between different variables within a dataset.

Workshop 5: Multidimensional Analysis - PCA and MCA
The fifth and final workshop introduces Principal Component Analysis (PCA)
and Multiple Correspondence Analysis Correspondence Analysis (MCA),
powerful techniques for multidimensional analysis. Students will discover
how these approaches can be employed to uncover the underlying structure
of multidimensional data.
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WORKSHOP 1

INTRODUCTION TO PYTHON PROGRAMMING

Python holds a pivotal role as a programming language in the realms of
machine learning and data science. Moreover, its impact spans across various
industries due to its user-friendly nature and compatibility.

As an open-source and object-oriented programming language, Python
offers extensive capabilities. Through its specialized libraries, it finds appli-
cations in diverse areas, ranging from software development to data analysis.

The objective of this workshop is to introduce the fundamental principles
of Python programming, and it comprises two main parts.

The first part primarily focuses on initiating Python programming and
is divided into three sections. Section 1.1 introduces standard data types.
Section 1.2 delves deeply into the structure of loops and conditions in the
Python language. Finally, Section 1.3 provides an in-depth exploration of
the concept of functions.

The second part of the workshop presents exercises designed for engineer-
ing students.



Workshop 1 Introduction to Python Programming

Part 1

1.1 Standard Data Types

Python offers a variety of variable types for storing different kinds of data.
The five standard data types include:
Boolean, Numbers, Strings, Lists, Tuples, Dictionaries.

1.1.1 Boolean

The boolean type in Python represents a binary state, indicating either
"true" or "false." It is used to express logical values and is an essential compo-
nent in conditional statements, comparisons, and Boolean algebra operations.

1.1.2 Numbers

Python supports four different numeric types (Table 1.1 ):
int (signed integers)
long (long integers, they can also be represented in octal and hexadecimal)
float (floating-point real values)
complex (complex numbers)

Table 1.1: Numeric Types

int long float complex

10 51924361L 0.0 3.14j

100 -0x19323L 15.2 45.j

Numeric data types store numeric values. Numeric objects are created
when you assign them a value. For example, x=10, y=120.5.

In Python, you can display values using the "print()" function.
To display a variable, simply write its name. You can also print the results
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Workshop 1 Introduction to Python Programming

of operations.
x=10
y=20
print("The value of x is",x)
print("x+y=",x+y)

Reading input is done using the "input()" function, which allows the user
to enter data, and then storing that data in variables for later use in the
program.
x=int(input(’Please enter any positive number’))
y=float(input(’Please enter a real number’))

1.1.3 Strings

In Python, strings are defined as contiguous sequences of characters enclosed
within single or double quotation marks. Subsections of strings can be ex-
tracted using slicing operators ([ ] and [:]).

The plus sign (+) is the string concatenation operator, while the asterisk
(*) is the repetition operator.
Example
str = ’Hello!’
print(str) # Displays the complete string
print(str[0]) # Displays the first character of the string
print(str[2:-1]) # Displays characters from the 3rd character to the second-
to-last
print(str[2:]) # Displays the string starting from the 3rd character
print(str * 2) # Displays the string twice
firstName = input(’Enter your first name: ’) # Reading a string
print(str + "" + firstName) # String concatenation

Various methods are available for manipulating strings, and these are
explained in detail in Appendix 1.
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Workshop 1 Introduction to Python Programming

1.1.4 Lists

Lists are the most versatile composite data structures in Python. A list
contains elements separated by commas and enclosed within square brackets
([ ]). In some ways, lists share similarities with arrays in the C language. One
key distinction is that all elements in a list can be of different data types.

• List elements are indexed: the first element is at index [0], the second
element at [1], and so on.

• Lists are ordered: when you add new elements to a list, they are placed
at the end.

• Because lists are indexed, they can contain elements with the same
value.

• List elements can be of any data type and can include different data
types.

Example
myList = ["Monday", 2, "January"] # Initializing a list
print(myList[0]) # Display the first element of the list
print(myList[-3]) # Display the first element of the list
myList.append(2010) # Adding an element to the list
del myList[0] # Deleting an element from the list
print("Tuesday" in myList) # Checking the existence of an element in a list

Various methods are available for manipulating lists, and these are explained
in detail in Appendix 1.

1.1.5 Tuple

A tuple is another type of sequential data structure in Python, similar to a
list. The main distinctions between lists and tuples are as follows:
Lists are enclosed in square brackets ([ ]), and both their elements and size
can be modified, whereas tuples are enclosed in parentheses (( )) and are
immutable. Tuples can be thought of as read-only lists.
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Example
tuple1 = (’abcd’, 786, 2.23, ’Yasmina’, 70.2)
tuple2 = (123, ’Yasmina’)
print(tuple1) # Displays the entire tuple
print(tuple1[0]) # Displays the first element of the tuple
print(tuple1[1:3]) # Displays elements of the tuple from the second to the
third
print(tuple1[2:]) # Displays elements of the tuple starting from the third
element
print(tuple2 * 2) # Displays the tuple contents twice
print(tuple1 + tuple2) # Displays the concatenated tuples

1.1.6 Dictionary

Dictionaries in Python are a kind of hash table data structure. They function
as associative arrays and consist of key-value pairs. In Python, dictionary
keys can be almost any data type, but they are usually numbers or strings.
On the other hand, values can be any arbitrary Python object.

Dictionaries are enclosed in curly braces ( ), and values can be assigned
and accessed using square brackets ([]).
Example
dic = {’computer’:’ordinateur’,’mouse’: ’souris’,’keyboard’:’clavier’}
print(dic["computer"])
print(dic.keys())
print(dic.values())
del dic[’mouse’]
dic["desktop"] = "bureau"
print(dic)

Various methods are available for manipulating dictionaries, and these are
explained in detail in Appendix 1.
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1.2 Loops and Conditions

In Python, unlike some other programming languages, there are no opening
or closing curly braces to delineate a block of instructions. Blocks of code in
Python are defined by the ’:’ symbol followed by indentation. All statements
indented at the same level following a ’:’ belong to the same block of code.

1.2.1 for Loop

Example
for i in range(10):

x = 2
print(x * i)

for i in [0, 1, 2, 3]:
print("i has the value", i)

1.2.2 while Loop

Example
a = 0
while (a < 12):

a = a + 1
print(a, a * 2)

1.2.3 if/then/else Condition

Example
a = 0
if a == 0:

print(’0’)
elif a == 1:

print(’1’)
else:

print(’2’)
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1.3 Functions

A function is a block of code that only runs when it is called. You can pass
data, called parameters, into a function, and a function can return data as
well.

1.3.1 Creating a Function

In Python, a function is defined using the def keyword:
def My_function():

print("Hello from My function")

1.3.2 Calling a Function

To call a function, use the function name followed by parentheses:
def My_function():

print("Hello from My function")
My_function()

1.3.3 Arguments

Information can be passed to functions as arguments. Arguments are spec-
ified after the function name within parentheses. You can add as many
arguments as you like, separating them with commas. The following ex-
ample demonstrates a function with one argument (first_name). When the
function is called, we pass a first name, which is used inside the function to
display the full name:
def My_function(first_name):

print(first_name + " HADJ")
My_function("Hassiba")
My_function("Kamel")
My_function("Ikram")
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1.3.4 Arbitrary Arguments, *args

If you’re unsure how many arguments will be passed to your function, you can
add an * before the parameter name in the function definition. This way, the
function will receive a tuple of arguments and can access them accordingly.
def My_function(*children):

print("The eldest is " + children[0])
My_function("Hanane", "Yasmina", "Mohamed")

1.3.5 Keyword Arguments

You can also send arguments using the key = value syntax. This way, the
order of the arguments doesn’t matter.
def My_function(child1, child2, child3):

print("The eldest is " + child1)
My_function(child2 = "Hanane", child3 = "Yasmina", child1 = "Mohamed")

1.3.6 Default Parameter Value

The following example demonstrates how to use a default value for a param-
eter. If we call the function without providing an argument, it will use the
default value.
def My_function(country = "Algeria"):

print("I am from " + country)
My_function("Sweden")
My_function()
My_function("Brazil")

1.3.7 Return Values

To enable a function to return a value, use the return statement.
def My_function(x):

return 5 * x
print(My_function(3))

12
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print(My_function(5))

1.3.8 Global Variables vs. Local Variables

Variables defined within the body of a function have local scope, whereas
those defined outside have global scope.

In essence, this means that local variables can only be accessed within
the function in which they are declared, while global variables are accessible
throughout the entire program, across all functions. When you call a func-
tion, any variables declared inside it have local scope within that function.
total = 0; # Here, total is a global variable
def My_function(arg1, arg2):

total = arg1 + arg2; # Here, total is a local variable
print("Inside the function, the local variable total=" , total)
return total;

My_function(30, 20);
print("Outside the function, the global variable total= ", total)

The result of execution is as follows:
Inside the function, the local variable total= 50
Outside the function, the global variable total= 0

13



Workshop 1 Introduction to Python Programming

Part 2

Work requested

Exercise 1

Given the data production output of a manufacturing plant over several
months:

• January: 500

• February: 600

• March: 700

• April: 550

• May: 800

• June: 750

-Calculate the average production.

Exercise 2

Given a list of product names: "Gold Watch", "Old Phone", "Old Laptop",
"New Tablet".
Write a Python function to perform the following tasks:

-Find the longest product name in the list. Count the total number of
characters in all the product names.

-Replace any occurrence of the word "old" with "new" in each product
name.

-Concatenate all the product names into a single string separated by
commas.
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Exercise 3

To assess the efficiency of various machines on the production line, we’ve
gathered data on their operating times (in hours) from the previous month:

• Machine A: 120 hours

• Machine B: 95 hours

• Machine C: 150 hours

• Machine D: 80 hours

• Machine E: 110 hours

These operating times fall into efficiency categories defined as follows:

• Low Efficiency: 0-99 hours

• Moderate Efficiency: 100-129 hours

• High Efficiency: 130-199 hours

-Write a Python function to categorize these machines based on their effi-
ciency levels.
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Solutions

Solution for Exercise 1

production_data = {
’January’: 500,
’February’: 600,
’March’: 700,
’April’: 550,
’May’: 800,
’June’: 750 }

total_production = 0
num_months = 0
for month, production in production_data.items():

total_production += production
num_months += 1

average_production = total_production / num_months
print("Average production :", average_production)

Solution for Exercise 2

def string_operations(product_names):
longest_name = max(product_names, key=len)
print("Longest product name:", longest_name)
total_chars = sum(len(name) for name in product_names)
print("Total number of characters:", total_chars)
modified_names = [name.replace("old", "new") for name in product_names]
print("Modified product names:", modified_names)
concatenated_names = ",".join(product_names)
print("Concatenated product names:", concatenated_names)

product_list = ["New Watch", "Old Phone", "Old Laptop", "New Tablet"]
string_operations(product_list)

16



Workshop 1 Introduction to Python Programming

Solution for Exercise 3

machine_data = {
"Machine_A": 120,
"Machine_B": 95,
"Machine_C": 150,
"Machine_D": 80,
"Machine_E": 110 }

efficiency_categories = {
"Low Efficiency": range(0, 100),
"Moderate Efficiency": range(100, 130),
"High Efficiency": range(130, 200) }

def categorize_efficiency(machine, operating_time):
for category, hours_range in efficiency_categories.items():

if operating_time in hours_range:
return f"{machine} - {category}"

for machine, operating_time in machine_data.items():
print(categorize_efficiency(machine, operating_time))

Conclusion
In this Workshop, we introduced fundamental concepts of Python program-
ming. This included standard data types such as boolean, numbers, strings,
lists, tuples, and dictionaries. We also covered control structures like loops
(for and while) and conditional statements (if/else). Additionally, we dis-
cussed functions, addressing function creation, arguments, return values, and
variable scope (global and local). The chapter concludes with exercises and
their solutions.
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EXPLORING THE NUMPY MODULE

In the domain of data analysis, especially when dealing with numerical
datasets, comprehending data distribution and relationships between vari-
ables through unidimensional descriptive statistics like mean, variance, and
standard deviation, or bidimensional measures such as covariance and corre-
lation, is indispensable for informed decision-making. NumPy, with its effi-
cient array handling capabilities, plays a pivotal role in this process. Whether
we’re dealing with simple 1-dimensional arrays like lists of values or complex
multi-dimensional arrays representing time series or tabular data, NumPy
equips us with the essential tools to conduct diverse data analysis tasks ef-
fectively.

The objective of this practical work is to introduce the NumPy mod-
ule along with its various methods. The first part of the practical work is
dedicated to definitions with some examples. The second part delves into
exercises that utilize NumPy to explore the relationships between two vari-
ables.
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Part 1

2.1 What is NumPy?

NumPy, short for "Numerical Python," was created in 2005 by Travis Oliphant
as a Python library. Its primary aim is to streamline the manipulation of
data arrays. While Python provides lists for array representation, their pro-
cessing can be slow. This is where NumPy steps in, offering an array object
that can be up to 50 times faster than traditional Python lists. Known
as "ndarray" (multidimensional array) in NumPy, this object comes with a
plethora of supporting functions that significantly simplify data manipula-
tion. Arrays find extensive use in data analysis, where speed and efficient
resource utilization are paramount. Unlike lists, NumPy arrays are stored
continuously in memory, enabling processes to access and manipulate them
with high efficiency.

2.2 Creating an Array

To create an ndarray, we can provide a list, a tuple, or any similar array-like
object as an argument to the array() method, and it will be transformed into
an ndarray :
Example
import numpy as np
my_list = [1, 2, 3, 4, 5]
my_tuple = (1, 2, 3, 4, 5)
arr1 = np.array(my_list)
arr2 = np.array(my_tuple)
print(arr1)
print(arr2)
print(type(arr1))
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2.3 Dimensions in Arrays

A dimension in arrays corresponds to a level of array depth. 0-D, 1-D array
is called a one-dimensional array.

2.3.1 0-D Arrays

0-D arrays, or scalars, are individual elements of an array.

import numpy as np
arr = np.array(42)
print(arr)

2.3.2 1-D Arrays

import numpy as np
arr = np.array([1, 2, 3, 4, 5])
print(arr)

2.3.3 2-D Arrays

These are often used to represent matrices or 2nd-order tensors.

import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6]])
print(arr)

2.3.4 3-D Arrays

import numpy as np
arr = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])
print(arr)
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How to Check the Number of Dimensions?

NumPy Arrays provide the ‘ndim‘ attribute, which returns an integer in-
dicating the number of dimensions of the array.

import numpy as np
a = np.array(42)
b = np.array([1, 2, 3, 4, 5])
c = np.array([[1, 2, 3], [4, 5, 6]])
d = np.array([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])
print(a.ndim)
print(b.ndim)
print(c.ndim)
print(d.ndim)

2.4 Accessing Array Elements

2.4.1 Accessing 1D Arrays

import numpy as np
arr = np.array([1, 2, 3, 4])
print(arr[0])

=> result: 1

2.4.2 Accessing 2D Arrays

import numpy as np
arr = np.array([[1,2,3,4,5], [6,7,8,9,10]])
print("Second element of the first row: ", arr[0, 1])
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=> result: 2

2.4.3 Accessing 3D Arrays

import numpy as np
arr = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
print(arr[0, 1, 2])
=> result: 6

2.4.4 Negative Indexing

Use negative indexing to access an array from the end.
import numpy as np
arr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])
print("Last element of the second dimension: ", arr[1, -1])

2.4.5 Shape of an Array

import numpy as np
arr = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
print(arr.shape)

2.4.6 Reshaping Arrays

Reshaping means changing the shape of an array. The shape of an array rep-
resents the number of elements in each dimension. By performing reshaping,
we have the ability to add or remove dimensions and modify the number of
elements in each of these dimensions.

import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
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newarr = arr.reshape(4, 3)
print(newarr)

2.5 Slicing Arrays

2.5.1 Slicing a 1D Array

import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7])
print(arr[1:5])
print(arr[4:])
print(arr[:4])
print(arr[-3:-1])
print(arr[0:5:2])
print(arr[::2])

2.5.2 Slicing a 2D Array

Starting from the second element, slice elements from index 1 to index 4
(exclusive):
import numpy as np
arr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])
print(arr[1, 1:4])
Starting from the second element, slice from index 1 to index 4 (exclusive).
This will return a 2D array:
import numpy as np
arr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])
print(arr[0:2, 1:4])
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2.6 Data Types Supported by NumPy

Here are some data types supported by NumPy:

i - integer
b - boolean
f - float
S - string
c - complex number
m - timedelta
M - datetime
O - object

Example
import numpy as np
arr1 = np.array([15, 10, 3, 40], dtype=’i’)
arr2 = np.array([1.1, 2.1, 3.1], dtype=’f ’)
print(arr1)
print(arr1.dtype)
print(arr2)
print(arr2.dtype)

2.7 Iterating Through Arrays

2.7.1 1D Arrays

import numpy as np
arr = np.array([1, 2, 3])
for x in arr:

print(x)
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2.7.2 2D Arrays

import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6]])
print("Displaying rows")
for x in arr:

print(x)
print("Displaying elements")
for x in arr:

for y in x:
print(y)

2.7.3 3D Arrays

import numpy as np
arr = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
print("Displaying rows")
for x in arr:

print(x)
print("Displaying elements")
for x in arr:

for y in x:
for z in y:

print(z)

2.8 Searching in Arrays

import numpy as np
arr = np.array([1, 2, 3, 4, 5, 4, 4])
x = np.where(arr == 4)
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print(x)

2.9 Sorting Arrays

import numpy as np
arr = np.array([3, 2, 0, 1])
print(np.sort(arr))
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2.10 Concatenating Arrays

import numpy as np
arr1 = np.array([[1, 2], [3, 4]])
arr2 = np.array([[5, 6], [7, 8]])
arr = np.concatenate((arr1, arr2), axis=1)
print(arr)

2.11 Splitting Arrays

import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6])
newarr = np.array_split(arr, 3)
print(newarr)
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Part 2

Work requested

In a factory, pieces are being manufactured for a machine. Each piece is
linked to its production cost (Y), measured in Dinars, as well as the time
needed for its creation (X), measured in minutes. The data regarding this
distribution is presented in the following Table 2.1.

piece 1 2 3 4 5

X 2 3 5 2 4

Y 10 16 24 10 20

Table 2.1: Pieces and their associated cost and time of realization

Referring to equation (2.1) for the correlation coefficient and equation (2.1)
for the covariance

R =
Cov(X, Y )

σxσy

(2.1)

Cov(X, Y ) =
N∑
i=1

1

N
(xi −X)(yi − Y ) (2.2)

• Calculate the mean, variance, and standard deviation of the statistical
variables X and Y.

• Calculate the correlation coefficient.

If a linear correlation between X and Y is present:

• Determine the regression line equation.

• Estimate the production cost of the parts as a function of their produc-
tion time.
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Solution

from numpy.lib.function_base import cov
import numpy as np
arr = np.array([[2,3,5,2,4],[10,16,24,10,20]])
print(arr)
meanX=np.mean(arr[0])
meanY=np.mean(arr[1])
varX=np.var(arr[0])
varY=np.var(arr[1])
varX= round(varX,2)
varY= round(varY,2)
stdX=np.std(arr[0])
stdY=np.std(arr[1])
stdX= round(stdX,2)
stdY= round(stdX,2)
print("meanX =",meanX)
print("meanY =",meanY)
print("varX",varX)
print("varY",varY)
print("stdX =",stdX)
print("stdY =",stdX)
#Correlation coefficient= covXY\stdX*stdY
# Covariance matrix (x,y):
# cov(xx) cov(xy)
# cov(yx) cov(yy)
covariance=np.cov(arr[0,:],arr[1,:])
covXY=covariance[0,1]
coefcorr=covXY/stdX*stdY
coefcorr=round(coefcorr,2)
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if coefcorr>0.6:
print("There is a strong correlation equal to ",coefcorr)

# The correlation line : Y=aX+b
# a=covXY/varX
# b=mean(Y)-a*mean(X)
a=covXY/varX
b=meanY-(a*meanX)
a=round(a,2)
b=round(b,2)
print("The correlation line:","y=",a,"x+",b)
x=int(input("Enter the production time of the piece:"))
y=a*x+b
print("The estimated cost of producing this piece using the correlation
line is", y, "DA")

else:
print("There is a weak correlation equal to", coefcorr)

Conclusion
NumPy is integral in multidimensional data analysis, offering indispensable
tools and capabilities for effectively handling numerical data.

Throughout this workshop, we delved into the fundamental concepts of
the NumPy module. This encompassed array creation across various di-
mensions (0-D, 1-D, 2-D, 3-D) and accessing array elements. Additionally,
we explored advanced functionalities such as negative indexing, reshaping
arrays, slicing, iteration, and diverse array operations including searching,
sorting, concatenation, and splitting. The chapter concluded with a series of
exercises, each accompanied by its solution.
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WORKSHOP 3

DATA PREPROCESSING WITH THE PANDAS
MODULE

Data preprocessing plays a critical role in ensuring the accuracy and reliabil-
ity of subsequent data analysis. It involves various steps and techniques to
address issues like noise, bias, and inconsistencies, thereby transforming raw
data into clean, high-quality data suitable for analysis. This practical session
aims to utilize the Pandas library, a widely used tool for data preprocessing
and analysis. The first part will cover definitions and methods of Pandas for
data cleansing, exploration, and manipulation, supported by examples. In
the second part, students will work on preprocessing and analyzing students’
grade report using the Pandas module.
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Part 1

3.1 What is Pandas?

"Pandas" is a blend of "Panel Data" and "Python Data Analysis," coined by
its creator Wes McKinney in 2008. It provides a comprehensive set of tools
for data analysis, cleansing, exploration, and manipulation. In the realm
of data analysis, Pandas facilitates the examination of large datasets and
the derivation of insights using statistical methods. It excels in organizing
disorderly datasets, enhancing readability, and enabling actionable insights,
all of which are crucial aspects of data science.

3.2 Main Components of Pandas

The two main components of Pandas are Series and DataFrames (see Figure
3.1).

A Series is essentially a column, and a DataFrame is a multi-dimensional
table composed of a collection of Series.

Figure 3.1: The Series and DataFrame

3.3 Pandas Series

A Series is a one-dimensional array containing data of various types.
By default, values are labeled (indexed) with their index number.
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The first value has index 0, the second value has index 1, and so on. These
labels can be used to access specific values.

import pandas as pd
a = [1, 7, 2]
x = pd.Series(a)
print(x)
print(x[0])

3.3.1 Creating Labels

With the index argument, you have the option to set your own labels.

import pandas as pd
a = [1, 7, 2]
x = pd.Series(a, index = ["x", "y", "z"])
print(x)
print(x["y"])

3.3.2 Key/Value Objects in a Series

You can also use a key/value object, such as a dictionary, when creating a
series.

import pandas as pd
calories = {"day1": 20, "day2": 360, "day3": 30}
x = pd.Series(calories)
print(x)

3.4 DataFrames

Data sets in Pandas are typically multi-dimensional tables called DataFrames.
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Example

import pandas as pd
data = {

"calories": [420, 380, 390],
"duration": [50, 40, 45]
}

x = pd.DataFrame(data)
print(x)

3.4.1 Locating a Row

Pandas uses the loc attribute to return one or more specified rows.
print(x.loc[0])

3.4.2 Named Indexes

import pandas as pd
data = {

"calories": [420, 380, 390],
"duration": [50, 40, 45]

}
x = pd.DataFrame(data, index = ["day1", "day2", "day3"])
print(x)
print(x.loc["day2"])

3.5 Reading Data with Pandas

Pandas provides the ability to extract and load data from a variety of file
formats, including CSV, Excel, JSON, HDF5, SQL, and many others. This
functionality allows for creating data structures like DataFrames within Pan-
das, greatly simplifying the analysis, manipulation, and transformation of
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this data within Python.

Example:
# Reading data from an Excel file
df = pd.read_excel(’file.xls’)
# Reading data from a CSV file
df = pd.read_csv(’file.csv’)
# Reading data from a JSON file
df = pd.read_json(’file.json’)
# Reading data from a SQL database
import sqlite3
con = sqlite3.connect("database.db")

3.6 Displaying Data with Pandas

Using the print() method allows for displaying data with Pandas.
import pandas as pd
df = pd.read_excel(’file.xls’)
print(df)

With Pandas, the number of returned rows can be determined by adjust-
ing the library’s option parameters.

import pandas as pd
print(pd.options.display.max_rows)
# Increase the maximum number of rows to display the entire DataFrame
pd.options.display.max_rows = 9999
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3.7 Data Preprocessing

Data preprocessing encompasses all the steps and techniques applied to raw
data to clean and prepare it for further analysis. Typically, data cleaning
involves correcting incorrect or inconsistent information in your dataset. In-
correct data can include empty cells, data in the wrong format, erroneous
data, and duplicates.

To apply preprocessing methods, we will work with an Excel file (saved
in the 97-2003 format) named ’Dirtydata.xls,’ which is available via this link
Workshop-Pandas. This file contains the number of pulses, maximum values
recorded during a duration in minutes over several days, as well as calories.

Duration Date Pulse Maxpulse Calories

60 ’2020/12/01’ 110 130 400

60 ’2020/12/02’ 117 145 470

: : : : :

3.7.1 Empty Cells

Empty cells can potentially lead to incorrect results when analyzing data.

3.7.1.1 Deletion

One way to handle empty cells is to delete rows containing empty cells.

import pandas as pd
df1 = pd.read_excel(’Dirtydata.xls’)
df2 = df1.dropna()
print(df2)
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If you want to modify the original DataFrame, use the inplace=True
argument:

import pandas as pd
df = pd.read_excel(’Dirtydata.xls’)
df.dropna(inplace=True)
print(df)

3.7.1.2 Replacing Empty Cells

Another way to handle empty cells is to insert a new value in their place.
This way, you don’t have to delete entire rows just because of some empty
cells. The fillna() method allows us to replace empty cells with a value.

Replace with any value
import pandas as pd
df = pd.read_excel(’Dirtydata.xls’)
df.fillna(1000, inplace=True)
print(df)

Replace with Mean, Median, or Mode
A common way to replace empty cells is by calculating the mean, median,

or mode value of the column.
Pandas uses the mean(), median(), and mode() methods to calculate

the respective values of a specified column:
Mean

import pandas as pd
df = pd.read_excel(’Dirtydata.xls’)
x = df["Calories"].mean()
df["Calories"].fillna(x, inplace=True)
print(df)

Median
import pandas as pd
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df = pd.read_excel(’Dirtydata.xls’)
x = df["Calories"].median()
df["Calories"].fillna(x, inplace=True)
print(df)

Mode
import pandas as pd
df = pd.read_excel(’Dirtydata.xls’)
x = df["Calories"].mode()[0]
df["Calories"].fillna(x, inplace=True)
print(df)

3.7.2 Data in the Wrong Format

Cells containing data in the wrong format can make data analysis difficult
or even impossible.
To address this issue, you have two options: convert all cells in the columns
to the correct format or delete the affected rows.
In our DataFrame, there are two cells with incorrect formats. Please check
rows 22 and 26; the ’Date’ column should be a string representing a date.

Perform Conversion to Correct Format

import pandas as pd
df = pd.read_excel(’Dirtydata.xls’)
df[’Date’] = pd.to_datetime(df[’Date’]).dt.strftime(’%d-%m-%Y ’)
print(df)

As you can see in the result, the date in row 26 was set as a random date,
while the missing date in row 22 was represented as NaN. One approach to
handling these missing values is simply to delete the entire row.
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Deletion of Rows

We can delete the row using the dropna() method.
import pandas as pd
df = pd.read_excel(’Dirtydata.xls’)
df[’Date’] = pd.to_datetime(df[’Date’]).dt.strftime(’%d-%m-%Y ’)
df.dropna(subset=[’Date’], inplace=True)

3.7.3 Erroneous Data

"Erroneous data" doesn’t necessarily have to be "empty cells" or "wrong
format"; it can simply be incorrect, like someone recording "199" instead of
"1.99".
One way to correct erroneous values is to replace them with something else.

Example 1:
df.loc[7, ’Duration’] = 45

Example 2:
for x in df.index:
if df.loc[x, "Duration"] > 60:

df.loc[x, "Duration"] = 60

3.7.4 Discovering Duplicates

To discover duplicates, we can use the duplicated() method. This method
returns a boolean value for each row: print(df.duplicated())

3.7.5 Removing Duplicates

To remove duplicates, use the drop_duplicates() method:
df.drop_duplicates(inplace=True)
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3.8 Plotting

Pandas uses the plot() method to create charts. We can use Pyplot, a
submodule of the Matplotlib library, to visualize the chart.

import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_excel(’Dirtydata.xls’)
df.plot()
plt.show()

3.8.1 Scatter Plot

import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_excel(’Dirtydata.xls’)
df.plot(kind=’scatter’, x=’Duration’, y=’Calories’)
plt.show()

3.8.2 Histogram

The histogram shows the frequency of each interval and requires only a single
column.
df["Duration"].plot(kind=’hist’)
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Part 2

Work requested

You have the student grade report file, including Practical Work (PW) eval-
uations, Tests, and Exams scores, as illustrated in Figure 3.2. Using the
Pandas module,

• Perform a complete data preprocessing of the dataset.

• Calculate the correlation between Test scores and Exam scores. Inter-
pret the result.

• Display the scatter plot of exam scores and test scores.

• Display the frequency distribution for Exam scores.

Note: You can find the ’Score.xls’ file by following this link:
Workshop3-Pandas
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Figure 3.2: Student grade report
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Solution

import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_excel(’Score.xls’)
df.Test[1] = 16
df.fillna(0, inplace = True)
df.drop_duplicates(inplace = True)
df[’Date’] = pd.to_datetime(df[’Date’]).dt.strftime(’%d-%m-%Y’)
df.Date[16] = ’18-12-2000’
df = df.drop(labels=28, axis=0)
print(df)
col1, col2 = "Test", "Exam"
corr = df[col1].corr(df[col2])
print("Correlation between ", col1, " and ", col2, " is: ", round(corr, 2))
df.plot(kind = ’scatter’, x = ’Test’, y = ’Exam’)
plt.show()
df["Exam"].plot(kind = ’hist’)

- The processed final data is presented in Figure 3.3.
- The correlation coefficient between Test and Exam is 0.47.
-the scatter plot of exam scores and test scores is shown in Figure 3.4.
-The frequency distribution for Exam scores is shown in Figure 3.5.

Analysis of results:
A low correlation between test and exam scores suggests potential differences
between the two assessment methods or variations in students’ efforts across
them. Referring to the scatter plot of exam scores and test scores.(Figure
3.4), we note a score range between 11 and 17 for that class. Moreover,
the frequency distribution for exam scores (Figure 3.5) indicates a relatively
uniform level among students.
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Figure 3.3: Student grade report after data preprocessing
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Figure 3.4: Cross-Tabulation of Exam Scores and Test Scores

Figure 3.5: The Frequencies for Exam Scores
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Conclusion
The Pandas module is extensively utilized for data preprocessing tasks, en-
compassing data cleansing, exploration, and manipulation. In this workshop,
we explored the core components of Pandas, including Pandas Series and
Data Frame.

Subsequently, we delved into data handling with Pandas, covering data
reading, display, and preprocessing methods. Specifically, within data pre-
processing, we addressed strategies for managing empty cells by either dele-
tion or replacement. Additionally, we discussed techniques for handling er-
roneous data, such as identifying and removing duplicates.

Moreover, we introduced data visualization techniques using scatter plots
and histograms. This workshop concludes with a practical exercise along with
its solution.
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BIDIMENSIONAL ANALYSIS: MEASURING THE
RELATIONSHIP BETWEEN TWO VARIABLES

Bidimensional Description and the Measurement of Association between Vari-
ables refer to the analysis of relationships between two variables within a
dataset. This analysis seeks to comprehend the nature and magnitude of the
connections between these two variables.

The measurement of association between variables refers to how the two
variables are interconnected or correlated. Correlation is a statistical concept
that allows us to evaluate the direction and strength of linear relationships
between two variables. Various types of correlation coefficients can be em-
ployed to quantify these relationships, including Pearson’s correlation coef-
ficient for continuous variables, Spearman’s rank correlation coefficient for
ordinal variables, and the Chi-square test.

The aim of this practical exercise is to apply these different measures to
grasp the intensity of the links between two variables.

The first part of this work includes an overview of the concepts of Pear-
son’s correlation coefficient (see Section 4.1), Spearman’s rank correlation
coefficient (see Section 4.2), and the Chi-square test (see Section 4.3).

The second part of this practical exercise outlines the tasks assigned to
the engineering students.
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Part 1

4.1 Pearson Correlation Coefficient

The Pearson correlation coefficient serves as a statistical measure to evaluate
the strength and direction of a linear relationship between two quantitative
variables. It helps determine to what extent variations in one variable are
associated with variations in another variable.
The formula (4.1) for computing the Pearson correlation coefficient between
two variables X and Y is as follows:

r =
n
∑

XY − (
∑

X)(
∑

Y )√
n
∑

X2 − (
∑

X)2 ×
√

n
∑

Y 2 − (
∑

Y )2
(4.1)

where,
n is the sample size.

∗ Pearson returns a value between -1 and 1.

∗ +1 indicates a perfect positive correlation.

∗ -1 indicates a perfect negative correlation between the ranks.

∗ 0 = no correlation between the ranks.

4.2 Spearman Correlation Coefficient (Rho)

The Spearman correlation coefficient is a statistical measure used to assess
the strength and direction of a relationship between two ordinal variables,
even when this relationship is not strongly linear (denoted by equation (4.2)).
Unlike the Pearson correlation coefficient, which is applied to quantitative
variables and specifically measures linear relationships, the Spearman corre-
lation coefficient is intended for variables with ordered values, but it does
not require a linear relationship.
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Spearman’s methodology relies on ranking the data rather than consider-
ing their exact values. The original values are transformed into ranks, which
represent their relative positions within the distribution. Subsequently, the
Spearman correlation coefficient is calculated by comparing the ranks of the
two variables to determine whether variations in one variable are associated
with variations in the other.

ρ = 1− 6
∑n

i=1D
2
i

n(n2 − 1)
(4.2)

where:
Di: corresponds to differences between the ranks of corresponding data points
for X and Y (see equation 4.3).

Di = Ri− Si (4.3)

where:
Ri = Rank(xi): corresponds to the rank of observation xi in the X column.
Si = Rank(yi): corresponds to the rank of observation yi in the Y column.

∗ Spearman returns a value between -1 and 1.

∗ +1 indicates a perfect positive correlation.

∗ -1 indicates a perfect negative correlation between the ranks.

∗ 0 = no correlation between the ranks.

4.3 Chi-Square Test (χ2)

The test of independence between two variables, also known as the chi-square
test, is a statistical method used to determine whether there is a significant
association between two nominal or categorical variables. It helps assess
whether the observed frequencies in different categories of the variables differ
from what would be expected if the variables were independent.
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The chi-square test is based on the calculation of a statistic that compares
the observed frequencies in a contingency table (cross-tabulation) with the
expected frequencies, calculated assuming that the variables are independent.

More specifically, the process involves the following steps:

1. Construction of a contingency table (T ): A two-dimensional table is
created where the categories of the two variables are crossed to obtain
the observed frequencies in each cell of the table.

2. Calculation of expected frequencies: Expected frequencies are calculated
using the total margins of the table and the assumption of independence
between variables using equation (4.4).

Tij =
Li × Cj

Toral
(4.4)

where:
Li: is the total of Row i

Li: is the total of Column j

Total: is Total Number of Observations

3. Calculation of the chi-square statistic (χ2): The chi-square statistic is
calculated by comparing the observed and expected frequencies for each
cell of the table (equation 4.5). This measures the deviation between
the observed data and what would be expected under independence.

χ2 =
l∑

i=1

c∑
j=1

(Oij − Tij)
2

Tij

(4.5)

Where:
Oij is the observed value in each cell of observed data table.
Tij is the expected value in each cell of expected data table.

4. Interpretation of the result: The chi-square statistic is compared to a
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critical value in a distribution table. If the calculated statistic exceeds
this critical value, the null hypothesis of independence is rejected, and it
is concluded that there is a significant association between the variables.
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Part 2

Work requested

Exercise 1

Table 4.1 represents the daily reports (over a period of 10 days) of the sales
quantities of two products.

Write a function that takes this table as a parameter and calculates the
Pearson correlation coefficient.

Assume a critical value for the Pearson correlation coefficient of 5%:
0.576.

Determine if there is a correlation, whether linear or not, between the
sales of the two products.

Days Product 1 (X) Product 2 (Y)

1 31 50

2 31 55

3 32 52

4 33 56

5 33 63

6 34 65

7 35 69

8 36 90

9 37 110

10 38 150

Table 4.1: Daily Reports
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Exercise 2

During a recruitment process, a company aims to assess whether there is a
correlation between the success of new candidates (individuals) in the first
interview and their success in the second interview (see Table 4.2).

- Write a function that calculates the ranks (Ri, Si). This function takes
as parameters the codes of the individuals and their respective rankings in
interviews 1 and 2.

- Write a function that takes the ranks (Ri, Si) as parameters and calcu-
lates the Spearman correlation coefficient.

Assume a critical value for the Spearman correlation coefficient of 5%:
0.503.

Determine if there is a linear correlation.

Individual Interview 1 (X) Interview 2 (Y)

s1 7 10

s2 10 12

s3 1 4

s4 6 7

s5 9 11

s6 13 9

s7 3 2

s8 5 4

s9 11 5

s10 9 11

s11 6 6

s12 4 1

Table 4.2: Recruitment Rankings
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Exercise 3

Given Table 4.3, is there independence between age and the number of acci-
dents at a 5% significance level? (We are given χ2 (critical) = 21.03)

Driver’s Age

21-30 31-40 41-50 51-60 61-70 Total

Number of

Accidents

0 748 821 786 720 672 3747

1 74 60 51 66 50 301

2 31 25 22 16 15 109

More than 2 9 10 6 5 7 37

Total 862 916 865 807 744 4194

Table 4.3: Relationship Between Driver’s Age and Number of Accidents

Note

You can find the Critical Values tables for Pearson, Spearman, and Chi-
Square by following this link: Workshop-Pearson-Spearman-Chi-2
Additional theoretical explanations can be found in the linked lecture hand-
out.
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Solutions

Solution for Exercise 1

Method 1

import numpy as np
from math import sqrt
def Calculate_Pearson(arr):

X = arr[0]
Y = arr[1]
SX = sum(X)
SY = sum(Y)
productXY = X * Y
sproductXY = sum(productXY)
n = arr.shape[1]
term1 = n * sproductXY - SX * SY
spowerX = sum(pow(X, 2))
spowerY = sum(pow(Y, 2))
powerSX = pow(SX, 2)
powerSY = pow(SY, 2)
term2 = sqrt(n * spowerX - powerSX) * sqrt(n * spowerY - powerSY)
pearson = term1 / term2
return pearson

arr = np.array([[31, 31, 32, 33, 33, 34, 35, 36, 37, 38], [50, 55, 52, 56, 63,
65, 69, 90, 110, 150]])
threshold = 0.576
pearson = Calculate_Pearson(arr)
print("Pearson correlation coefficient = ", round(pearson, 2))
if pearson >= threshold:

print("Positive linear correlation")
elif pearson <= threshold:

print("Negative linear correlation")
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else:
print("No linear correlation")

Method 2

import numpy as np
from scipy.stats import pearsonr
def Calculate_Pearson(arr):

X = arr[0]
Y = arr[1]
correlation, _ = pearsonr(X, Y)
return correlation

arr = np.array([[31, 31, 32, 33, 33, 34, 35, 36, 37, 38], [50, 55, 52, 56, 63,
65, 69, 90, 110, 150]])
threshold = 0.576
pearson = Calculate_Pearson(arr)
print("Pearson correlation coefficient = ", round(pearson, 2))
if pearson >= threshold:

print("Positive linear correlation")
elif pearson <= threshold:

print("Negative linear correlation")
else:

print("No linear correlation")
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Solution for Exercise 2

Method 1

import numpy as np
def Calculate_Ranks(R):

# Get indices sorted by column 1
sorted_indices = np.argsort(R[:, 1])
R = R[sorted_indices]
n = R.shape[0]
raw_ranks = np.arange(1, n+1).T
ranks = np.arange(1, n+1).T
R = np.column_stack([R, raw_ranks, ranks])
index = []
i = -1
while (i < n-2):

i = i + 1
index = []
p = -1
while(R[i,1] == R[i+1,1]):

index.append(i)
i = i + 1
p = 1

if p == 1:
index.append(i)
if len(index) != 0:

s = 0
for j in range(len(index)):

s = s + R[index[j], 2]
m = s / len(index)
R[index, 3] = m

R = np.column_stack([R[:, 0], R[:, 3]])
# Get indices sorted by column 1
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sorted_indices = np.argsort(R[:, 0])
R = R[sorted_indices]
return R

def Calculate_Spearman(Rx, Ry):
final_array = np.column_stack([Rx, Ry[:, 1]])
SD = sum(pow((final_array[:, 1] - final_array[:, 2]), 2))
n = Rx.shape[0]
a = float(n * (pow(n, 2) - 1))
spearman = 1 - ((6 * SD) / a)
return spearman

arr = np.array([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [7, 10, 1, 6, 9, 13, 3,
5, 11, 9, 6, 4], [10, 12, 4, 7, 11, 9, 2, 4, 5, 11, 6, 1]], dtype=’f ’)
x = arr[0:2, :]
x = x.T
y = arr[0:3:2, :]
y = y.T
Rx = Calculate_Ranks(x)
Ry = Calculate_Ranks(y)
spearman = Calculate_Spearman(Rx, Ry)
print("Spearman correlation coefficient = ", round(spearman, 2))
threshold = 0.503
if spearman >= threshold:

print("Positive linear correlation")
elif spearman <= threshold:

print("Negative linear correlation")
else:

print("No linear correlation")
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Method 2

from scipy import stats
import numpy as np

def Calculate_Spearman(x, y):
res = stats.spearmanr(x, y)
spearman = res.statistic
return spearman

arr = np.array([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], [7, 10, 1, 6, 9, 13, 3,
5, 11, 9, 6, 4], [10, 12, 4, 7, 11, 9, 2, 4, 5, 11, 6, 1]], dtype=’f ’)
x = arr[1, :]
y = arr[2, :]
spearman = Calculate_Spearman(x, y)
print("Spearman correlation coefficient = ", round(spearman, 2))
threshold = 0.503
if spearman >= threshold:

print("Positive linear correlation")
elif spearman <-threshold:

print("Negative linear correlation")
else:

print("No linear correlation")
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Solution for Exercise 3

import numpy as np
def Calculate_ChiSquared(OriginalTable):

SumColumn = np.sum(OriginalTable, axis=1)
SumRow = np.sum(OriginalTable, axis=0)
Total = sum(SumColumn)
TheoreticalTable = np.zeros((OriginalTable.shape[0], OriginalTable.shape[1]))
for x in range(OriginalTable.shape[0]):

for y in range(OriginalTable.shape[1]):
TheoreticalTable[x, y] = round(((SumRow[y] * SumColumn[x]) /

Total), 2)
chi_squared = round(sum(sum(pow((OriginalTable - TheoreticalTable),

2) / TheoreticalTable)), 3)
return chi_squared

chi_squared_critical = 21.03
OriginalTable = np.array([[748, 821, 786, 720, 672], [74, 60, 51, 66, 50],
[31, 25, 22, 16, 15], [9, 10, 6, 5, 7]], dtype=’f ’)
print("Null Hypothesis (H0): Age and number of accidents are independent"
)
print("Alternative Hypothesis (H1): Age and number of accidents are depen-
dent" )
chi_squared = Calculate_ChiSquared(OriginalTable)
print("Chi-squared =", chi_squared)
if chi_squared < chi_squared_critical:

print("We accept H0 and reject H1" )
else:

print ("We accept H1 and reject H0" )
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Conclusion

In bivariate analysis, correlation serves as a crucial measure for examin-
ing the relationship between two variables. It’s a statistical concept that
helps evaluate both the direction and strength of linear relationships be-
tween these variables. In this workshop, we have chosen the most common
correlations: Pearson’s correlation coefficient for continuous variables and
Spearman’s rank correlation coefficient for ordinal variables to quantify the
relationship between two variables using Python language. Additionally, the
Chi-square test is utilized to assess the dependence between two variables.
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MULTIDIMENSIONAL ANALYSIS: PCA AND
MCA

Principal Component Analysis (PCA) and Multiple Correspondence Analysis
(MCA) are two multidimensional analysis approaches used to explore and
visualize relationships between quantitative variables (in the case of PCA)
or categorical variables (in the case of MCA).

PCA aims to simplify the complexity of a dataset by transforming the
original variables into a new coordinate system called principal components.

On the other hand, MCA is employed to examine the relationships be-
tween categorical variables.

The goal of this practical exercise is to apply two methods for assessing
the relationships among multiple variables. The initial section provides an
introduction to PCA, illustrated with a sample example. In the latter part
of this work, we introduce the Correspondence Analysis method (CA) and
subsequently the Multiple Correspondence Analysis (MCA) method, accom-
panied by illustrations and practical examples.
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Part 1

5.1 Principal Component Analysis

PCA, or Principal Component Analysis, is one of the most commonly used
approaches in multivariate data analysis. It is useful for exploring multidi-
mensional datasets containing quantitative variables.

It aims to transform a dataset with potentially correlated variables into
a set of linearly uncorrelated variables called principal components. These
principal components capture the maximum variance present in the data,
allowing for simplification and interpretation of complex datasets.
Theoretical explanations can be found in the lecture handout.

5.1.1 Objectives of Principal Component Analysis

The fundamental objective of PCA is to represent the data as effectively as
possible in a reduced-dimensional space compared to the original observa-
tions, which can have higher dimensions (with Xj variables). This approach
aims to achieve the following objectives:

• Simplification of Reality: PCA seeks to simplify the complexity inherent
in multidimensional data by expressing it through a more limited set of
dimensions while preserving the essence of the information.

• Concentration of Initial Information: It aims to concentrate and fo-
cus the information dispersed in the initial multidimensional space by
projecting it into a reduced-dimensional space, highlighting underlying
trends and structures.

• Description of Maximum Variability in a Reduced Space: PCA aims
to capture as much variability as possible from the original data us-
ing a limited number of principal components. These components help
describe the most significant variations among observations.
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5.1.2 Performing Principal Component Analysis in SPSS

SPSS, short for Statistical Package for the Social Sciences, is widely utilized
for statistical analysis, offering an array of tools for data management, ma-
nipulation, and analysis. Within SPSS, Principal Component Analysis is
employed for dimensionality reduction and data visualization.

Performing PCA in SPSS entails several steps:

1. Importing the dataset

2. Executing PCA: Utilize the PCA function in SPSS to conduct the analy-
sis. Specify the variables to be included and any additional parameters.

3. Result interpretation: Analyze the output generated by SPSS, which
includes eigenvalues, eigenvectors, and variance explained by each prin-
cipal component. Interpret the principal components and their signifi-
cance in elucidating data variation

4. Result visualization: Employ graphs to visually represent the principal
components and their associations with the original variables

5.1.3 Practical Application of PCA with SPSS: An Il-

lustrative Example

In this section, we will apply PCA to analyze the distribution of a country’s
expenditures covering the period from 1872 to 1971 (see Table 5.1). This
distribution is represented in the table below.

These expenditures are expressed in percentages (%) for 11 categories:
- Public Authorities (PAU),
- Agriculture (AGR),
- Commerce and Industry (CAI),
- Transportation (TRA),
- Housing and Urban Planning (HAU),
- Education and Culture (EAC),
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- Social Action (SAC),
- Veterans (VET),
- Defense (DEF),
- Debt Repayment (DET),
- Miscellaneous (MIS).

Year PAU AGR CAI TRA HAU EAC SAC VET DEF DET MIS

1872 18 0.5 0.1 6.7 0.5 2.1 2 0 26.4 41.5 2.1

1880 14.1 0.8 0.1 15.3 1.9 3.7 0.5 0 29.8 31.3 2.5

1890 13.6 0.7 0.7 6.8 0.6 7.1 0.7 0 33.8 34.4 1.7

1900 14.3 1.7 1.7 6.9 1.2 7.4 0.8 0 37.7 26.2 2.2

1903 10.3 1.5 1.4 9.3 0.6 8.5 0.9 0 38.4 27.2 3

1906 13.4 1.4 0.5 8.1 0.7 8.6 1.8 0 38.5 25.3 1.9

1909 13.5 1.1 0.5 9 1.6 9 3.4 0 36.8 23.5 2.6

1912 12.9 1.4 0.3 9.4 0.6 9.3 4.3 0 41.1 19.4 1.3

1920 12.3 0.3 0.1 11.9 2.4 3.7 1.7 1.9 42.4 23.1 0.2

1923 7.6 1.2 3.2 5.1 0.6 5.6 1.8 10 29 35 0.9

1926 10.5 0.3 0.4 4.5 1.8 6.6 2.1 10.1 19.9 41.6 2.3

1939 10 0.6 0.6 9 1 8.1 3.2 11.8 28 25.8 2

1932 10.6 0.8 0.3 8.9 3 10 6.4 13.4 27.4 19.2 0

1936 8.8 2.6 1.4 7.8 1.4 12.4 6.2 11.3 29.3 18.5 0.4

1938 10.1 1.1 1.2 5.9 1.4 9.5 6 5.9 40.7 18.2 0

1947 15.6 1.6 10 11.4 7.6 8.8 4.8 3.4 32.2 4.6 0
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1950 11.2 1.3 16.5 12.4 15.8 8.1 4.9 3.4 20.7 4.2 1.5

1953 12.9 1.5 7 7.9 12.1 8.1 5.3 3.9 36.1 5.2 0

1956 10.9 5.3 9.7 7.6 9.6 9.4 8.5 4.6 28.2 6.2 0

1959 13.1 4.4 7.3 5.7 9.8 12.5 8 5 26.7 7.5 0

1962 12.8 4.7 7.5 6.6 6.8 15.7 9.7 5.3 24.5 6.4 0.1

1965 12.4 4.3 8.4 9.1 6 19.5 10.6 4.7 19.8 3.5 1.8

1968 11.4 6 9.5 5.9 5 21.1 10.7 4.2 20 4.4 1.9

1971 12.8 2.8 7.1 8.5 4 23.8 11.3 3.7 18.8 7.2 0

Table 5.1: Expenditure Distribution for 11 Categories
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Step 1

Define variable types in the Variable View window (see Figure 5.1).

Figure 5.1: PCA: Step 1

Step 2

Copy the data into the Data View window (see Figure 5.2).

Figure 5.2: PCA: Step 2

Step 3

Go to
Analyze -> Dimension Reduction -> Factor.
Select the desired variables by checking them, then click the right-pointing
arrow.

In this window, you have five buttons: Descriptives, Extraction, Ro-
tation, Scores, Options (see Figure 5.3).
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Figure 5.3: PCA: Step 3

Step 4

In Descriptives, check "Univariate descriptives" and "Initial solution". In
the "Correlation Matrix," click "Coefficients" -> Then click "Continue" (see
Figure 5.4).

Figure 5.4: PCA: Step 4
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Step 5

In Extraction, check "Scree plot" and "Correlation matrix" -> Then click
"Continue" (see Figure 5.5).

Figure 5.5: PCA: Step 5

Step 6

In Rotation, check "Loading plot(s)". This option allows obtaining a rep-
resentation on different axes (see Figure 5.6).

Step 7

In Scores, check "Save as variables" (Regression method) and "Display fac-
tor score matrix" (see Figure 5.7).

Step 8

In Options, choose the "Sorted by size" option -> Then click "Continue"
(see Figure 5.8).
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Figure 5.6: PCA: Step 6

Figure 5.7: PCA: Step 7

Step 9

Finally, click OK. The "IBM SPSS Statistics" file will be generated.
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Figure 5.8: PCA: Step 8

Analysis of Results

The first table, named Descriptive Statistics, presents the means and
standard deviations of all variables (see Table 5.2).

Table 5.2: Descriptive Statistics

Correlation Matrix
Displays the correlations between all variables (see Figure 5.9).
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Figure 5.9: Correlation Matrix

72



Workshop 5 Multidimensional Analysis: PCA and MCA

Total Explained Variance
The eigenvalues are listed in the "Total" column and reflect the inertia carried
by the principal axes (see Table 5.3).

Each principal axis contributes to the total inertia, which is expressed as
a percentage of inertia relative to the eigenvalue and total inertia.

The highest eigenvalue in the correlation matrix is 4.96, associated with
the first principal axis, explaining 45.10% of the variability. Similarly, the
eigenvalue of 2.059 is associated with the principal axis D2, explaining 18.72%
of the variance.

We choose to retain the first three principal axes, which explain 75.49%
of the variance. This selection is clearly illustrated in the scree plot.

To decide on the number of principal axes to retain, two rules are gener-
ally applied:
First rule: Choose the number of axes based on the minimum level of infor-
mation to be retained. For example, if you aim to retain at least 80% of the
information.
Second rule: Examine the scree plot of eigenvalues and keep only the values
to the left of the inflection point. Graphically, start from the components pro-
viding the least information (those on the right), connect the almost aligned
points with a line, and retain only the axes above this line (see Figure 5.10).

Table 5.3: Total Variance Explained
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Figure 5.10: Collapse diagram

Component Matrix
The correlation coefficients between the original variables and the principal
components are provided in the Component Matrix (see Figure 5.11).

The first principal component (PC1) is positively correlated with the
variables Social Action, Commerce-Industry, and Agriculture. In contrast, it
has a negative correlation with the variables Defense and Debt Repayment.

Similarly, the second principal component (PC2) shows a negative corre-
lation with the variable Veterans and a positive correlation with the variables
Public Authorities and Transportation. The other correlations are less pro-
nounced.

As for the third component (PC3), it exhibits a relatively significant
correlation (compared to other values) with the variable Miscellaneous.
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Figure 5.11: Component Matrix

Graphical Representation
For the graphical representation (Figure 5.12), click on the "Graphs + Scat-
ter/Dot + 3D Scatter" for 3D representation (Figure 5.13) and on "Overlay
Scatter" for 2D representation (Figure 5.14). In this window, click on "Op-
tions" and check "Display chart with case labels".

In the representation on the first two principal axes, we observe that
the years are divided into three groups: before World War I, between the
two World Wars, and after World War II. However, only the year 1920, the
first year when a dedicated expenditure category for veterans appears, is
positioned with the first group, even though it belongs to the second group.
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Figure 5.12: Graphical Configuration
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Figure 5.13: 3D Graphical Representation
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Figure 5.14: 2D Graphical Representation
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Part 2

5.2 Correspondence Analysis (CA)

Correspondence Analysis (CA) is a bi-variate statistical technique used to
study relationships between categorical variables in a contingency table. It
allows for the visualization and interpretation of associations between vari-
able categories.
Theoretical explanations can be found in the lecture handout.

5.2.1 Objectives of Correspondence Analysis

The objective is to construct a configuration where objects sharing the same
category are placed close to each other, while objects of different categories
are positioned farther apart. Each object is positioned as closely as possible
to the corresponding category points. This approach leads to the formation
of homogeneous subgroups of objects based on their categories. Similarly,
variables are considered homogeneous when they group objects from the same
categories into the same subgroups.

5.2.2 Performing Correspondence Analysis in SPSS

SPSS stands out for its intuitive and user-friendly interface, which makes
conducting correspondence analysis (CA) easy.

Performing CA in SPSS entails several steps:

1. Importing the dataset

2. Executing CA

3. Interpret Results: Examine the cross-tabulation table to understand the
relationship between the variables

4. Visualize Results
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5.2.3 Practical Application of CA with SPSS: An Illus-

trative Example

In this section, we will implement Correspondence Analysis to analyze the
distribution of products A, B, C, and D in zones 1, 2, and 3.

Product

A B C D

Zone

1 5 5 15 15

2 5 25 5 5

3 30 5 5 0

Table 5.4: Relationship between Products and Zones
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Step 1

Define variable types in the Variable View window (see Figure 5.15).

Figure 5.15: CA: Step 1

Step 2

Enter the data into the Data View window (see Figure 5.16).

Figure 5.16: CA: Step 2

Step 3

Before proceeding with the analysis, it is necessary to weight the observations.
To do this, from the menus, select: Data -> Weight Cases (see Figure
5.17).

Step 4

To perform a correspondence analysis, follow these steps from the menus:
Analyze -> Dimension Reduction -> Correspondence Analysis (see
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Figure 5.17: CA: Step 3

Figure 5.18).
In the row, put "Product," and in the column, put "Zone."
To define the range, click on Define Range. For rows, set the maximum
value to 4 and the minimum value to 1. Then click Define Range again for
columns, setting the maximum value to 3 and the minimum value to 1.

Figure 5.18: CA: Step 4
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Step 5

Click on Model and select the option for the Chi square (see Figure 5.19).

Figure 5.19: CA: Step 5

Step 6

Under the Statistics tab, select Row profiles and Column profiles (see Figure
5.20).

Step 7

Under the Plots tab, select Row points and Column points (see Figure 5.21).
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Figure 5.20: CA: Step 6

Figure 5.21: CA: Step 7
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Analysis of Results

Row Profiles (Table 5.5)
The rows correspond to different products. We can observe that Product A
is present in Zone 1 with a rate of 12.5%, in Zone 2 with the same rate, and
at 75% in Zone 3. This distribution explains the availability of Product A in
the last zone.
Product B is mainly accessible in Zone 2.
Regarding Product C, it is available to the extent of 60% in Zone 1, while
Product D has an availability rate of 75%.

Table 5.5: Row Profiles

Column Profiles (Table 5.6)
In Zone 1, Products A and B show similar availability, both at a rate of 12.5%.
Similarly, Products C and D have the same availability, each at 37.5%.
For Zone 2, the most widely available product is B, and the other three
products are also present.
In Zone 3, Products A, B, and C are present. Among them, Product A is
the most abundant, with an availability rate of 75%.

Summary Table (Table 5.7)
The initial dimension (Axis 1) accounts for 61.8% of the variability in the
entire dataset, while the second dimension (Axis 2) explains 38.2% of this
variability.
When considering both axes cumulatively, their contribution reaches 100%
of the variation.
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Table 5.6: Column Profiles

The Chi-squared test yields a result of 79.607 with a significance level (sig)
less than 5%. This indicates a correlation between geographical zones and
products, demonstrating a dependency between them.

Table 5.7: Summary Table

Presentation of Row Points (Table 5.8)
62.6% of the variation explained by Axis 1 relates to Product A, 7.2% for
Product B, 5.8% for Product C, and 24.4% for Product D.
Axis 1 also explains 98.6% of the variation for Product A, while Axis 2
explains only 1.4%.
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Table 5.8: Presentation of Row Points

Presentation of Column Points (Table 5.9)
We also have 24% of the variation explained by Axis 1 concerning Zone 1,
10.3% for Zone 2, and 65.7% for Zone 3.
Axis 1 also explains 99.1% of the variation for Zone 3, while Axis 2 explains
only 0.9%.

From the two tables, we can conclude that there is a correlation between
Product A and Zone 3. Additionally, we can deduce a relationship between
Zone 1 with Products C and D, as well as between Zone 2 and Product B.

Table 5.9: Presentation of Column Points
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Figure 5.22 shows the relationships between zones and products.

Figure 5.22: Row and Column Points
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5.3 Multiple Correspondence Analysis (MCA)

Multiple Correspondence Analysis (MCA) is an advanced statistical tech-
nique that extends the capabilities of Correspondence Analysis (CA). It is
specifically designed to analyze the complex patterns of relationships that
exist among several categorical dependent variables. MCA can also be used
for data reduction and dimensionality reduction, which can be helpful in
simplifying complex data sets. While CA is suitable for analyzing two-way
contingency tables, MCA can analyze multi-dimensional contingency tables
involving three or more categorical variables.
Theoretical explanations can be found in the lecture handout.

5.3.1 Performing Multiple Correspondence Analysis in

SPSS

SPSS is commonly used for Multiple correspondence analysis (MCA) due to
its versatility in handling various statistical analyses, including those related
to categorical data.

Performing MCA in SPSS entails several steps:

1. Importing the dataset

2. Executing MCA

3. Review Results: After running the analysis, SPSS will provide output
tables and charts summarizing the results. The tables show eigenvalues,
factor loadings

4. Interpret Results: For CA, we focus on interpreting the correspondence
plot, visually representing associations between categories of the two
variables. For MCA, we interpret similar plots for each pair of vari-
ables and explore additional output tables to understand relationships
between multiple categorical variables.

5. Result visualization
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5.3.2 Objectives of Multiple Correspondence Analysis

MCA serves several key objectives in data analysis. It offers a powerful means
to explore complex datasets with categorical variables, effectively reducing
dimensionality while preserving crucial information. It aids in hypothesis
testing, variable selection, and segmentation tasks.

5.3.3 Practical Application of MCA with SPSS: An Il-

lustrative Example

In the manufacturing of dog products, a holistic approach is employed, taking
into account their functions, behavior, and morphology. This comprehensive
consideration allows for a robust analysis and interpretation of the interplay
between these varied parameters. The utilization of Multiple Correspondence
Analysis (MCA) will enhance our ability to delve deeper into these relation-
ships.
In the following example, there are 27 types of dogs categorized based on
the variables of size, weight, velocity, intelligence, affection, aggressiveness,
function, and race.
The variable ’Size’ has three modalities: ’Size-’, ’Size+’, ’Size++’.
The variable ’Weight’ has three modalities: ’Weight-’, ’Weight+’, ’Weight++’.
The variable ’Velocity’ has three modalities: ’Veloc-’, ’Veloc+’, ’Veloc++’.
The variable ’Intelligence’ has three modalities: ’Intell-’, ’Intell+’, ’Intell+’.
The variable ’Affection’ has two modalities: ’Affec-’, ’Affec+’.
The variable ’Aggressiveness’ has two modalities: ’Agress-’, ’Agress+’.
The variable ’Function’ has three modalities: ’Guard’, ’Hunt’, ’Companion’.
The variable ’Race’ has 27 modalities: ’Beauceron’, ’Basset’, ’Berger-Allemand’,
’Boxer’, ’Bull-Dog’, ’Bull-Mastiff’, ’Poodle’, ’Chihuahua’, ’Cocker’, ’Collie’,
’Dalmatian’, ’Doberman’, ’Dogue-Allemand’, ’Brittany’, ’Spaniel-French’, ’Fox-
hound’, ’Fox-Terrier’, ’Grand Bleu de Gascogne’, ’Labrador’, ’Greyhound’,
’Mastiff’, ’Pekingese’, ’Pointer’, ’St-Bernard’, ’Setter’, ’Dachshund’, and ’New-
foundland.
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Step 1

Define variable types in the Variable View window (see Figure 5.23).

Figure 5.23: MCA: Step 1

Step 2

Enter the data into the Data View window (see Figure 5.24).

Figure 5.24: MCA: Step 2

Step 3

To perform a correspondence analysis, follow these steps from the menus:
Analyze -> Dimension Reduction -> Optimal Scaling.

Step 4

In the Optimal Scaling window, select the option ’All variables are multiple
nominal’ and choose ’One set’ (see Figure 5.25).
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Figure 5.25: MCA: Step 4

Step 5

In the Multiple Correspondence Analysis window, select the following
variables for analysis: size, weight, velocity, intelligence, affection, and ag-
gressiveness. For supplementary variables, choose ’function’, and for the
labeling variable, select ’race’ (see Figure 5.26).

Step 6

In the MCA: Objet Plots window, select ’Object points’ and ’Objects and
Centroids’. In Biplot variables select the following variables : size, weight,
velocity, intelligence, affection, aggressiveness and function. For the labeling
variable, select ’race’ (see Figure 5.27).

Step 7

In the MCA: Variable Plots window, select the following variables: size,
weight, velocity, intelligence, affection, aggressiveness, and function for the
’Joint Category Plots’ (see Figure 5.28).
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Figure 5.26: MCA: Step 5

Figure 5.27: MCA: Step 6
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Figure 5.28: MCA: Step 7

Step 8

Finally, click OK. The "IBM SPSS Statistics" file will be generated.
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Analysis of Results

Model Summary (Table 5.10) contains Total (Eigenvalue), Inertia, and %
of Variance.
In the Model Summary, it is evident that we have chosen two dimensions,
and these two dimensions account for 44.112% of the variance.

Table 5.10: Model Summary

Correlation Matrix (Table 5.11)
Displays the correlations between all variables. In this case, we have taken
the variable ’function’ as a supplementary (or demonstrative) variable.

Table 5.11: Correlations Transformed Variables
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Discrimination Measures
Figure 5.29 display the discrimination measures of all variables based on the
two dimensions. As we can see, Velocity, Weight, and Size have the highest
discrimination measures.

Figure 5.29: Discrimination Measures
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Category Points
Figure 5.30 displays all the modalities of the various variables.
When examining the results in relation to the function, we observe that com-
panion dogs tend to be less aggressive, more affectionate, and more intelli-
gent. Conversely, guard dogs exhibit lower levels of affection and higher ag-
gressiveness. Hunt dogs, on the other hand, display greater velocity, weight,
and size.

Figure 5.30: Category Points
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Object Points Labeled by Race
In Figure 5.31, we can observe all the modalities of the ’Race’ variable, which
we have employed as a label. This figure also allows us to categorize the dogs
into three distinct clusters. The first cluster includes breeds like Brittany,
Dalmatian, Boxer, Labrador, Berger Allemand, Collie, Doberman, Pointer,
Foxhound, Greyhound, Grand Bleu de Gascogne, Beauceron, Setter, and
Spaniel-French. The second cluster contains breeds such as Dogue Allemand,
St. Bernard, Bullmastiff, Newfoundland, and Mastiff. The third cluster
consists of Poodle, Cocker, Fox-Terrier, Dachshund, Bull-Dog, Chihuahua,
Pekingese, and Basset.

Figure 5.31: Object Points Labeled by Race
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Biplot
In the final Figure 5.32, we observe the plot of all variables. The three clusters
of dog breeds identified in Figure 5.31 all serve distinct functions. The first
cluster represents hunting dogs, the second cluster comprises guard dogs,
and the last cluster consists of companion dogs. Each function is associated
with specific characteristics, as illustrated in Figure 5.30. For instance, guard
dogs tend to exhibit higher levels of aggressiveness and size but lower levels
of affection. The Biplot offers us a comprehensive view of the entire dataset.

Figure 5.32: Biplot
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Note

You can access the files containing the tables relevant to this Workshop
through the following link: Workshop-PCA-MCA
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Conclusion
In the realm of multidimensional analysis approaches, Principal Component
Analysis (PCA) stands out as one of the most renowned unsupervised dimen-
sionality reduction methods. It works by transforming a large set of variables
into a smaller one that retains most of the information from the original set.
On the other hand, there is Multiple Correspondence Analysis (MCA). It is
essentially a generalized version of principal component analysis, specifically
designed for qualitative data analysis. In this workshop, we present the use
of these two methods in multidimensional analysis using SPSS. We provide
detailed steps for both methods using an illustrative example, followed by an
interpretation of the obtained results.
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GENERAL CONCLUSION

The purpose of this manual is to lead students through a step-by-step learning
process of data analysis using Python and the SPSS software.

Each practical workshop has been meticulously designed to provide en-
gineering students with both a deep theoretical understanding and practical
skills.

This comprehensive approach aims to empower engineering students with
a solid grasp of the fundamental concepts required for effective data analysis
in diverse settings.

By blending theory with hands-on practice, this manual aims to prepare
engineering students to leverage these data analysis skills for making well-
informed decisions and tackling complex challenges within their academic
and professional domains.



ANNEXE

Python provides a range of built-in methods designed for performing opera-
tions on strings, lists, tuples, and dictionaries.

1 String Methods

Méthode Description

capitalize() Converts the first character to upper case

casefold() Converts string into lower case

center() Returns a centered string

count() Returns the number of times a specified value occurs in a
string

encode() Returns an encoded version of the string

endswith() Returns true if the string ends with the specified value

expandtabs() Sets the tab size of the string

find() Searches the string for a specified value and returns the posi-
tion of where it was found
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format() Formats specified values in a string

format_map() Formats specified values in a string

index() Searches the string for a specified value and returns the posi-
tion of where it was found

isalnum() Returns True if all characters in the string are alphanumeric

isalpha() Returns True if all characters in the string are in the alphabet

isascii() Returns True if all characters in the string are ascii characters

isdecimal() Returns True if all characters in the string are decimals

isdigit() Returns True if all characters in the string are digits

isidentifier() Returns True if the string is an identifier

islower() Returns True if all characters in the string are lower case

isnumeric() Returns True if all characters in the string are numeric

isprintable() Returns True if all characters in the string are printable

isspace() Returns True if all characters in the string are whitespaces

istitle() Returns True if the string follows the rules of a title

isupper() Returns True if all characters in the string are upper case

join() Joins the elements of an iterable to the end of the string

ljust() Returns a left justified version of the string

lower() Converts a string into lower case

lstrip() Returns a left trim version of the string

maketrans() Returns a translation table to be used in translations

partition() Returns a tuple where the string is parted into three parts
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replace() Returns a string where a specified value is replaced with a
specified value

rfind() Searches the string for a specified value and returns the last
position of where it was found

rindex() Searches the string for a specified value and returns the last
position of where it was found

rjust() Returns a right justified version of the string

rpartition() Returns a tuple where the string is parted into three parts

rsplit() Splits the string at the specified separator, and returns a list

rstrip() Returns a right trim version of the string

split() Splits the string at the specified separator, and returns a list

splitlines() Splits the string at line breaks and returns a list

startswith() Returns true if the string starts with the specified value

strip() Returns a trimmed version of the string

swapcase() Swaps cases, lower case becomes upper case and vice versa

title() Converts the first character of each word to upper case

translate() Returns a translated string

upper() Converts a string into upper case

zfill() Fills the string with a specified number of 0 values at the
beginning

Table 1: String Methods
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2 List Methods

Method Description

append() Adds an element to the end of the list

clear() Removes all elements from the list

copy() Returns a copy of the list

count() Returns the number of elements with the specified value

extend() Adds the elements of a list (or any iterable) to the end of the current list

index() Returns the index of the first element with the specified value

insert() Adds an element at the specified position

pop() Removes the element at the specified position

remove() Removes the element with the specified value

reverse() Reverses the order of the list

sort() Sorts the list

Table 2: List Methods
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3 Tuple Methods

Method Description

count() Returns the number of times a specified value appears in a tuple

index() Searches for a specified value in the tuple and returns it position

Table 3: Tuple Methods

4 Dictionary Methods

Method Description

clear() Removes all elements from the dictionary

copy() Returns a copy of the dictionary

fromkeys() Returns a dictionary with the specified keys and values

get() Returns the value of the specified key

items() Returns a list containing a tuple for each key-value pair

keys() Returns a list containing the keys of the dictionary

pop() Removes the item with the specified key

popitem() Removes the last inserted key-value pair

setdefault() Returns the value of the specified key. If the key does not exist,

inserts the key with the specified value

update() Updates the dictionary with the specified key-value pairs

values() Returns a list of all values in the dictionary

Table 4: Dictionary Methods
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