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Abstract

The increasing demand for clean and sustainable energy sources, coupled with the need to mit-
igate climate change, has driven the widespread adoption of renewable energy systems. Among
these, hybrid photovoltaic (PV)/wind/batteries systems have emerged as a promising solution
to address the intermittent nature of solar and wind energy sources. This dissertation focuses
on the optimization and performance evaluation of hybrid PV/wind/batteries systems using ge-
netic algorithms (GA). The objective is to minimize system costs while ensuring reliable power
supply by integrating PV panels, wind turbines, and energy storage batteries. The study con-
siders multiple sites and factors such as solar irradiance, wind speed, load demand, and storage
capacity to determine the optimal system configurations. Through extensive simulations and
analysis, the research provides insights into the cost-effectiveness, reliability, and performance
of hybrid energy systems.
Keywords: Renewable energy, hybrid systems, photovoltaic, wind, batteries, genetic algo-
rithms, optimization, performance evaluation, solar irradiance, wind speed, load demand, stor-
age capacity, cost-effectiveness, reliability, performance.
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Résumé

La demande croissante de sources d’énergie propres et durables, associée à la nécessité de lut-
ter contre le changement climatique, a conduit à l’adoption généralisée de systèmes d’énergie
renouvelable. Parmi ceux-ci, les systèmes hybrides photovoltaïques (PV)/éolien/batteries se
sont imposés comme une solution prometteuse pour pallier la nature intermittente des sources
d’énergie solaire et éolienne. Cette thèse se concentre sur l’optimisation et l’évaluation des per-
formances des systèmes hybrides PV/éolien/batteries en utilisant des algorithmes génétiques
(GA). L’objectif est de minimiser les coûts du système tout en garantissant une alimentation
électrique fiable en intégrant des panneaux solaires PV, des éoliennes et des batteries de stock-
age d’énergie. L’étude prend en compte plusieurs sites et des facteurs tels que l’irradiance
solaire, la vitesse du vent, la demande en énergie et la capacité de stockage pour déterminer les
configurations optimales du système. Grâce à des simulations approfondies et à des analyses,
la recherche apporte des éclairages sur l’efficacité économique, la fiabilité et les performances
des systèmes d’énergie hybride.
Mots clés: Énergie renouvelable, systèmes hybrides, photovoltaïque, éolien, batteries, al-
gorithmes génétiques, optimisation, évaluation des performances, irradiance solaire, vitesse
du vent, demande en énergie, capacité de stockage, efficacité économique, fiabilité, perfor-
mances.

vi



 ملخص                 

 ظهرت السياق، هذا في. المناخ لتغير للتصدي الحاجة جانب إلى والمستدامة، النظيفة الطاقة مصادر على المتزايد الطلب

 الطاقة لمصادر المتقطعة الطاقة طبيعة مع للتعامل واعداا كحلا  ة والبطاريات الهجين والرياح الضوئية الشمسية نظمةالأ

. الجيني التحسين خوارزميات باستخدام  ةالهجين نظمةالأ أداء وتقييم تحسين على الأطروحة هذه تركز. والرياح الشمسية

 الرياح ومحولات الشمسية الألواح دمج خلل من موثوقة طاقة توفير ضمان مع للنظام تكلفة أقل تحقيق هو الهدف

 الطاقة على الطلبو الرياح وسرعة الشمسأشعة  مثل وعوامل متعددة مواقع الاعتبار في البحث يأخذ. التخزين وبطاريات

 حول قيمة رؤى البحث هذا يوفر المتعمق، والتحليل المحاكاة خلل من. الأمثل النظام التكوينات لتحديد التخزين وسعة

.الهجينة الطاقة أنظمة وأداء والموثوقية التكلفة حيث من الكفاءة . 

 ،الجيني التحسين خوارزميات البطاريات، الرياح، الشمسية، الطاقة الهجينة، الأنظمة المتجددة، الطاقة :المفتاحية لكلماتا

ءأدا الموثوقية، التكلفة، حيث من الكفاءة التخزين، سعة الطاقة، على الطلب الرياح، سرعة الشمس، أشعة الأداء، التقييم  
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General introduction

The escalating global energy demand, coupled with the urgent need to reduce greenhouse gas
emissions, has prompted a shift towards renewable energy sources. Photovoltaic (PV) and wind
energy have emerged as leading contenders in the transition to a sustainable energy future. PV
systems harness the sun’s energy to generate electricity, while wind turbines capture the kinetic
energy of the wind. Both sources offer abundant availability and produce minimal greenhouse
gas emissions during operation.
However, one of the main challenges associated with PV and wind energy is their intermittent
nature. Solar energy generation is dependent on daylight hours and weather conditions, while
wind energy production relies on the strength and consistency of wind patterns. This intermit-
tency introduces fluctuations in energy supply, making it difficult to meet the constant energy
demands of modern societies.
To address this issue, hybrid PV/wind systems, also known as renewable energy hybrid sys-
tems, have gained traction. By integrating PV and wind technologies, these hybrid systems
can harness the complementary nature of solar and wind resources, maximizing energy gener-
ation potential. Moreover, to ensure a continuous power supply, energy storage systems, such
as batteries, are incorporated into these hybrid systems. Batteries store excess energy during
periods of high generation and discharge it when energy demand exceeds the renewable energy
generation capacity.
The integration of batteries into hybrid PV/wind systems introduces flexibility and enhances
system resilience. Excess energy generated during peak periods is stored for use during periods
of low generation, effectively mitigating the intermittent nature of solar and wind sources. This
storage capability ensures a reliable and stable power supply, reducing reliance on conventional
energy sources and increasing the overall penetration of renewable energy.
To optimize the performance and economic viability of hybrid PV/wind/batteries systems, so-
phisticated optimization techniques are employed. Genetic algorithms (GA) have proven to be
effective in solving complex optimization problems by simulating natural selection processes.
By iteratively evaluating different system configurations, GA algorithms can identify the most
optimal combinations of PV panels, wind turbines, and batteries. These optimized configura-
tions aim to maximize energy generation, minimize system costs, and maintain a high level of
reliability in meeting energy demands.
This thesis aims to contribute to the advancement of hybrid PV/wind/batteries systems through
the application of genetic algorithms for system optimization. The study focuses on evaluating
the performance and cost implications of these systems at various sites, taking into account
factors such as solar irradiance, wind speed, load demand, and storage capacity.
By optimizing hybrid PV/wind/batteries systems, we can harness the full potential of renew-
able energy sources while ensuring a reliable and sustainable power supply. The integration
of these systems offers a promising pathway towards a decarbonized energy future, reducing
greenhouse gas emissions and promoting long-term energy security.
This thesis is organized into three main chapters. In Chapter 1, we review the various sizing
methods and optimization techniques used for stand-alone hybrid systems, specifically focusing
on photovoltaic-wind systems with storage for isolated sites. Chapter 2 delves into the mathe-

xv



matical models of the components studied within the hybrid system. Finally, in Chapter 3, we
present and analyze the results of our work, highlighting key findings and their implications.
Through this structure, the thesis contributes to the understanding of sizing methods, mathe-
matical modeling, and the evaluation of hybrid photovoltaic-wind power systems with storage
for isolated sites.
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Chapter 1

Sizing hybrid photovoltaic-wind power
systems: an introduction to methods and
concepts

1.1 Introduction

In recent years, there has been increasing focus on hybrid power systems, which combine two
or more power supplies to provide more reliable and cost-effective power. Hybrid systems offer
many advantages, including increased energy reliability, cost savings, reduced environmental
impact, increased energy independence and flexibility in energy use. For example, a hybrid
system that combines solar panels and battery backup can provide power during periods of
low solar radiation or blackouts, reducing reliance on the grid or other external energy sources.
However, the optimal configuration of a hybrid system depends on many factors, including the
user’s specific energy needs and available resources.

As society becomes more aware of the environmental impact of conventional energy sources,
renewable energy systems are gaining popularity as a cleaner and more sustainable alterna-
tive. However, the intermittent nature of renewable energy can present challenges in meeting
energy demands and achieving optimal system performance.Hybrid systems that combine mul-
tiple renewable energy sources such as wind and photovoltaics can address these challenges by
providing more reliable and consistent energy.A critical aspect of designing a successful hybrid
renewable energy system is the precise sizing of its components. This phase determines the
optimal sizing of various system components and has a significant impact on system perfor-
mance, efficiency and overall cost-effectiveness. Therefore, careful consideration and accurate
sizing are critical to realizing the full potential of a hybrid renewable energy system.

1.2 Renewable energies vs fossil fuels: a comparative study

1.2.1 Environmental impact

Renewable energy sources have been shown to have a lesser environmental impact when com-
pared to fossil fuels. This conclusion is supported by various measures such as the reduction
in air and water pollution, decreased harm to public health, lessened wildlife and habitat loss,
lowered water and land use, and minimized global warming emissions that are associated with
renewable energy sources. In summary, the available scientific evidence indicates that renewable
energy sources are a more environmentally sound choice than fossil fuels [1].
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1.2.2 Resource availability

Renewable energy sources, such as solar and wind power, are naturally replenished and have
become widely recognized as a crucial component of the transition to clean energy and climate
change mitigation. However, the intermittency of renewable energy, which relies on weather and
time of day, necessitates the use of energy storage systems to ensure a dependable electricity
supply. In addition, the implementation of renewable energy requires a significant amount of
land and appropriate transmission infrastructure. In contrast, fossil fuels have a limited reserve
that will eventually be depleted, leading to a non-renewable energy crisis [2] [3] [4].

1.2.3 Cost

The cost competitiveness of renewable energy sources in comparison to fossil fuels is increasing.
Recently, the International Energy Agency reported that the cost per megawatt to construct
solar plants worldwide is now less than that of fossil fuels for the first time. The cost of large-
scale solar plants is about $45 per megawatt-hour, while new onshore wind costs approximately
$46 per megawatt-hour. By contrast, the construction of new coal-fired plants has a cost of $74
per MWh, while gas plants have an expense of approximately $56 per MWh [5] [6].

1.3 Why hybrid energy systems

1.3.1 Increasing energy efficiency

Hybrid energy systems have the potential to increase energy efficiency by integrating multiple
energy generation, storage, and conversion technologies, resulting in enhanced capabilities, cost
savings, improved environmental performance, and greater value when compared to indepen-
dent alternatives. The integration of different energy sources and storage technologies in hybrid
systems can lead to increased system efficiency and flexibility, which can help plants optimize
their revenue and create new and valuable products. Hybridization has become an attractive
solution in the power sector due to its ability to offer a range of benefits to both the energy
providers and consumers [7].

1.3.2 Reliability

Hybrid energy systems, which integrate renewable energy sources with backup energy storage
solutions, have the potential to provide a continuous and reliable power supply without inter-
ruptions. When there is a power outage, the energy storage units connected to hybrid solar
systems can store the excess energy generated by the renewable sources. These energy storage
units can also function as inverters, enabling them to supply continuous power even during
outages. This ensures that the power supply remains stable, thereby increasing the reliability
of the energy system [8].

1.4 Components of hybrid energy system

1.4.1 Photovoltaic panels

Photovoltaic (PV) panels are electrical devices that convert solar energy into usable electricity.
They are composed of semiconductor materials, with mono-crystalline and poly-crystalline
silicon being the most commonly used [9].

2



1.4.1.1 Operation

The photovoltaic effect is the process by which a photovoltaic cell converts sunlight into elec-
trical energy. The cell is made of two types of semiconductors that form a pn junction. When
photons of an appropriate wavelength are absorbed, valence electrons are promoted to the con-
duction band, generating an electron-hole pair. The built-in electric field of the pn junction
separates these carriers, creating a flow of electrical current [10].

Figure 1.1: A Diagram showing the photovoltaic effect [11].

1.4.1.2 Factors affecting current and power output in PV cells

The amount of current and power produced by a photovoltaic (PV) cell is influenced by various
factors, including environmental, PV system, installation, cost, and miscellaneous factors. En-
vironmental factors such as solar irradiance, temperature, and shading conditions affect energy
harvesting, while PV system factors like panel size and orientation impact energy conversion.
Installation factors such as proper placement and orientation, and cost factors such as initial
investment and maintenance costs can also affect efficiency. Miscellaneous factors like soiling
of panels, spectral effects, and mismatch losses can further reduce power output [12].

1.4.1.3 Types of photovoltaic panels:

1. Monocrystalline polar panel :
A monocrystalline solar panel is composed of monocrystalline solar cells. These cells are
named after a cylindrical silicon ingot grown from high-purity single-crystal silicon in the
same way as a semiconductor. Because the cell is made of a single crystal, the electrons
have more space to move, which ensures better flow of electricity. The cylindrical ingot
is sliced into wafers that form the cells. To maximize the utility of the cells, the circular
wafers are wire cut into octagonal-shaped wafers. These cells have a unique appearance
due to their octagonal shape, and they also have a uniform color [13].

Monocrystalline solar panels have advantages such as high efficiency levels (17%− 22%),
requiring less space, and a 25-year warranty. They also perform well in low levels of
sunlight and have greater heat resistance. However, they are the most expensive type of
solar panel and their performance tends to decline with temperature. The manufacturing
process generates waste due to cutting the silicon [13].

2. polycrystalline solar panel :
Polycrystalline or multicrystalline solar panels are made up of multiple fragments of silicon
that are melted together to form the wafers of the panel. These panels have a mosaic-like
surface and a square shape with a shining blue hue. The molten silicon used to produce
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the cells is allowed to cool on the panel, resulting in multiple silicon crystals in each cell.
As a result, polycrystalline panels have limited electron movement within the cells. These
solar panels absorb solar energy and convert it into electricity [13].

3. Thin-film solar panels:
Thin-film solar panels use the photovoltaic effect to convert light energy into electrical en-
ergy and are made of multiple thin layers of photovoltaic materials. They are lightweight
and flexible, making them ideal for portable applications. Each cell is composed of a
photovoltaic material, a conductive sheet, and a protective layer. Thin-film panels offer
unique advantages in terms of flexibility and weight compared to traditional monocrys-
talline and polycrystalline panels [14].

1.4.2 Wind turbine generator

Wind turbines are devices that convert the kinetic energy of wind into electrical energy. There
are two main types of wind turbines: horizontal-axis turbines and vertical-axis turbines. The
size of wind turbines can vary widely, with small wind turbines designed for a single home
having an electricity generating capacity of 10 kilowatts and the largest utility-scale wind
turbines generating up to 15 megawatts. Multiple large turbines are often grouped together to
create wind farms that can provide electricity to local or regional electricity grids [15].

1.4.2.1 Horizontal-axis turbines

Horizontal-axis wind turbines are equipped with blades that resemble airplane propellers and
typically have three blades. The largest horizontal-axis turbines can reach heights equivalent
to 20-story buildings and feature blades that extend over 100 feet in length. These turbines
generate more electricity due to their greater height and longer blade length. The vast majority
of wind turbines that are currently being utilized are horizontal-axis turbines [15].

1.4.2.2 Vertical-axis turbines

Vertical-axis wind turbines are equipped with blades that are attached to the top and bottom of
a vertical rotor. The most widely used type of vertical-axis turbine is the Darrieus wind turbine,
which was patented in 1931 by the French engineer Georges Darrieus. The Darrieus turbine has
a distinctive appearance, resembling a large, two-bladed egg beater. Some versions of vertical-
axis turbines can be as large as 100 feet tall and 50 feet wide. However, the performance of
vertical-axis turbines is generally inferior to that of horizontal-axis turbines, which is why they
are not widely used [15].

1.4.3 Storage system

The emergence of new energy storage technologies promises to improve the reliability and pro-
ductivity of renewable energy sources. Energy storage systems (ESSs) enable the balancing
of supply fluctuations and provide backup power during outages, resulting in a more stable
and reliable power grid. A range of electric storage technologies, including batteries, super-
capacitors, and hydrogen storage, have been developed, each with their own advantages and
limitations in terms of efficiency, cost, and environmental impact. Electric batteries, which
utilize electrochemical reactions to store and deliver energy, are a vital component of hybrid
renewable energy systems and require continuous research and innovation for the advancement
of sustainable energy. Understanding the principles of battery operation and selecting the most
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suitable storage solution for a particular application are essential for the development of efficient
energy storage systems [16].

1.4.4 Charge controller

A charge controller (regulator) plays a crucial role in ensuring and regulating the battery
charging process. It helps to optimize the performance of solar panels and wind turbines while
also preventing the occurrence of deep discharges or overcharges [17].

1.4.5 Inverter

Inverters play a crucial role in the conversion of direct current (DC) electricity generated by
solar panels into alternating current (AC) electricity, which can be used by the electrical grid.
They are essential in converting DC electricity from sources such as batteries, fuel cells, or solar
panels to AC electricity. This is done by rapidly switching the direction of the DC input back
and forth, effectively transforming it into an AC output. The primary goal of an inverter is to
facilitate this DC-to-AC conversion process [18].

1.5 Configuration of hybrid energy system

1.5.1 Series architecture

1.5.1.1 Configuration with direct current bus

In a series architecture, all energy sources are connected to a common direct current (DC)
bus.In this architecture, the alternating current (AC) voltages generated by the wind turbine
and modules are rectified into direct current voltages using AC/DC converters. The load is
then supplied by an inverter (DC/AC converter) [19].

Figure 1.2: Configuration with direct current Bus [19].

1.5.1.2 AC bus configuration:

The AC bus architecture has emerged with the development of power electronics and the
availability of more efficient inverters. This architecture features a single AC bus to which all
hybrid system modules are connected [19].
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Figure 1.3: Configuration of a hybrid system with an AC bus [19].

1.5.2 Parallel architecture :

The parallel configuration of a hybrid system utilizes two buses, a DC bus for direct current
sources such as batteries and PV panels, and an AC bus for the wind turbine and load. These
two buses are connected through a bidirectional converter which operates in rectifier mode when
the load is supplied by the PV panels or batteries and charges the energy storage system, and
in inverter mode when the load is supplied by the wind turbine. This configuration allows for
the load to be supplied by both buses at the same time, increasing the flexibility and reliability
of the system [19].

Figure 1.4: Parallel architecture [19].

1.6 Methods for sizing hybrid systems

1.6.1 Classical techniques

1.6.1.1 Analytical approaches

Analytical optimization approaches involve creating numerical equations through theoretical
and mathematical analysis. They can be combined with simulation models to ensure conver-
gence and offer the benefits of quick computing time and ease of implementation. However,
simplifying assumptions may limit accuracy in complex problems. An effective use of analyti-
cal methods was seen in power systems where continuous power flow analysis identified buses
prone to voltage drop, resulting in improved voltage profile, reduced power loss, and increased
transfer capacity. [20]

6



1.6.1.2 Linear and non-linear programming (LP & NLP)

Linear programming (LP) and nonlinear programming (NLP) are mathematical tools utilized
to optimize objective functions subject to a set of constraints. LPs and NLPs are widely used in
diverse fields, including computer science, mathematics, business, economics, engineering, and
the sciences. While LPs can be solved using a finite procedure, no such method exists for NLPs.
However, the Kuhn-Tucker condition method has proven to be an effective approach for solving
NLP problems, and it allows for reducing QP problems to the form of an LP problem, which
can be solved using simplex-type algorithms such as Wolfe’s Algorithm. Therefore, the use of
LP and NLP models, along with their associated optimization methods, has become essential
in various fields to enhance decision-making processes and improve system performance [21].

1.6.1.3 Fuzzy logic

The concept of partial truth, where truth values may range between completely true or false, is
at the core of fuzzy logic. It uses membership functions, which assign truth values to variables
between 0 and 1, to represent degrees of truth. Fuzzy logic provides an inference structure that
closely mimics human reasoning, called a fuzzy inference system. The Mamdani method, which
uses fuzzy sets, rules, and logic, is a popular decision-making process based on fuzzy logic.
Fuzzy logic has wide-ranging applications, including air conditioning, transportation planning,
medical diagnosis, and various branches of engineering and research [22].

1.6.1.4 Graphical construction method

The method is based on the condition that the average demand must be met by the average
solar radiation and wind speed for a given size of PV generator and wind turbine. The seasonal
variation of demand and resource availability is analyzed for winter and summer months. Based
on the analysis, a sizing curve is developed between the available various sizes of wind turbines
and PV generators. If data are collected for a larger number of times, a more refined curve can
be obtained [23].

1.6.1.5 Iterative approach

The iterative approach for evaluating the performance of an integrated energy system involves
using a recursive program that stops when the optimal system design is achieved. The opti-
mization model used in this approach considers parameters such as the capacity of PV panels,
rated power of wind system, and battery bank storage capacity to minimize the system cost
while meeting the desired reliability level. However, this approach does not optimize other pa-
rameters such as PV area, PV module slope angle, wind turbine swept area, and wind turbine
installation heights which can significantly impact system costs. Therefore, it may be necessary
to reformulate the approach to include these parameters in the optimization model for a more
accurate evaluation of the integrated energy system’s performance. [24]

1.6.1.6 Probabilistic approaches

Probabilistic approaches for sizing integrated energy systems consider the effect of insolation
and changes in wind speed when designing the system. However, these approaches have limita-
tions in characterizing the dynamic changing performance of the integrated or hybrid system.
To address this limitation, it may be necessary to reformulate the probabilistic approach by
incorporating models that account for the system’s response to changes in resource generation
and demand, using time-series data, and accounting for interactions between the different com-
ponents of the integrated energy system. By including these models, the probabilistic approach
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can provide a more accurate and comprehensive evaluation of the performance of the integrated
energy system under varying conditions [24].

1.6.1.7 The trade-off approach:

The trade-off approach is a method that considers both the cost and reliability of hybrid
energy systems. However, it is not commonly used in hybrid system sizing and has limited
research available. The approach can provide robust designs but requires decision-makers to
make the final decision, and it does not consider emission control. To address this limitation,
incorporating models that account for emission control may provide a more accurate evaluation
of hybrid system performance and help decision-makers make informed decisions [25].

1.6.2 Intelligent search methods:

1.6.2.1 Genetic algorithm :

Genetic algorithm (GA) is a search strategy that applies principles of evolutionary biology
to address complex search spaces by utilizing crossover, mutation, and natural selection. By
maintaining diversity through genetic operators such as crossover and mutation, the GA can
find feasible solutions and prevent early convergence to a local maximum. The GA is highly
effective in resolving combinatorial optimization problems and generating high-quality solutions
for optimization problems. Its success is largely attributed to the evolution of diverse individuals
within a population, following the principle of survival of the fittest. The genetic algorithm
is used as an optimization tool to minimize a given function by generating a population of
solutions and producing offspring solutions by combining two parental solutions, much like the
combination of DNA in biological offspring [26].

1.6.2.2 Simulated annealing

Simulated annealing is an iterative, stochastic algorithm used to approximate the global op-
timum of a problem. It gradually converges to a near-optimal solution by accepting moves
that may reduce the solution quality, based on a parameter called temperature. This algorithm
has been proven to sample the parameter space more efficiently than other previous simulated
annealing algorithms. An extended version of simulated annealing has been introduced for
multiobjective optimization, which allows for the construction of near-Pareto optimal solutions
through the use of an archive. Several variants of multiobjective simulated annealing have
been proposed in the literature. Generalized simulated annealing (GSA) is an adaptation of
simulated annealing that addresses the issue of suboptimal distribution by utilizing a distorted
Cauchy-Lorentz distribution [27] [28].

1.6.2.3 Particle swarm optimization:

Particle Swarm Optimization (PSO) is a metaheuristic optimization method inspired by the
collective behavior of biological systems such as bird flocks. PSO represents the potential
solutions of an optimization problem as particles and updates the particle positions based on the
personal best and global best particle positions ever found. However, the basic PSO algorithm
has limitations in finding the global optimal solution due to local optima and difficulties in
balancing exploration and exploitation, especially in complex functions. To overcome these
issues, researchers have proposed various variants of PSO, including new parameters, adaptive
methods, and using multiple best particle positions. PSO has been applied in various fields
such as renewable energy systems, including photovoltaic systems, wind turbines, and hybrid
systems, for tasks such as design, sizing, control, and maximum power point tracking [29] [30].
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1.6.2.4 Ant colony optimization

Ant Colony Optimization (ACO) is a popular metaheuristic optimization method that mim-
ics the behavior of ant colonies in finding the shortest path between their nest and food
sources. ACO algorithms use indirect communication between ants through the deposition
of pheromones on their trails to solve optimization problems. The idea is that ants use the
trails with the strongest pheromone concentration to find the most promising route. ACO algo-
rithms create solutions to an optimization problem and exchange information on their quality
through a communication scheme that emulates the behavior of real ants. ACO has been ap-
plied successfully to solve complex and difficult optimization problems, and several strategies
have been developed based on the ACO concept. Different variants of ACO have been pro-
posed, including competitive ant colony optimization, artificial ant species, and multi-colony
ant algorithm, to enhance the performance of ACO in solving optimization problems [31] [32].

1.6.2.5 Harmony search

The Harmony Search Algorithm (HSA) is a recently developed metaheuristic optimization algo-
rithm inspired by the behavior of a musician producing a perfect harmony. HSA is characterized
by its ability to balance exploration and exploitation during the search process and its ease of
implementation compared to other metaheuristics. As a result, it has been widely applied to
solve a variety of real-life optimization problems, including clustering, unconstrained bench-
mark functions, and water distribution system pipe diameter design problems. To improve
the performance of HSA, researchers have proposed several variants, such as the multi-layered
harmony search algorithm and the hybrid harmony search differential evolution algorithm. A
systematic review of HSA has been conducted to explore its natural inspiration, conceptual
framework, control parameters, improvement and hybridization with other metaheuristics, and
applicability in various problem domains. The review highlights the potential of HSA as a
promising metaheuristic optimization algorithm and its ability to solve a diverse range of opti-
mization problems in different problem domains [33] [34] [35].

1.6.2.6 Tabu search

Tabu Search (TS) est une approche méta-heuristique qui a été initialement proposée par F.
Glover en 1986 pour résoudre des problèmes d’optimisation. L’approche est basée sur le principe
de la mémoire adaptative et de l’exploration réactive, qui permettent de rechercher l’espace de
solution de manière économique et efficace jusqu’à ce qu’aucune amélioration ne soit atteinte.
[20]

1.6.2.7 The artificial bee colony

The Artificial Bee Colony (ABC) algorithm is a swarm intelligence-based optimization approach
inspired by the foraging behavior of bees, proposed by Karaboga and Basturk in 2005. It has a
quick convergence speed, making it useful in solving capacity allocation problems. In a study by
Mohamed et al., which applied both ABC and GA to optimize an off-grid PV-battery system,
the results showed that ABC was more effective. [36]

1.6.2.8 Cuckoo search

Cuckoo search is a powerful algorithm for solving global optimization problems. It was first
introduced in 2009 by Yang and Deb and has since been successfully applied in various fields,
including structural engineering, image processing, protein complex identification, power flow
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optimization, wind energy forecasting, side lobes reduction, milling operations, and feed for-
warding applications. To further enhance the performance of cuckoo search in solving opti-
mization problems, researchers have proposed several variants, such as the modified cuckoo
search algorithm. A review of the original cuckoo search algorithm and its variants, a litera-
ture survey, and a comprehensive overview of the variants of cuckoo search algorithm and their
applications have been presented. These resources summarize the key features of the algorithm
and its variants, as well as the latest developments in the field and the diverse range of appli-
cations where cuckoo search has been successfully applied. The review highlights the potential
of cuckoo search as an efficient metaheuristic optimization algorithm and its ability to solve
various optimization problems in different application domains [37] [38].

1.6.2.9 Hybrid methods

Hybrid methods that combine two or more optimization algorithms have been proposed to over-
come the limitations of single methods in efficiently solving the complex and multi-dimensional
optimization problems of hybrid renewable energy systems (HRESs) sizing. Many studies have
shown that hybrid methods can obtain a better capacity result compared to single methods.
For example, dynamic programming (DP)-region elimination technique (RET) was combined
by Berrueta et al. to realize the capacity allocation and management of energy storage on
a roof PV system, resulting in greater economic benefits. Katsigiannis et al. used a hybrid
simulated annealing (SA)-Tabu Search (TS) method to optimize the size of an independent
autonomous system, with a shorter calculation time compared to SA and TS. The hybrid Big
Bang-Big Crunch algorithm (HBB-BC) was applied to a standalone PV-wind-battery system
design, showing better performance than other methods. Hybrid genetic algorithm (GA)-mixed
integer linear programming (MILP) algorithm was used in configuring the capacity of a mi-
crogrid, while hybrid GA-exhaustive search algorithm was proposed to optimize the impact of
social-demographic factors on system capacity. Lan et al. employed a multi-objective particle
swarm optimization (MOPSO) and elite non-dominated sorting genetic algorithm (NSGA-II)
hybrid algorithm to optimize both the total system cost and carbon dioxide emissions of an
isolated ship system. Lastly, a hybrid optimization method of ant colony optimization (ACO)
based on continuous domain integer programming (CDIP) was proposed, which had a fast
convergence speed and high accuracy compared to GA and ABC [36].

1.7 Load estimation and energy management

1.7.1 Load estimation methods and techniques

In the realm of hybrid renewable energy systems, load estimation methods and techniques are
crucial to optimize energy production and meet load demand with minimum cost and maximum
reliability. Optimization techniques such as particle swarm optimization (PSO) and exponen-
tial smoothing method are utilized to determine the optimal size of system components and
predict upcoming load peak values based on historical data. Load shifting and strategic conser-
vation methods are used for demand-side energy management. Resource estimation and load
estimation serve as primary inputs for designing Hybrid Renewable Energy Systems (HRES) to
ensure sustainable energy, improved reliability, and stability. Accurate load estimation methods
for distribution system analysis are now possible with advanced metering infrastructure (AMI)
technologies, which result in significantly improved accuracy in distribution power flow analysis.
Oversizing or undersizing the system can negatively impact its economic viability [39] [40] [41].
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1.7.2 Energy management strategies for hybrid systems

Effective management of energy is critical for hybrid systems to enhance the efficiency and
utilization of various energy storage sources, optimizing their performance. Several energy
management strategies, including online strategy, adaptive fuzzy logic control strategy, grey
wolf optimization technique, Pontryagin’s minimum principle, and model predictive control , are
used to improve fuel consumption, the lifespan of hybrid sources, battery operating conditions,
and power flow coordination among system components. The selection of a suitable energy
management strategy is crucial in providing an optimal solution for designing and operating
hybrid energy systems. Hybrid energy systems are considered the most viable solution to
address the stochastic nature of renewable energy resources . The HOMER Pro software is used
to optimize hybrid energy systems, while the exponential smoothing method is used to forecast
future load peak values based on historical data. The proposed strategies are validated through
simulation and experimental studies to enhance hydrogen consumption, reduce greenhouse gas
emissions, and achieve cost-effective solutions [42] [41].

1.7.3 Importance of load matching and balancing in hybrid systems

Load matching and balancing play a critical role in hybrid systems by ensuring that the energy
generated by various sources meets the energy demand of the system. Hybrid systems employ
a combination of different renewable energy sources such as wind, solar, and hydrogen fuel
cells to form an optimal and reliable power supply. Due to the use of different sources, the
production profiles become intermittent and stochastic, while load profiles vary over time.
Hence, load matching and balancing are essential to minimize the gap between the production
and consumption curves. The Energy Management Strategy is a crucial component of hybrid
systems as it coordinates the power flow among various components, taking into account power
demand and other constraints. To fully comprehend the system design, Energy Management
Strategy optimization and hybrid system design must be treated as a single entity. Different
control strategies such as Model Predictive Control ,fuzzy logic control, and frequency-selective
predictive current controller can enhance load balancing and compensate for reactive power
and harmonics [12,17] .

1.8 Economic and environmental analysis of hybrid sys-
tems

1.8.1 Economic evaluation methods for hybrid systems

There are several methods for evaluating the economic feasibility of hybrid systems, including
techno-economic analysis, optimization, and modeling and simulation (M&S). Techno-economic
analysis involves assessing the cost of energy, net present cost, and greenhouse gas emissions
to evaluate the economic feasibility of a hybrid system. Optimization methods aim to identify
the optimal configuration of a hybrid system that minimizes the net present cost or levelized
cost of energy while satisfying energy demand. Modeling and simulation methods are utilized
to analyze the performance of a hybrid system under different operating conditions and predict
energy output and load demand. The incorporation of load prediction methods, such as the
exponential smoothing method, can enhance the accuracy of the load forecast and optimize the
design of the hybrid system [42] [1].
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1.8.2 Environmental impact assessment of hybrid systems

The environmental impact assessment of hybrid systems involves a comprehensive evaluation of
the environmental impact of the system throughout its life cycle. This assessment encompasses
various parameters, including greenhouse gas emissions, energy consumption, and resource
depletion, and can be conducted using life cycle analysis techniques that consider the environ-
mental impact from raw material extraction to waste disposal. The primary objective of this
assessment is to identify areas where the system can be improved to reduce its environmental
impact and facilitate the selection of the most environmentally friendly hybrid system configu-
ration. The complexity of the system and the scarcity of environmental data can pose challenges
in conducting the assessment. Nonetheless, it is essential to perform this assessment to ensure
the sustainability of the hybrid system and to prevent significant environmental harm [43].

1.8.3 Case studies of hybrid systems in different applications and set-
tings :

Various case studies have explored the use of hybrid systems in different applications and set-
tings. One study proposes a novel definition of non-deterministic hybrid systems and aims to
investigate maps between all relevant dynamic systems simultaneously. Another study presents
a control scheme for designing appropriate controllers for hybrid systems, which considers the
switching behaviors of the system and its subsystems to achieve overall stabilization effec-
tively. Furthermore, a third study examines the linear hybrid system with constant coefficients
that is unresolved with respect to the derivative of the continuous component of the unknown
function. This study establishes necessary and sufficient conditions for R-controllability (i.e.,
controllability in the reachable set) of the hybrid system [3].
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1.9 Conclusion
In conclusion, the design of hybrid energy systems is a complex process that involves considering
various components and factors. In this chapter, we have discussed the components of hybrid
energy systems, including photovoltaic and wind power systems, as well as the importance of
load estimation. We have also introduced methods for sizing hybrid systems, including classi-
cal and artificial intelligence approaches. Furthermore, we have highlighted the importance of
economic and environmental analysis of hybrid systems, which is essential in evaluating the fea-
sibility and sustainability of such systems. Overall, the integration of renewable energy sources
through hybrid systems is a promising solution for addressing the challenges of energy security,
environmental sustainability, and economic development. Further research and development of
hybrid systems are needed to optimize their performance and achieve a transition towards a
more sustainable energy future.
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Chapter 2

Mathematical description of hybrid
system components

2.1 Introduction
In this chapter, we present a methodology for designing and optimizing hybrid systems using
genetic algorithms (GAs). GAs are a type of evolutionary algorithm that mimic the natural
selection and mutation process to find optimal solutions to complex problems. By using GAs,
we can effectively explore the design space and find the best combination of components for a
given hybrid system, taking into account different constraints and objectives. The chapter is
organized as follows. In the first part, we provide an overview of the different components of the
hybrid energy system, including photovoltaic panels, wind turbines, and batteries, and their
influence on the system performance. We then proceed to the modeling of the overall system.
The purpose of modeling is to express the technical processes of the system in mathematical
form, allowing us to study and optimize the behavior of the different parameters while respecting
the given constraints. The modeling of the photovoltaic-wind-battery hybrid energy system is
essential to establish a direct relationship between the energy produced by the system and the
energy demand of the load. Finally, we discuss the use of genetic algorithms for optimizing the
hybrid system design, and demonstrate their effectiveness through numerical simulations.

2.2 Modeling of the photovoltaic generator :
The PV generator is characterized as a non-linear device, and its behavior is determined by
the I-V characteristics and the equivalent circuit. Numerous mathematical models have been
developed to accurately depict the performance of PV systems [1]. Designing a photovoltaic
system involves selecting the optimal number of PV modules that can directly convert sunlight
into DC power. A PV module is typically a collection of PV cells. The power output of each
PV module at a given hour can be determined using the following formula [2]:

pPV (t) = ηpvApvGi(t) (2.1)

where Apv represents the area in m2 of the PV module, Gi(t) the solar irradiation in kW/m2 at
hour t and ηpv the efficiency of the PV module. The total power produced by the PV system
can be calculated by multiplying the number of PV modules (Npv) by the power of one PV
module:

PPV (t) = NpvpPV (t) (2.2)

The photovoltaic generator in this scenario is assumed to be controlled by an MPPT algorithm,
which enables it to track and reach the maximum power point it can achieve. This control
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system manages both the photovoltaic generator and the static converter to ensure that the load
receives maximum power output at any given moment. The complexity of the MPPT algorithm
employed varies depending on the implementation and the duty cycle of the converter used
[3].Additionally, energy losses within the photovoltaic system are assumed to be negligible.The
instantaneous efficiency of the generator can be expressed using the following equation [4] :

ηgpv = ηrηcp [1− βt(Tc − Tr)] (2.3)

The equation relates the efficiency of a photovoltaic (PV) generator to several factors. The
reference efficiency of the PV generator is denoted by ηr, while ηηpc represents the efficiency of
the power tracking equipment. If a perfect maximum power point tracker is utilized, ηηpc is equal
to 1. The temperature of the PV cell (Tc) is also taken into account, along with the reference
temperature of the PV cell (Tr), and β, which is the temperature coefficient of efficiency. The
temperature coefficient of efficiency (β) ranges from 0.004 to 0.006 per oC [5].The temperature
of the photovoltaic cell can also be expressed using the energy balance proposed by Duffie et
al. This equation is given as follows [6]:

Tc = Ta +Gt.

(
NOCT − 20

800

)
(2.4)

The equation includes parameters such as Ta, NOCT , ηcp, Gt, and βt, which are specific to the
type of photovoltaic module being used and are provided by the module manufacturer. Ta refers
to the ambient temperature in Celsius, while NOCT is the nominal operating temperature of
the cells. NOCT is the temperature that a cell would reach when in operation and open circuit
under average conditions, including a solar irradiation of 800,W/m2, an ambient temperature
of 20oC, spectral distribution AM = 1.5, and wind speed equal to or greater than 1,m/s [7].
Gt represents the solar irradiation, which denotes the amount of solar energy incident on the
photovoltaic module’s surface. The solar irradiation is typically measured in units of watts
per square meter (W/m2). The parameters Cp, βt, and NOCT are used to determine the
temperature coefficient, which is unique to each photovoltaic module

2.3 Wind turbine modeling:
As the wind speed increases beyond the cut-in velocity (Vci), the power produced by the gener-
ator is proportional to the cube of the wind speed. Once the speed exceeds the rated velocity
(Vr)), the power produced by the generator remains constant and equals the rated power (Pr).
If the wind speed exceeds the cut-out value (Vco), the generator stops operating to protect it-
self, resulting in zero power output. Mathematically, the power generated by each wind turbine
(PWT ) at time t can be expressed as follows [2]:

pWT =


0 V (t) < Vci or V (t) > Vco

Pr ·
V 3(t)− V 3

ci

V 3
r − V 3

ci

Vci < V (t) < Vr

Pr Vr ≤ V (t) ≤ Vco

(2.5)

The overall amount of power produced by the wind turbines at hour t, PWT (t), is determined by
the product of the number of wind turbines NWT and the power generated by each individual
wind turbine pWT (t). This equation provides a way to estimate the total power output of the
wind farm at any given time based on the number of wind turbines in operation and the power
generated by each turbine. By summing the power output over time, we can also calculate the
total energy generated by the wind farm [2]:

PWT = NWTpWT (2.6)
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2.4 Battery bank modeling:
Battery systems, particularly deep-cycle lead-acid types, are frequently utilized for energy stor-
age in hybrid systems. To achieve optimal sizing of the battery, it is imperative to conduct a
comprehensive investigation of the charge and discharge requirements. [2] The state of charge
(SOC) of a battery bank at a given time (t) is dependent on the previous state of charge
(SOC(t − 1)) and the amount of energy depletion or accumulation from the previous time
interval (t− 1) to the current time (t). [2]

1. If Pg(t) = Ppv(t) + PWT (t) ⩾
Pl

ηinv
When the generated renewable power is sufficient The

expression illustrates how the state of charge (SOC) of a battery in a renewable energy
system can be calculated based on the excess generated power that is stored during
the charging state. Specifically, SOC is determined by the previous state of charge
(SOC(t − 1)), the amount of energy accumulated during the current time interval (t),
and the battery’s capacity. This expression serves as a crucial tool for monitoring and
regulating battery charging to ensure optimal performance and longevity, and is expressed
as follows [2]:

SOC(t) = SOC(t− 1) +

(
Pg(t)−

Pl(t)

ηinv

)
× ηbc

1000×Nb × Cb

(2.7)

The equation for determining the state of charge (SOC) of a battery bank in a renewable
energy system involves several variables. These include the inverter efficiency (ηinv) and
the charging efficiency of batteries (ηbc), as well as the nominal capacity of a single battery
(Cb) measured in kilowatt-hours, the total number of batteries in the bank (Nb), and the
hourly self-discharge rate (δ). Together, these variables allow for the accurate calcula-
tion of SOC, which is essential for proper battery management and system performance
optimization.

2. If Pg(t) <
Pl

ηinv
In situations where the renewable power generated is not enough to

meet the load demand, the energy stored in the batteries is utilized to make up for the
shortfall. This occurs when the batteries are in the discharge state, and the state of
charge (SOC(t)) of the battery is calculated accordingly. SOC(t) is determined based
on the previous state of charge (SOC(t-1)), the amount of energy discharged from the
battery during the current time interval (t), and the battery capacity. This expression is
vital for monitoring and regulating battery discharge and optimizing system performance.
Therefore, SOC(t) can be expressed as follows [2]:

SOC(t) = SOC(t− 1)−

(
Pl(t)

ηinv
− Pg(t)

)
× ηbd

1000×Nb × Cb

(2.8)

ηbd denotes the discharging efficiency of batteries. In order to prolong the lifespan of
batteries, it is essential to avoid over-discharging them. To achieve this, SOC(t) must
be subjected to specific constraints at any given time t. These constraints are put in
place to ensure that the state of charge of the battery remains within a safe range and
prevent excessive discharge. Some examples of the constraints that can be imposed on
SOC(t) include the minimum state of charge (SOCmin), which represents the minimum
acceptable battery capacity, and the maximum depth of discharge (DODmax), which
defines the maximum amount of energy that can be discharged from the battery before
it becomes unsafe. By adhering to these constraints, battery life can be extended, and
overall system performance can be optimized [1].
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2.5 Modeling DC/AC converter
The power generated by the photovoltaic (PV) modules and wind turbines needs to be converted
from direct current (DC) to alternating current (AC) because the power consumed by the loads
is in AC form. The output power of the inverter, which performs the DC-AC conversion, is
determined using this equation [19]:

Pinv-AC = (Pfc-inv · Pren-inv)inv (2.9)

where Pfc-inv represents the output power from the fuel cell ,Pren-inv represents the output power
produced from renewable energy sources,and represents the assumed constant efficiency of the
inverter [19]. An FC is a device employed to convert chemical energy to electrical DC energy
using an electrolyzer [19].

2.6 Genetic algorithms

2.6.1 Generalities

Genetic algorithms (GAs) are stochastic optimization algorithms based on the mechanisms of
natural selection and genetics. Their operation is extremely simple. We start with a population
of potential solutions (chromosomes) that are initially arbitrarily chosen. We evaluate their
relative performance (fitness). Based on these performances, we create a new population of
potential solutions using simple evolutionary operators: selection, crossover, and mutation. We
repeat this cycle until a satisfactory solution is found [8,9].

The use of genetic algorithms in the context of hybrid systems is particularly advantageous
because it allows for the optimization of multiple variables and constraints simultaneously. By
using genetic algorithms, it is possible to find solutions that are not only optimal but also
robust, meaning that they are able to perform well under different conditions and with varying
parameters. Furthermore, the ability to handle large amounts of data and complex relationships
between variables makes genetic algorithms a powerful tool for modeling and optimization in
hybrid systems.

2.6.2 Properties of genetic algorithm

Among the properties of genetic algorithms, we can mention:

• Genetic algorithms use parameter encoding, rather than the parameters themselves.

• Genetic algorithms work on a population of points, rather than a single point.

• Genetic algorithms only use the values of the studied function, not its derivative or other
auxiliary knowledge.

• Genetic algorithms use probabilistic transition rules, rather than deterministic ones. The
simplicity of their mechanisms, the ease of their implementation, and their effectiveness
even for complex problems have led to an increasing number of works in different fields [10].

2.6.3 Basic mechanisms of genetic algorithms

Genetic algorithms utilize several fundamental mechanisms such as individuals/chromosomes/sequences,
genes, populations, generations, parents, environment, and fitness function to efficiently search
for optimal solutions to complex problems. An individual is a potential solution defined by a
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set of parameters called genes, while the population is a collection of individuals or points in the
search space. A generation is a population at a given time, and a parent is an individual chosen
as a basis for creating another in the next generation. The environment refers to the search
space, while the fitness function is the function that the algorithm seeks to optimize, either by
maximizing or minimizing it [11] [12]. In genetic algorithms, crossover and mutation are two
genetic operators used to create new solutions from existing ones. Crossover involves combining
two parent solutions to create a new offspring solution. This is done by randomly selecting a
point in the parent sequences and exchanging the genetic information from that point onwards
to create two offspring solutions. On the other hand, mutation involves randomly changing
one or more genes in an individual’s sequence to create a new solution. These operators are
used in combination with selection to create a new population of solutions, which is then eval-
uated using the fitness function. By utilizing these basic mechanisms, genetic algorithms can
efficiently search for optimal solutions to complex problems [11–13]. The different phases of
genetic algorithms, which are as follows [12,13]:

• Initialization: an initial population of N chromosomes is randomly generated.

• Evaluation: each chromosome is decoded and evaluated.

• Selection: a new population of N chromosomes is created by using an appropriate selection
method.

• Reproduction: there is a possibility of crossover and mutation within the new population.

• Return to the evaluation phase until the algorithm terminates.

2.6.4 A standard genetic algorithm

A standard genetic algorithm involves encoding optimization problem parameters into a string
and simulating the evolution of a population of individuals until a termination criterion is met.
The process starts with generating an initial population of solutions randomly. At each genera-
tion, individuals are selected based on their fitness, which is evaluated by an objective function,
and crossover and mutation operators are applied to create a new population. This process
is repeated until the termination criterion is reached, which is usually a maximum number of
desired generations. The algorithm begins by generating an initial population, evaluating the
fitness function of all individuals, selecting individuals for reproduction, generating offspring by
applying genetic operators, placing the offspring in a new population, and repeating the pro-
cess until the termination criterion is met. This is known as a generational genetic algorithm
because the offspring generated replace the entire population of parent individuals [15].

2.6.5 Model for optimizing system size

The modeling process of any optimization problem involves several steps, including identifying
decision variables, defining an objective function, and setting constraints. For the purpose of
an optimization design study, we explain these three components and how they are connected
in detail in the following subsections. By explicitly defining these components, we can create a
comprehensive optimization model that helps determine the best solution to a given problem [2]

2.6.6 Decision variables

In the context of this optimal size study, a decision variable represents a quantity that the de-
cision maker can control, the optimal value of which is determined by the optimization process.
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Figure 2.1: Flow-chart of the genetic algorithm (GA) [14]

Specifically, we identify three decision variables that are critical to solving the optimization
problem. They are as follows [2]:

• NPV : number of PV modules.

• NWT : number of wind turbines.

• Nbat: number of batteries.

2.6.7 Objective function

In the context of optimization, an objective function is a mathematical representation that
describes the goal of optimization in terms of decision variables. The goal of this optimal
design study is to minimize the total cost of the proposed Hybrid Renewable Energy System
(HRES). The total annual cost (TAC) of the system is considered as the objective function of
the optimization problem, defined as follows [2]:

Minimize TAC(NPV , NWT , NBAT ) = Ci + Cm + Cr (2.10)

where Ci, Cm, Cr are respectively the installation cost, maintenance cost, and replacement
cost. The costs of PV modules, wind turbines, batteries, and other essential components are
included in the installation cost (Ci). It is computed using the number of PV modules (NPV ),
wind turbines (NWT ), and batteries (NBAT ), as well as the unit prices of each component [16].

Ci = NPVCi,PV +NWTCi,WT +NBATCi,BAT (2.11)

where Ci,PV , Ci,WT and Ci,BAT represent respectively the installation cost of one unit of PV
module, wind turbine and battery. The maintenance cost (Cm) is expressed as a percentage
of the initial cost of each component, and this percentage is applicable for a duration of one
year. [16] :

Cm = (NPVMPVCi,PV +NWTMWTCm,WT +NBATMBATCi,BAT )LSY S (2.12)
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where MPV , MWT and MBAT represent respectively the annual maintenance percentage of PV
module, wind turbine and battery. Every component within the system has a specific lifespan
(L) and needs to be replaced at regular intervals during the operation of the hybrid system.
The cost associated with the replacement, also known as the replacement cost (CR), is provided
as follows [2]:

Cr = NPVCi,PV
LSY S − LPV

LPV

+NWTCi,WT
LSY S − LWT

LWT

+NBATCi,BAT
LSY S − LBAT

LBAT

(2.13)

where LSY S, LPV , LWT and LBAT are respectively the lifespan of system, PV module, wind
turbine and battery.

2.6.8 Constraints

Constraints are important in the optimization process because they define the boundaries and
restrictions within which the decision variables of a problem must function. These restrictions
define the circumstances and requirements that will direct the search for the best solution. In
this study, we identified three types of restrictions that are critical to the formulation of our
problem. Let us investigate each category and the constraint expressions that encompass these
requirements [17] :

• Variable type constraints, defined by equation:

Nk = Integer, k ∈ {PV,WT,BAT}

• Bound constraints, defined by Equation :

0 ⩽ Nk ⩽ Nk,Max, k ∈ {PV,WT,BAT}

where Nk,Max is the maximum available number of component k.

• The equation defines the constraint of reliability [2] :

LPSP ⩽ LPSP desired

The loss of power supply probability, denoted as LPSP , is defined for a specific period T in
the following manner [16]:

LPSP =

∑T
t=1 LPS(t)∑T
t=1 Pl(t)

(2.14)

with

LPS(t) = Pl(t)− [Pg(t) + {SOC(t− 1)− (1−DOD)} × 1000× Cb × ηinv] , (2.15)

LPSP desired, the maximum allowable value of LPSP and
∑T

t=1 Pl(t) the total energy required
by the load during the operating period T [16] [2].

2.6.9 Simulation and optimization process

In this study, a simulation of a Hybrid Renewable Energy System (HRES) was performed
using MATLAB. The genetic algorithm was employed to determine the optimal system layout,
considering constraints and factors. A flowchart was used (see figure 2.2) to visualize the genetic
algorithm’s step-by-step process, showcasing how it evolved potential solutions through genetic
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operators. By incorporating the flowchart, a deeper understanding of the genetic algorithm’s
mechanisms in identifying the optimal HRES configuration was achieved, enhancing system
performance and efficiency. [2]

Figure 2.2: Flowchart of the optimization process using a genetic algorithm [18].

This flowchart is an invaluable tool for visualizing the GA process and improves our un-
derstanding of the optimization process involved in determining the optimal configuration of
HRES. By using this systematic approach, researchers and practitioners can gain insight into
the GA decision-making process and the overall performance of the designed HRES.
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2.7 Conclusion
In summary, this chapter lays the groundwork for a hybrid renewable energy system (HRES)
by developing models of photovoltaic generators, wind turbines, and battery packs. The in-
tegration of genetic algorithm realizes the optimization of the system scale. These modeling
and optimization techniques provide a solid foundation for the subsequent chapters, in which
an optimized HRES configuration is implemented and thoroughly examined to evaluate its
performance, efficiency, and feasibility in real-world applications.
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Chapter 3

Results and discussion

3.1 Introduction

In this chapter, we present a comprehensive analysis of hybrid PV/wind/batteries systems using
genetic algorithms. The objective is to optimize system configurations and minimize costs while
ensuring reliable power supply. The study focuses on three distinct sites: Tlemcen, Adrar, and
Tenes, each characterized by unique environmental conditions and energy requirements. By
employing genetic algorithms, we aim to determine the optimal combinations of PV panels,
wind turbines, and batteries that maximize energy generation and minimize costs.
This analysis provides valuable insights into the design and operation of hybrid energy systems,
contributing to the development of sustainable and economically viable solutions.

3.2 Weather data and load profile

We have included the geographical data of all three sites, namely Tlemcen, Adrar, and Tenes,
in table (3.1)

Site Longitude Latitude Altitude(m) Slope (optimum) Azimuth (optimum)
Tlemcen -1.315 34.896 684 33 19
Adrar -1.358 26.489 334 28 28
Tenes 1.290 36.468 167 34 15

Table 3.1: Geographic data for selected sites [1, 2].

The sizing study of the hybrid system involved analyzing meteorological data collected for
one year (365 days) from January 1, 2005, to December 31, 2005, at the selected sites [1, 2].
Figure (3.1) presents the hourly variations of solar irradiance (measured in W/m2 ) at three
distinct sites: Tlemcen, Tenes, and Adrar.
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Figure 3.1: Profiles of solar irradiance on the three selected sites: Tlemcen , Adrar and Tenes
for one year (January 1, 2005 – December 31, 2005) [1, 2]

Similarly, figure (3.2) displays the hourly variations of ambient temperature (measured in
C) specifically for Tlemcen, Tenes, and Adrar.
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Figure 3.2: Profiles of ambient temperature on the three selected sites: Tlemcen , Adrar and
Tenes for one year (January 1, 2005 – December 31, 2005 [1, 2].
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Figure 3.3: Profiles of The wind speed on the three selected sites: Tlemcen , Adrar and Tenes
for one year (January 1, 2005 – December 31, 2005) [1, 2].

Furthermore, Figure (3.3) showcases the hourly variations of wind speed at a 10-meter
height above ground level for all three sites. Additionally, Figure (3.4) depicts the daily elec-
trical load profile, which remains consistent across all three sites. This load profile represents
the electricity consumption pattern of an administrative unit located in the Tlemcen region
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of Algeria, primarily influenced by daytime electricity usage and nighttime requirements for
irrigation and lighting [3].

Figure 3.4: Load profile to be supplied with energy [3].

Based on the observed data, it can be concluded that the significant peak in consump-
tion between 9:00 a.m. and 4:00 p.m., with the highest demand occurring around 11:00 a.m.,
coincides with the period of maximum environmental conditions in Adrar. This correlation
suggests a potential relationship between energy demand and the availability of solar energy,
temperature, and wind speed.
Furthermore, the distinct patterns in solar irradiance, temperature, and wind speed indicate
that Adrar, compared to Tlemcen and Tenes, experiences more extreme environmental condi-
tions. The higher temperatures, stronger winds, and greater levels of solar irradiance in Adrar
highlight the region’s unique characteristics and potential for renewable energy generation.

These findings contribute to the understanding of energy consumption and environmental
factors, emphasizing the importance of considering local conditions when designing and opti-
mizing energy systems. By harnessing the abundant solar resources, capitalizing on favorable
wind conditions, and accounting for temperature variations, Adrar has the potential to become
a prime location for renewable energy projects and further enhance its energy sustainability.

3.3 Technical and economical specifications of the hybrid
system

3.3.1 Photovoltaic panel selection

Table 3.2 provides a comprehensive overview of the solar modules used in this study. It contains
basic information about the particular solar module used, including its technical specifications
and performance characteristics.
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Model rec TwinPeak 2 Series
Open Circuit Voltage VOC(V) 39.0
Short Circuit Current ISC (A) 9.65

Panel Efficiency (%) ηr 17.7
Nominal Power Voltage VMPP (V) 32.2
Nominal Power Current IMPP (A) 9.14

Nominal Power PMPP (Wp) 295
Nominal operating cell temperature (NOCT)(C) 44.6

Price per unit(€) 142
Standard temperature(C) 25

Standard Radiance (W/m2) 1000
Area (m2) 1.67

power conditioning efficiency ηcp 1.0
efficiency coefficient per degree Celsius (βt) 0.005

Annual maintenance percentage(%) 1
Lifetime(year) 25

Table 3.2: The characteristics of the photovoltaic panel [4].

3.3.2 Wind turbine selection

Table 3.3 briefly summarizes the wind turbine specifications used in this study. It contains
necessary details such as model number, rated voltage, starting wind speed, wind speed rating,
survival wind speed, rated power and unit price.

Model elege-1000
Rated voltage (V) 24
Start-up wind speed (m/s) 2
Rated wind speed (m/s) 12
Survival wind speed (m/s) 45
Rated power (W ) 1000
Price per unit (€) 150
Annual maintenance percentage(%) 3
Lifetime(year) 25

Table 3.3: The characteristics of the Wind Turbine [5].

3.3.3 Battery selection

Table 3.4 presents a comprehensive overview of the batteries utilized in this study, encompassing
crucial information such as their capacity (Ah), battery voltage (V ), and price per unit (€).
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Model Batterie VICTRON étanche Gel 12V / 220Ah
Capacity (Ah) 220
Battery voltage (V) 12
Price per unit (€) 605
Annual maintenance percentage (%) 0
Lifetime(year) 7

Table 3.4: Characteristics of the used battery [6].
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3.4 Results and discussion
Our research focuses on the use of genetic algorithms (GA) to optimize system performance,
with a particular focus on the effects of population size. Genetic algorithm provides an efficient
method for solving complex optimization problems by simulating the process of natural selection
and evolution. In this study, we wanted to examine the impact of population size changes
within the GA framework on two key metrics: execution time and total system cost. To
ensure statistical robustness, we run the GA algorithm three times for each population size.
Furthermore, we introduce a constraint called Loss of Power Probability (LPSP), which is set
to 1 % to ensure system reliability. We tested population sizes ranging from 10 to 100 people,
with increments of 10 people per step. The table below summarizes the findings

population Execution time (s) Generation Cost(€) Mean of execution time(s)
14.0105 51 49146.3276

10 13.9663 51 45057.3822 14.1111
14.3564 52 43863.4368
27.1984 51 42965.4095

20 26.9259 51 43020.9368 27.0777
27.1087 51 43127.9095
40.3768 51 42965.9095

30 40.519 51 43767.3822 40.4673
40.506 51 43020.9368
53.4423 51 42965.9095

40 53.3999 51 42965.9095 53.4223
53.4246 51 42965.9095
66.5565 51 42965.9095

50 66.5385 51 43020.9368 66.5926
66.6829 51 42965.9095
79.6672 51 42965.9095

60 80.1125 51 42965.9095 79.8739
79.8421 51 42965.9095
92.9219 51 42965.9095

70 92.9559 51 43028.4368 93.1822
93.6687 51 42965.9095
106.1759 51 42965.9095

80 106.1017 51 43020.9365 106.2759
106.5502 51 42965.9095
119.714 51 42965.9095

90 119.3996 51 42965.9095 119.3984
119.0816 51 42965.9095
132.2117 51 42965.9095

100 132.7427 51 42965.9095 132.4141
132.288 51 42965.9095

Table 3.5: Impact of Population Size on Execution Time and Total System Cost in Genetic
Algorithm Optimization for Tlemcen site.

Having shown a table summarizing the results, we can now delve a little deeper into the
relationship between population size and execution time. To illustrate this relationship, we
plot a graph of execution time as a function of population size (Figure (3.5). By graphically
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representing the data obtained from our study, we aim to visualize how different population
sizes affect the execution time of our system.

Figure 3.5: Variation of Execution Time with Population Size for Tlemcen site.

The results from the graph (Figure 3.5) and table (Table 3.5) show that increasing the
population size in genetic algorithm optimization results in longer execution durations. This
can be attributable to a variety of things. To begin with, a bigger population size necessitates
examining a greater number of candidate solutions in each generation, increasing processing
complexity. Because the program must evaluate and manage more individuals during the evo-
lutionary process, each iteration takes longer to finish. Secondly, a larger population allows for
a more thorough study of the solution space, potentially leading to superior solutions. This
investigation, however, comes at the expense of greater computational time because more eval-
uations and iterations are necessary to evaluate a bigger pool of candidate solutions. Finally,
when population sizes increase, the interactions between individuals, such as crossover, muta-
tion, and selection, grow more complicated, incurring additional computational overhead. As a
result, these factors contribute to the observed rise in execution time as population size climbs.
For each population size, we ran the algorithm three times. From the table, it is clear that
smaller population sizes can yield inconsistent results, whereas larger population sizes tend to
produce more consistent outcomes at the expense of longer execution times. This finding high-
lights the trade-off between result consistency and computational efficiency when adjusting the
population size in the genetic algorithm optimization. In continuation of the study, an exami-
nation of the impact of Loss of Power Supply Probability (LPSP) on the system configuration
in the genetic algorithm optimization was conducted. The LPSP was varied within two differ-
ent ranges: from 0% to 1% with increments of 0.1%, and from 0.1% to 5% with increments of
1%. The objective was to determine the optimal number of photovoltaic panels, wind turbines,
and batteries for a cost-minimized hybrid energy system design. The findings are presented in
Table 3.6, which summarizes the system configuration based on the LPSP ranges
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Desired LPSP(%) Cost (€) NPV NWT NBAT

0 43553.4368 43 5 16
0.1 43545.9368 40 7 16
0.2 43490.4095 43 13 15
0.3 43375.9368 42 5 16
0.4 43397.9095 41 14 15
0.5 43312.9095 42 13 15
0.6 43227.9095 43 12 15
0.7 43198.4368 41 5 16
0.8 43113.4368 42 4 16
0.9 43050.4095 42 12 15
1 42965.4095 43 11 15
2 42440.4095 43 9 15
3 41822.9095 41 8 15
4 41297.9095 41 6 15
5 40709.8822 41 12 14

Table 3.6: System Configuration Based on Loss of Power Supply Probability (LPSP) Ranges
in Genetic Algorithm Optimization for Tlemcen site.

After analyzing the table, which presents the cost values achieved under different LPSP
constraints, a Genetic Algorithm (GA) with a population size of 100 was employed to fur-
ther investigate the optimization of a hybrid energy system’s cost while satisfying the LPSP
constraint. The LPSP acts as a reliability criterion, ensuring that the system maintains an
acceptable level of power supply loss probability.
Building upon the findings from the table, a graph (Figure 3.6) was constructed to visually
depict the relationship between the cost and the varying LPSP values. This graph will provide
a clearer understanding of the trade-off between system cost and reliability, allowing for more
informed decision-making in determining the optimal LPSP level for the hybrid energy system.

Figure 3.6: Cost Variation with Loss of Power Supply Probability (LPSP).

37



The graph (Figure 3.6) and table (Table 3.6) presented in this study elucidate the relation-
ship between the Loss of Power Supply Probability (LPSP) and the cost of a hybrid energy
system , as optimized through a Genetic Algorithm (GA) with a population size of 100. The
findings reveal a compelling trend whereby an increase in LPSP corresponds to a notable de-
crease in system cost. This dynamic can be attributed to the delicate balance between system
reliability and cost optimization. As the LPSP threshold is relaxed, allowing for a higher tol-
erance of power supply loss, cost reductions become feasible through the utilization of less
expensive components or less sophisticated technologies. Consequently, the optimized design
of the hybrid energy system strikes a delicate balance between ensuring an acceptable level of
reliability and minimizing costs.
In Table 3.7, we conducted a series of simulations where we fixed the number of photovoltaic
panels (NPV ) while allowing the Genetic Algorithm (GA) to determine the optimal number of
wind turbines (NWT ) and batteries (NBAT ) for a hybrid energy system. Our objective was to
find the configurations that minimize the overall cost while maintaining a Loss of Power Supply
Probability (LPSP) value of 1%. Throughout these simulations, we used a population size of
100 in the GA to ensure robust optimization. By varying the NPV values from 0 to 50, we were
able to observe how the GA algorithm adapts and finds the optimal combinations of NWT and
NBAT for each NPV setting.

NPV NWT NBAT Cost (€)
0 45 19 52910.0187
5 34 19 50910.0187
10 31 18 48846.9914
15 29 17 47046.4641
20 19 17 45308.9641
25 20 16 44295.9368
30 14 16 43608.4368
35 9 16 43183.4368
40 5 16 43020.9368
45 10 15 43057.9095
50 7 15 43157.9095

Table 3.7: Optimization Results for Hybrid Energy System Configuration with Varying fixed
NPV .

In order to understand the relationship between the number of wind turbines (NWT ), the
NPV values, and the associated costs, a line graph (Figure 3.7) was constructed. The graph
depicts the NPV and NWT values on the y-axis, while the cost is represented on the x-axis. This
arrangement enables a visual analysis of how variations in NWT and NPV values correspond to
changes in the cost of the hybrid energy system.
The line graph (Figure 3.7) presented in this analysis offers valuable insights into the relation-
ship between cost, the number of wind turbines (NWT ), and the number of photovoltaic panels
(NPV ) in a hybrid energy system. It reveals a clear trend where decreasing costs coincide with a
reduction in the number of wind turbines and an increase in the number of photovoltaic panels.
This trend suggests that as costs decrease, it becomes more economically viable to rely more
on photovoltaic panels rather than wind turbines due to their relatively lower installation and
maintenance expenses. The graph also emphasizes the trade-off between NWT and NPV , where
reducing the number of wind turbines allows for a greater allocation of resources towards pho-
tovoltaic panels. This trade-off enables decision-makers to optimize costs while still meeting the
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required energy output. By identifying the optimal combinations of NWT and NPV that result
in lower costs, this analysis offers valuable insights for making informed decisions in configuring
hybrid energy systems.

Figure 3.7: Optimization of Hybrid Energy System Configuration: Cost Analysis and Trade-
offs between Wind Turbines and Photovoltaic Panels.

The line graph (Figure 3.7) presented in this analysis offers valuable insights into the re-
lationship between cost, the number of wind turbines (NWT ), and the number of photovoltaic
panels (NPV ) in a hybrid energy system. It reveals a clear trend where decreasing costs coincide
with a reduction in the number of wind turbines and an increase in the number of photovoltaic
panels. This trend suggests that as costs decrease, it becomes more economically viable to rely
more on photovoltaic panels rather than wind turbines due to their relatively lower installation
and maintenance expenses. The graph also emphasizes the trade-off between NWT and NPV ,
where reducing the number of wind turbines allows for a greater allocation of resources towards
photovoltaic panels. This trade-off enables decision-makers to optimize costs while still meet-
ing the required energy output. By identifying the optimal combinations of NWT and NPV

that result in lower costs, this analysis offers valuable insights for making informed decisions in
configuring hybrid energy systems.
Through the analysis presented in Table 3.8, we conducted a series of simulations focusing on
optimizing the configuration of a hybrid energy system. Specifically, we kept the number of
wind turbines (NWT ) fixed while utilizing the Genetic Algorithm (GA) to determine the opti-
mal values for the number of photovoltaic panels (NPV ) and batteries (NBAT ). Our primary
objective was to minimize the overall cost of the system while maintaining a Loss of Power
Supply Probability (LPSP) value of 1%. To ensure robust optimization, we employed a pop-
ulation size of 100 in the GA. By systematically varying the NWT values from 0 to 18, with
an increment of 2, we were able to observe how the GA algorithm adapted and identified the
optimal combinations of NPV and NBAT for each NWT setting.
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NWT NPV NBAT Cost (€)
0 45 17 44758.9641
2 45 16 43120.9368
4 42 16 43113.4368
6 39 16 43105.9368
8 48 15 43065.4095
10 45 15 43057.9095
12 42 15 43050.4095
14 40 15 43220.4095
16 37 15 43212.9095
18 35 15 43382.9095

Table 3.8: Optimization Results for Hybrid Energy System Configuration with Varying fixed
NWT Values.

In this analysis , we examine the relationship between the number of wind turbines (NWT )
and the associated cost in a hybrid energy system. The objective is to understand how changes
in the number of wind turbines impact the overall cost of the system.

Figure 3.8: Cost Variation with Number of Wind Turbines in a Hybrid Energy System.

The line graph (Figure 3.8) depicting the relationship between the number of wind turbines
(NWT ) and the associated cost provides valuable insights into the cost dynamics of a hybrid
energy system. The graph reveals an initial decrease in cost as NWT increases, indicating the
cost-effectiveness of integrating wind turbines. This decline can be attributed to the increased
energy production from wind turbines, reducing the reliance on more expensive energy sources.
However, the cost trend eventually shows a slight upward trend, indicating diminishing cost
benefits. This suggests that the additional expenses incurred in installing, maintaining, and
operating extra wind turbines outweigh the potential savings. Moreover, the cost variation
becomes minimal once a certain NWT threshold is reached, suggesting that further increases
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in NWT have limited impact on the overall cost. The graph underscores the significance of
optimizing the NWT configuration to achieve cost-effectiveness in hybrid energy systems. It
highlights the need for decision-makers to carefully balance the number of wind turbines with
associated costs to ensure the efficient and economically viable operation of the hybrid energy
system.
In this study, we utilized the Genetic Algorithm (GA) with a population size of 100 to opti-
mize the cost of a hybrid PV/wind/batteries system across three sites: Tlemcen, Adrar, and
Tenes. By analyzing the convergence of the cost as a function of generation in Figure 3.9, we
observed the effectiveness of the GA algorithm in minimizing overall cost while considering the
generation capacities of each site. With a focus on cost-performance trade-offs, our analysis
demonstrated the potential for cost optimization in hybrid energy systems using the GA ap-
proach, while ensuring a Loss of Power Supply Probability (LPSP) of 0.
On the other hand, Tenes shows a slightly higher optimal cost of 40624.3549. Although still
relatively competitive, it suggests that additional considerations, such as site-specific factors
and technological adaptations, may be necessary to further optimize the cost efficiency of the
system in this location. These factors could include wind resource availability, solar irradiance
levels, and energy consumption patterns specific to Tenes. By analyzing these factors and mak-
ing necessary adjustments, such as selecting more efficient turbine models or fine-tuning the
system configuration, it may be possible to achieve greater cost optimization in Tenes.
In contrast, Tlemcen exhibits the highest optimal cost at 43553.4368, indicating potential chal-
lenges in achieving cost optimization in this particular location. This might be attributed to
various factors, such as lower renewable energy resources, higher energy demands, or less favor-
able weather conditions. To overcome these challenges, alternative strategies could be explored,
such as incorporating energy storage technologies to enhance system efficiency or considering
grid integration options to supplement the renewable energy supply. These findings underscore
the significance of site-specific considerations in the design and configuration of hybrid energy
systems to ensure maximum cost-effectiveness.
Overall, the variations in optimal costs observed among Adrar, Tenes, and Tlemcen highlight
the importance of tailoring renewable energy solutions to the specific characteristics and condi-
tions of each location. By conducting thorough assessments of local resources, energy demands,
and environmental factors, it becomes possible to identify the most effective approaches and
technologies for achieving cost optimization and sustainable energy generation in different re-
gions.

41



Figure 3.9: Profils de Cost convergence graph for the three sites :Tlemcen,Adrar,Tenes.
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The graph (Figure 3.10) depicting the cost as a function of Loss of Power Supply Probability
(LPSP) for the three sites, Adrar, Tenes, and Tlemcen, provides insights into the relationship
between cost and system reliability.

Figure 3.10: Exploring the Relationship between Cost and Loss of Power Supply Probability
(LPSP) for Three Sites: Tlemcen, Adrar, and Tenes.
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The cost convergence graphs for the three sites, Adrar, Tenes, and Tlemcen, provide valu-
able insights into the optimization of hybrid PV/wind/batteries systems. Analyzing the graphs
(Figure 3.10), it is evident that Adrar exhibits the lowest optimal cost of 39511.3276, followed
by Tenes with a cost of 40624.3549, and Tlemcen with the highest cost of 43553.4368. The
observed differences in optimal costs can be attributed to a combination of site-specific factors
and system characteristics.
The lower optimal cost in Adrar can be attributed to favorable natural resources, including
ample sunlight and wind availability, leading to higher energy generation potential. This re-
duces the reliance on costlier energy sources and contributes to improved cost-effectiveness.
Additionally, potential factors such as better infrastructure, access to lower-cost equipment,
and favorable weather patterns in Adrar could further enhance cost optimization.
In the case of Tenes, the slightly higher optimal cost indicates that there may be some challenges
related to natural resource availability or weather conditions, which impact energy generation
efficiency. Limited access to lower-cost equipment or infrastructure limitations may also con-
tribute to the increased cost.
Tlemcen exhibits the highest optimal cost among the three sites, suggesting that it faces addi-
tional challenges in achieving cost optimization. Factors such as lower sunlight or wind intensity,
logistical hurdles, and increased costs associated with infrastructure development and equip-
ment procurement contribute to the overall higher cost.
These findings underscore the importance of considering site-specific factors, including resource
availability, weather conditions, infrastructure, and equipment accessibility, when designing
hybrid energy systems. By accounting for these factors, decision-makers can better optimize
the system configuration to achieve greater cost efficiency in each specific location. Such in-
sights can inform the decision-making process and guide the development and implementation
of hybrid PV/wind/batteries systems in real-world applications.
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3.5 Conclusion
In this chapter, we conducted a comprehensive analysis of hybrid PV/wind/batteries systems
using genetic algorithms. The study focused on three sites: Tlemcen, Adrar, and Tenes. The
results provide valuable insights into the optimization process and cost implications of these
systems. We explored the impact of population size on execution time and total system cost,
highlighting the need for careful selection. The relationship between system configuration and
Loss of Power Supply Probability (LPSP) was examined to ensure reliable performance while
minimizing costs. Optimization results for fixed NPV and NWT values demonstrated trade-
offs and cost implications. The cost variation with the number of wind turbines revealed the
importance of finding the optimal balance. Overall, these findings contribute to the under-
standing of cost-effective and reliable hybrid energy systems, guiding decision-makers in the
implementation of sustainable energy solutions.
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General conclusion

This thesis has focused on the optimization and performance evaluation of hybrid photovoltaic
(PV)/wind/batteries systems using genetic algorithms (GA). Through extensive simulations
and analysis, valuable insights have been obtained regarding the cost-effectiveness, reliability,
and performance of these systems.
The research findings have demonstrated the potential of hybrid energy systems in addressing
the intermittent nature of solar and wind energy sources. By integrating PV panels, wind tur-
bines, and energy storage batteries, these systems can provide a reliable and sustainable power
supply. The utilization of genetic algorithms has proven to be an effective approach in finding
optimal system configurations that minimize costs while ensuring adequate power supply.
The results have practical implications for the design and implementation of hybrid PV/wind/
batteries systems. The findings highlight the importance of considering site-specific factors such
as solar irradiance, wind speed, load demand, and storage capacity in system optimization. By
carefully balancing these factors, decision-makers can achieve the desired cost-effectiveness and
reliability of the system.
Furthermore, this research opens up avenues for further advancements in the field of hybrid
energy systems. The study underscores the significance of ongoing research and development
in optimization techniques and the integration of renewable energy sources. Future studies
can build upon this work by exploring additional factors, improving algorithm efficiency, and
considering emerging technologies to enhance the performance and feasibility of hybrid energy
systems.
In conclusion, this thesis contributes to the body of knowledge in renewable energy sys-
tems, providing valuable insights into the optimization and performance evaluation of hybrid
PV/wind/batteries systems. The research outcomes serve as a foundation for future studies
and practical applications, supporting the global transition towards a more sustainable and
environmentally friendly energy landscape. By harnessing the potential of hybrid energy sys-
tems, we can work towards a greener future and contribute to the achievement of global energy
goals.
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