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Abstract

In recent years, air pollution has damaged our environment and caused a serious threat

to human and animal life. Therefore, it is necessary to locate and identify the sources of

pollution. This thesis describes the planning and control of a fleet of drones whose purpose is

to gather at the location with the highest pollution concentration. A decentralized structure is

employed to control the drone fleet; controllers are used to control each drone independently.

Quadrotor’s trajectory planning is performed by the metaheuristic algorithm, which is particle

swarm optimization by maximizing the air pollution dispersion function and avoiding collisions

among the fleet members.

Keywords: Unmanned Aerial Vehicle, Fleet of drones, Air Pollution, Synergetic control

theory, Particle Swarm Optimization.

Résumé

Ces dernières années, la pollution de l’air a endommagé notre environnement et constitué une

menace sérieuse pour la vie humaine et animale. Par conséquent, il est nécessaire de localiser

et d’identifier les sources de pollution. Cette thèse décrit la planification et le contrôle d’une

flotte de drones dont le but est de se rassembler à l’endroit où la concentration de pollution est

la plus élevée. Une structure décentralisée est employée pour contrôler la flotte de drones; des

contrôleurs sont utilisés pour contrôler chaque drone indépendamment. La planification de la

trajectoire du quadrotor est effectuée par l’algorithme métaheuristique, qui est une optimisation

par essaims de particules en maximisant la fonction de dispersion de la pollution atmosphérique

et en évitant les collisions entre les membres de la flotte.

Mots clés: Véhicule aérien sans pilote, Flotte de drones, Pollution atmosphérique, Théorie

du contrôle synergétique, Optimisation par essaims de particules.
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GENERAL INTRODUCTION

With a growing population, the globe is changing rapidly, which increases the number of

factories and exhaust-gassing automobiles that pollute the air and destroy the environment.

To prevent any pollution-related impacts, this calls for immediately finding polluting sources.

Currently, thanks to technological advances, researchers have developed the use of Unmanned

Aerial Vehicle (UAV) swarms for a various purposes, such as military operations, environmental

service delivery, and surveillance, as well as the capacity to localize polluted areas, thanks to

their great agility and speed, and the ability to explore large areas in a reasonable amount of

time.

The problem addressed in our thesis is to control and plan the trajectories of a fleet of

quadrotors whose goal is to converge on the most polluting source. We start by defining UAVs,

the history of UAVs in training, their applications, and by citing the different approaches

and methods for controlling fleets of UAVs in the scientific literature. Next, based on the

decentralized approach to control the overall system, we develop a control strategy for each UAV

through mathematical modeling for the quadcopter using the Newton-Euler formalism, then we

synthesize the control laws through synergetic control and derived proportional controllers to

achieve the desired positions. Finally, we plan the fleet trajectories by maximizing the Gaussian

plume function of air pollution dispersion by the particle swarm optimization algorithm while

preventing collisions.

This thesis will be divided into four chapters, each of which is briefly described in the following

paragraph:

x



LIST OF TABLES

• Chapter 1: introduces UAVs, the history of the UAVs fleet, their application, the

different approaches of UAV fleet and the strategies used to control multiple UAVs, and

the definition of the problem statement.

• Chapter 2: covers the control of the quadrotor fleet, using a decentralized structure

and elaborating the mathematical model of each drone individually by the Newton-Euler

formalism and the synthesis of the control laws by the synergetic control theory.

• Chapter 3: describes the planning of the UAV trajectories, modeling the dispersion of

the air pollution by the Gaussian plume function, and the implementation of the particle

swarm optimization algorithm to maximize the cost function and avoid collisions between

drones.

• Chapter 4: presents the simulation results of the control laws as well as the PSO algo-

rithm.
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CHAPTER

1

STATE OF THE ART

Introduction

Unmanned aerial vehicle swarm (UAVs) is a technology in constant development, attracting

more attention due to the variety of applications they can provide (photography, delivery,

and primarily for military purposes). Therefore, every nation is trying to take the lead in

the development and marketing of this futuristic technology due to its time-saving and cost-

reducing properties, but what makes a swarm of UAV special and different from the rest is the

command used to control the swarm and the way the UAVs communicate to achieve a purpose.

This chapter will define Unmanned Aerial Vehicles and the structure of UAV fleets with

a brief history enumerating its different advantages and applications, followed by a literature

review to compare our research with similar studies and ending with our problematic.

1.1 Definition of unmanned aerial vehicle (UAV)

An unmanned aerial vehicle (UAV) is an aircraft with no pilot on board used for a variety of

applications (military, industrial or personal), they are mostly known for their (speed, agility,

and efficiency), but the structure of the UAV depends on the function it needs to achieve and

1



CHAPTER 1. STATE OF THE ART

being part of the unmanned aerial system (UAS) family, they are either controlled remotely or

autonomously [1].

1.2 Historical background

Swarm of drones is a group of UAVs that work together with the sole purpose of accomplishing

a task as a cohesive unit.

In 1989, Gerardo Beni and Jing Wang first created the term Swarm Intelligence, marking

the beginning of swarm robotics [2].

The first drone show was in 2012 by using 49 LED-equipped UAVs, called SPAXELS (short

for ”Space Elements”) shown at the world premiere by Ars Electronica Futurelab. And every

year more performances were executed for example in 2021 up to 15 performances in the spent

of one year.

The development of UAV swarms for military purposes dates all the way to 1990, and the

effective results only appeared from a study made by the United States military group in

2018, where they found that using swarms made weapons significantly more powerful. In that

simulation, a swarm of 800 drones destroyed more targets in two hours than 1000 drones acting

individually, showing the potential of UAV swarms.

1.3 UAV flight formation

In the past, where areal warfare was ravaging wars and airplanes became one of the strongest

military powers, a new principle of mutual protection and support was created, named formation

flight, executed with two or more aerial vehicles flying in complete harmony in a predetermined

path to fulfill a pre-established mission as a cohesive unit.

Formation flying has been used since (WWI) World War One, where they discovered that

sending multiple aircraft working together raised their chances of success immensely and low-

ered the losses, but on the other hand, more members in a flight formation meant complex

organization and harder maneuvers [3].

After the 1920s, pilots were able to develop and create the most effective patterns for forma-

tion flying, and the formation differed from one situation to the other (scouting, bombarding, or

even tracking enemy airplanes), each flight formation had a specific use, but flaying formations

was not only used for military services, at the end of the war the aviation department decided

that creating airplane shows could be a way to entertain people and making them feel safer [4].

2



CHAPTER 1. STATE OF THE ART

Figure 1.1: UAVs formation flight

1.4 Advantages and applications

With the increasing technological advances, drones have become a center of interest for many

people, mainly for aerial photography and infrastructure inspection. However, they have more

potential to be exploited just by upgrading from single drone control to a fleet or swarm of

drones; the possibilities become endless by creating an infrastructure composed of multiple

drones communicating with one another. They can change our world, simplifying our jobs and

adding safety to our daily lives.

• Researchers found a way to use a swarm of drones in rescue operations by scanning areas

where help signals were located and then sending fleets of drones to search faster and

more efficiently, increasing the speed and success rate of this kind of mission by saving

more human lives in-time [5].

• In the case of Wildfires or forest fires, well-controlled UAV swarms can provide a real-time

map of the fire progression and the spreading directions. Taking into consideration the

wind and the terrain, they can help firefighters do their job safer and easier.

• On the other hand, military services use a swarm of drones for surveillance and tracking

in dangerous areas or country borders to lower the risks of losing soldiers and increase

tactical maneuvers protecting regions from internal or external threats [6].

• Drone swarm applications do not stop there. They also can be used for commercial

usage, similar to the UAV swarm performance presented each new years event with LED-

equipped acrobatic drones.

3
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Figure 1.2: End year 2021 performance

• Even agriculture can use UAV swarms for automatic plant watering [7] by spreading

several drones over a field, even performing agricultural treatment of crops with pesticides.

Figure 1.3: UAV swarms used in agriculture

• Big delivery corporations like Amazon expressed their interest in UAV swarms, partic-

ularly Unmanned Aircraft Systems (UAS), insinuating that they have high potential in

future package delivery by using intercommunication between drones and swarm coordi-

nation. For a (fast, effective, reliable, and autonomous) delivery system.

• One potential swarm application that could have a bright future and a big impact in the

environmental and technological field would be air quality monitoring swarm of drones

[8]. As we developed already the concept of one AQM system using a quad-rotor UAV

with a payload containing the air quality measuring sensors that communicate the con-

centration of each atmospheric pollutant using telemetry system supported by a gateway

that provides the data to our analyzing center. The data will be treated using artificial

4
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intelligence AI, mainly using fuzzy logic to determine the levels of pollution.

The same concept can be applied to swarm of UAVs, to get more precise and specific

data providing critical feedback of our environment, particularly in urban and industrial

areas.

• In short, a swarm of UAVs can reduce the number of hand workers and dangers or risks

for human lives needed to execute challenging tasks and save time and resources, Thus

lowering the costs for any of the previously mentioned operations and applications.

1.5 Approaches and structure of fleet of UAVs

In the scientific literature, there are two common approaches to using multiple UAVs in

training. The first centralized approach, which is a direct extension of single-vehicle control,

is based on the idea that a central station controls a group of vehicles. The second approach,

known as a distributed strategy, has been studied since it does not require a central station

for control and allows for better adaptation to numerous physical restrictions such limited

resources, short wireless communication chains, and autonomous issues.

To solve the control challenge, the training control strategy is critical. For the formation con-

trol problem, there are three well-known structural approaches. Leader-follower structure [9]-

[10], in which some vehicles are configured as leaders and others as followers,but this structure is

not robust cause because it may result in UAVs collisions and poor disturbance rejection prop-

erties. In the virtual structure or virtual leader strategy [11], The entire formation is treated as

a single virtual rigid body structure, and all formation entities receive the mission trajectory,

which is considered the virtual leader itself. As a result, guiding a group is easier and more

efficient than the leader-follower structure, however avoiding obstacles is difficult. the third

structure is behavioral method where several desired behaviors are specified for each vehicle,

including formation keeping, goal seeking, collision and obstacle avoidance. It is appropriate

for uncertain situations, but it needs a strong theoretical knowledge [12]- [13].

1.6 Literature Review

Many scholars throughout the world are researching drones in formation control because of

their use and versatility in accomplishing jobs. Several studies have been suggested. Classi-

cal control methods: Lyapunov functional approach and algebraic Riccati equation technique
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were used to design the formation protocol [14]- [15], potential method [16], constraint forces

[17], adaptive output feedback approach [18], sliding mode approach [19], and consensus-based

method [20]. The key issue is that they cannot take explicitly account constraints like fixed-

wing UAV velocity and angular rotation rate constraints.

Other researchers employed optimization strategies to achieve the aim and avoid collisions and

impediments, such as predictive control [21]- [22] which is a feedback control scheme in which

a trajectory optimization is solved at each time step. However, due to the lack of state infor-

mation over a finite temporal horizon, receding horizon control has some intrinsic limitations.

In [23]- [24]- [25], they proposed a general framework to pose the collision avoidance problem

of remotely piloted aircraft as an optimal control problem using a stochastic estimator with

a particle filter to minimize the effects of uncertainty caused by pop-up circumstances and to

allow real-time implementation. Other methods for controlling UAV fleets are proposed in-

clude consensus synchronization [26]- [27] and rendezvous [19]- [28], flocking [29]- [13]- [30], and

proportion integration differentiation (PID) approaches [31]. On the other hand, studies on

fuzzy systems have also shown good results for navigation, guidance and control of autonomous

vehicles and mobile robots [32]- [33]- [34].

Recently, scientific use meta-heuristics to control flight formation cause they are inspired by

animal compression, insects, and social behaviors. Using particle swarm optimization to avoid

detected static and pop-up obstacles [35]- [36]- [37]. A path planning system for numerous

UAVs with limited sensor and communication ranges was designed [38]. In addition, scientists

have integrated particle swarm optimization with a predictive model to operate UAVs for static

and mobility threat avoidance while on reconnaissance missions [39]. The Artificial Bee Colony

(ABC) optimization meta-heuristic optimization method is also utilized, which is based on the

honeybee swarm’s intelligent behavior. is used to compute velocity profiles that avoid obstacles

and collisions between UAVs while ensuring fleet formation control and target tracking, and is

implemented on each UAV individually [40]-[41].

1.7 Problem statement

In this thesis, we consider a system composed of several quadcopters representing a fleet of

drones. The main objective is to fly a group of UAVs in two dimensions converging towards

the pollution source, to avoid collisions using particle swarm optimization, and to ensure the

stability of each UAV in order to localize sites with high air pollution using control laws.
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Conclusion

In the first chapter, we explained shortly what defines a UAV and swarm of UAVs with a

brief history then we showed the purpose of formation flaying and the different approaches and

structures to control UAV’s in formation. Afterwards we briefly mentioned the different studies

and researches proposed by the scientific literature to control the fleets of drones. Finally, we

define the problem handled by our thesis as well as the control objectives.
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CHAPTER

2

MODELLING AND CONTROL OF

QUADROTOR

Introduction

The derivation of the quadrotor model is covered in this chapter. The result is critical

because it explains how the helicopter moves in response to its inputs. By examining only the

four motor speeds, these equations can be used to define, predict, and control the positions

attained by the helicopter. To ensure that each UAV in the fleet is stable and converges to a

predetermined place using decentralized structure control.

In this chapter, we have used the decentralized structure to control the UAV fleet. Beginning

with the development of the mathematical model for the UAVs using Euler and Newton-Euler

angels to define the dynamic and kinematic model for the quadcopters, we then focused on the

control of the quadcopter fleet using the synergetic control theory followed by an explanation

of the control procedure.
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2.1 Structure of swarm control

We employ the decentralized strategy to control each agent separately to reach the desired

position because it is difficult for a single controller to control a fleet of drones and ensure

the stability of the system. As shown in Figure 2.1 [42], each drone has a controller, which

comprises an altitude and attitude controller and a position controller.

Figure 2.1: Decentralized formation controller

2.2 Basic concepts

The four motors’ speeds can be changed to control the quadrotor’s attitude and position

to the desired values. The thrust produced by rotor rotation, the pitch moment, and the roll

moment produced by the difference in four rotor thrusts, gravity, the gyroscopic effect, and the

yaw moment can all be applied to the quadrotor [43]. The gyroscopic effect is only seen in the

quadrotor’s lightweight structure. The unbalanced rotational speeds of the four rotors create

the yaw moment.

Reduction gears connect each propeller to the motor, and they are symmetrically on the

crossbar. They are separated into two groups, with two diametrically opposed motors in each

9
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group; front and rear rotating counterclockwise. Right and left propellers, on the other hand,

rotate clockwise. Figure 2.2 describes the direction of the propeller’s rotations where the front,

rear, right and left propellers are numbered from one to four, respectively.

Figure 2.2: Direction of propeller’s rotations

Even though the quadrotor has six degrees of freedom, it only has four propellers, making

it impossible to achieve the desired set-point for all six degrees of freedom. The quadrotor

performs the four movements of throttle, pitch, roll, and yaw by adjusting the speed propellers.

The following figures depict the different movements.

Figure 2.3: Throttle movement

Figure 2.4: Roll movement

10
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Figure 2.5: Pitch movement

Figure 2.6: Yaw movement

2.3 Mathematical model

A quadcopter is a flying aircraft having four rotating motors on each of its four extremities

[44]. The speeds of the four rotors control the distinct movements of roll, pitch, and yaw, since

each rotor or motor creates a vertical force and a moment of rotation. It has six degrees of

freedom (DOF), with three translations and three rotational motions along three axes [45].

The quadrotor is an under-actuated system with just four input forces and six outputs, making

it complex and difficult to mathematically model [46]. Important effects from the domains of

aerodynamics and mechanics, such as gyroscopic and gravity effects, must be included in the

mathematical model [47].

To model the quadrotor dynamics, it’s necessary to define the reference frames of the system.

Quadcopters are typically specified spatially using two reference frame systems [48]- [49]:

• Body or mobile frame: It called B-frame and is attached to the barycenter of the

quadcopter.

• The earth inertial frame: It is known as the E-frame and is fixed to the earth.

Figure 2.7 shows the two references frame system and the quadrotor schematic.

11
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Figure 2.7: Quadcopter configuration

2.3.1 Euler angles

Leonhard Euler introduced the three Euler angles to describe the orientation of a rigid body

from the body frame to the inertial frame. The roll, pitch, and yaw orientations are represented

by the three angles ϕ, θ, ψ respectively [50]. As a result, the Euler angles ZYX are employed to

describe the quadcopter’s orientation in three-dimensional Euclidean space.

2.3.2 Rotation matrices

The transformation of the coordinates of a vector from the body frame to the inertial frame

is given by the following rotation matrices.

• The angle ϕ represents the rotation around the y axis or the roll motion where −π
2
< ϕ <

π
2
. The rotation matrix is:

RX(ϕ) =


1 0 0

0 cosϕ − sinϕ

0 sinϕ cosϕ

 (2.1)

• The angle θ represents the rotation along the Y axis or the pitch motion where −π
2
< θ <

π
2
. The rotation matrix is:

RY (θ) =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 (2.2)
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• The angle ψ represents the rotation along the z axis or the yaw motion where −π < ψ < π.

The rotation matrix is:

RZ(ψ) =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 (2.3)

From the equations (2.1),(2.2) and (2.3), we find the rotation matrix that relates the body

frame reference to the inertial frame reference. The matrix of rotation RX,Y,Z(ϕ, θ, ψ) ∈ SO(3)

is given by the following relation:

RX,Y,Z(ϕ, θ, ψ) = RX(ψ) ∗RY (θ) ∗RZ(ϕ) (2.4)

=


cos θ cosψ sinϕ sin θ cosψ − cosϕ sinψ cosϕ sin θ cosψ + sinϕ sinψ

cos θ sinψ sinϕ sin θ sinψ + cosϕ cosψ cosϕ sin θ sinψ − sinϕ cosψ

− sin θ sinϕ cos θ cosϕ cos θ


2.4 Quadrotor model with Newton-Euler Formalism

Different ways of mathematically modeling the quadcopter have been proposed in the liter-

ature review. The Newton-Euler approach is based on forces and moments acting on a rigid

body, and it is first formulated in the body frame reference before being expressed in the inertial

frame reference by kinematic and rotation matrices [50], whereas the Euler-Lagrange approach

is based on energy assumptions, and the dynamics is expressed directly in the inertial frame

reference, resulting in much more complex mathematical expressions. Therefore, the approach

of Newton Euler is elaborated due to the simplicity to find the dynamic model of the quadrotor

[51].

2.4.1 Dynamic model assumptions

The dynamic model is derived using Newton-Euler formalism under the following assumptions

[52]:

• The structure of the quadrotor must be rigid: The body part and the rotor part are

respectively rigid.

• The structure of the quadrotor is symmetrical, so the inertia matrix will be diagonal.

• Thrust and drag constants are proportional to the square of the propeller speed of motors.
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• The dynamics of the actuator are identical.

• The center of gravity (COG) coincides with the origin of the fixed coordinates of the

body.

The purpose of using the Newton-Euler approach is to obtain a reliable dynamic model for

further simulation and control. In the inertial reference frame, the vector [x y z ϕ θ ψ]T

describes the linear and the angular positioning and the vector [u v w p q r]T contains

the translational and rotational velocities in the body frame reference.

The relation between the angular velocities expressed in the earth frame ω = [ϕ̇ θ̇ ψ̇]Tand

the angular velocities expressed in the body frame ωB = [p q r]T is given by the relation:

ωB =


p

q

r

 =


ϕ̇

0

0

+Rx(ϕ)
−1


0

θ̇

0

+ (Ry(θ).Rx(ϕ))
−1


0

0

ψ̇

 (2.5)

Therefore:

ωB =


1 1 − sin θ

0 cosϕ cos θ sinϕ

0 − sinϕ cos θ cosϕ

ω (2.6)

and

ω =


1 sinϕ tan θ cosϕ tan θ

0 cosϕ − sinϕ

0 sinϕ
cos θ

cosϕ
cos θ

ωB (2.7)

The two reference frames are linked by the following relations:

v = R.vB, (2.8)

ω = T.ωB, (2.9)

where: v = [ẋ ẏ ż]T ∈ R3, ω = [ϕ̇ θ̇ ψ̇]T ∈ R3,vB = [u v w]T ∈ R3, ωB =

[p q r]T ∈ R3, and T is a the angular transformations matrix from (2.7)

T =


1 sinϕ tan θ cosϕ tan θ

0 cosϕ − sinϕ

0 sinϕ
cos θ

cosϕ
cos θ

 (2.10)
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2.4.2 Kinematic model of the quadrotor

From (2.8) and (2.9) the kinematic model of the quadrotor is:

ẋ = w[sinϕ sinψ + cosϕ cosψ sin θ]− v[cosϕ sinψ − cosψ sinϕ sin θ] + u[cosψ cos θ]

ẏ = v[cosϕ cosψ + sinϕ sinψ sin θ]− w[cosψ sinϕ− cosϕ sinψ sin θ] + u[cos θ sinψ]

ż = w[cosϕ cos θ]− u sin θ + v cos θ sinϕ

ϕ̇ = p+ r[cosϕ tan θ] + q[sinϕ tan θ]

θ̇ = q cosϕ− r sinϕ

ψ̇ = r cosϕ
cos θ

+ q sinϕ
cos θ

(2.11)

The matrix relation for the total force acting on the quadrotor according to Newton’s law is

the following:

m(wB ∧ vB + v̇B) = fB (2.12)

where:

• m: The mass of the quadrotor.

• fB = [fx fy fz]
T ∈ R3: The total force.

• ∧ : is the cross product operator.

On the other hand, the total torque applied to the quadrotor is given by Euler’s equation:

I.ω̇B + ωB ∧ (I.ωB) = mB (2.13)

where:

• mB = [mx my mz]
T ∈ R3: The total torque or the external moments in the body

frame.

• I : Represents the symmetric diagonal matrix of inertia.
Ix 0 0

0 Iy 0

0 0 Iz

 ∈ R3×3

Therefore, we find the the dynamic model of the quadrotor in the body frame:
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

fx = m(u̇+ qw − rv)

fy = m(v̇ − pw + ru)

fz = m(ẇ + pv − qu)

mx = ṗIx − qrIy + qrIz

my = q̇Iy + prIx − prIz

my = ṙIz − pqIx + pqIy

(2.14)

2.4.3 External force and moments

The following relation describes the external forces in the B-frame:

fB = mgRT .êZ − ft.ê3 + fw (2.15)

where:

• êZ and ê3: The unit vector in the inertial z axis and the unit vector in the body z axis,

respectively.

• g: The gravitational acceleration

• ft: The total thrust generated by rotors.

• fw = [fwx fwy fwz]
T ∈ R3: The forces produced by wind on the quadrotors.

The external moments in the body frame are also are given by the relation ( 2.16):

mB = τB − ga + τw (2.16)

where:

• mb: The torques produced by differences in the rotor speeds of motor’s.

• τB = [τx τy τz]
T ∈ R3: The torques produced by wind on the quadrotors.

• τw = [τwx τwy τwz]
T ∈ R3 describes the gyroscopic moments caused by the combined

rotation of the four rotors and the vehicle body and its relation is given by the following

equation.

ga =
4∑

n=1

Jp(ωB ∧ ê3)(−1)i+1Ωi (2.17)
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where:

Jp and are Ωi are the inertia of each rotor and the angular speed of each motor respectively.

The value of the inertia of each rotor Jp is negligible. So, the gyroscopic moments are not

taken into account in the formulation of the controller.

By substituting the external forces and moments relations in the dynamic model expression

(2.14). We get the expression:

−mg sin θ + fwx = m(u̇+ qw − rv)

mg[cos θ sinϕ] + fwy = m(v̇ − pw + ru)

mg[cos θ cosϕ] + fwz − ft = m(ẇ + pv − qu)

τx + τwx = ṗIx − qrIy + qrIz

τy + τwy = q̇Iy + prIx − prIz

τz + τwz = ṙIz − pqIx + pqIy

(2.18)

2.4.4 Actuator dynamics of quadrotor

According to [53], the inputs that control the behavior of the quadrotor are one for the

vertical thrust and one for each of the angular motions, and the values of the input forces and

torques proportional to the square of the speeds of the rotors. They can be defined as follows:

ft = b(Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4)

τx = bl(Ω2
4 − Ω2

2)

τy = bl(Ω2
3 − Ω2

1)

τz = d(Ω2
2 + Ω2

4 − Ω2
1 − Ω2

3)

(2.19)

where

• l: The distance between any rotor and the center of the drone

• b: Thrust factor

• d: The drag factor
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By replacing (2.19) in (2.18), the new expression of the quadrotor dynamic model in B-frame

is: 

−mg sin θ + fwx = m(u̇+ qw − rv)

mg[cos θ sinϕ] + fwy = m(v̇ − pw + ru)

mg[cos θ cosϕ] + fwz − b(Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4) = m(ẇ + pv − qu)

bl(Ω2
4 − Ω2

2) + τwx = ṗIx − qrIy + qrIz

bl(Ω2
3 − Ω2

1) + τwy = q̇Iy + prIx − prIz

d(Ω2
2 + Ω2

4 − Ω2
1 − Ω2

3) + τwz = ṙIz − pqIx + pqIy

(2.20)

2.5 State space model

From the previous sections, the quadcopter dynamic model has 12 states, six attitude states,

and six position and linear velocity states. We denote X as the state-space vector:

X = [x y z u v w ϕ θ ψ p q r]T ∈ R12 (2.21)

From (2.20) and (2.11) the new equations of the dynamic model are:

ϕ̇ = p+ r[cosϕ tan θ] + q[sinϕ tan θ]

θ̇ = q cosϕ− r sinϕ

ψ̇ = r cosϕ
cos θ

+ q sinϕ
cos θ

ṗ = Iy−Iz
Ix

rq + τx+τwx

Ix

q̇ = Iz−Ix
Iy

pr + τy+τwy

Iy

ṙ = Ix−Iy
Iz

pq + τz+τwz

Iz

u̇ = rv − qw − g sin θ + fwx

m

v̇ = pw − ru+ g[sinϕ cos θ] + fwy

m

ẇ = qu− pv + g[cos θ cosϕ] + fwz−ft
m

ẋ = w[sinϕ sinψ + cosϕ cosψ sin θ]− v[cosϕ sinψ − cosψ sinϕ sin θ] + u[cosψ cos θ]

ẏ = v[cosϕ cosψ + sinϕ sinψ sin θ]− w[cosψ sinϕ− cosϕ sinψ sin θ] + u[cos θ sinψ]

ż = w[cosϕ cos θ]− u sin θ + v[cos θ sinϕ]

(2.22)

From Newton’s law, we also can write:

mv̇ = R.fB = mgêz − ftR.ê3 (2.23)
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Thus, 
ẍ = − ft

m
[sinϕ sinψ + cosϕ cosψ sin θ]

ÿ = − ft
m
[− cosψ sinϕ+ cosϕ sinψ sin θ]

z̈ = g − ft
m
[cosϕ cos θ]

(2.24)

For reasons of simplification and for small angles of motion we can consider that [ϕ̇ θ̇ ψ̇]T =

[p q r]T [54]. The final dynamic model of quadrotor in the E-frame is:

ẍ = − ft
m
[sinϕ sinψ + cosϕ cosψ sin θ]

ÿ = − ft
m
[− cosψ sinϕ+ cosϕ sinψ sin θ]

z̈ = g − ft
m
[cosϕ cos θ]

ϕ̈ = Iy−Iz
Ix

ψ̇θ̇ + τx
Ix

θ̈ = Iz−Ix
Iy

ϕ̇ψ̇ + τy
Iy

ψ̈ = Ix−Iy
Iz

ϕ̇θ̇ + τz
Iz

(2.25)

The input forces and torques are the control inputs for the system. Therefore, we can define

the vector U = [U1 U2 U3 U4]
T :

U =


U1

U2

U3

U4

 =


ft

τx

τy

τz

 =


b(Ω2

1 + Ω2
2 + Ω2

3 + Ω2
4)

bl(Ω2
4 − Ω2

2)

bl(Ω2
3 − Ω2

1)

d(Ω2
2 + Ω2

4 − Ω2
1 − Ω2

3)

 (2.26)

We redefine the state’s vector as:

X = [x y z ϕ θ ψ ẋ ẏ ż p q r]T ∈ R12 (2.27)

The dynamic model can be written in the affine form in control state-space:

ẋ = f(x) +
4∑

n=1

gi(x)ui (2.28)
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where: f(x)= 

ẋ

ẏ

ż

q sinϕ
cos θ

+ r cosϕ
cos θ

q cosϕ− r sinϕ

p+ q[sinϕ tan θ] + r[cosϕ tan θ]

0

0

g

Iy−Iz
Ix

qr

Iz−Iy
Iy

pr

Ix−Iy
Iz

pq



(2.29)

and:

g1(x) = [0 0 0 0 0 0 g71 g81 g91 0 0 0]T (2.30)

g2(x) = [0 0 0 0 0 0 0 0 0
1

Ix
0 0]T (2.31)

g3(x) = [0 0 0 0 0 0 0 0 0 0
1

Iy
0]T (2.32)

g4(x) = [0 0 0 0 0 0 0 0 0 0 0
1

Iz
]T (2.33)

where:

g71 = − 1

m
(cosψ sin θ cosϕ+ sinψ sinϕ) (2.34)

g81 =
1

m
(sinψ sin θ cosϕ− cosψ sinϕ) (2.35)

g91 = − 1

m
(cos θ cosϕ) (2.36)

2.6 Control of quadcopter

Quadrotors are underactuated systems, which makes them difficult to control. In the lit-

erature review, there are several proposed methods for controlling them. A number of these

studies can be briefly described as follows: Researchers have proposed to use classical methods

such as proportional-integral-differential (PID) controllers and PID controllers augmented with

angular acceleration feedback and linear quadratic (LQ) controllers [55]. There are also nonlin-

ear control approaches such as the use of sliding mode controllers [56], feedback methods, and
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predictive and robust controllers to synthesize control laws [57]- [58]- [59].

There are also techniques using computer vision and fuzzy logic to control quadrotor system in-

cluding us Euler-Newton method and worked on vision based stabilization and output tracking

control and image based visual servo control for quadrotors [60]- [61]- [48].

2.6.1 Synergetic control theory

Synergetic control theory (SCT) is more appropriate for synthesizing controls for complex

nonlinear systems [62]. Professor A. Kolesnikov developed this theory to study and synthesize

control laws for high degree nonlinear systems without the need of linearization or simplification

[63]. The controller’s synergetic synthesis principle starts with the creation of a macro-variables,

which is a user-defined functions of system state variables. They can theoretically be chosen

as a specific combination of system state variables.Using the method of analytical aggregated

controller construction (ACAR), the goal then is to drive the system so that it can operate on

the manifold [64].

The control rule laws ensure that the closed-loop system is around invariant manifolds, which

ensure that the control object operates in the desired state. As a result, the adoption of SCT

principles and methods, particularly the ACAR method, which is ideally suited for dealing with

high degree nonlinear issues [65].

2.7 Control procedure of the quadcopter

We employ the cascade control structure to control the quadcopter, where the inner loop

regulates the altitude and z-position while the external loop regulates the x- and y-positions.

To detect disturbances before they reach the main loop’s output, the inner loop must to be faster

than the outer loop. The global controller is composed of two controllers: a PD controller for the

external loop and a synergetic controller to control the internal loop of the system. Figure 2.8

describes the global structure of a quadrotor strategy control [66].

21



CHAPTER 2. MODELLING AND CONTROL OF QUADROTOR

Figure 2.8: Structure of a quadrotor strategy control

2.7.1 Control objectives

The control objective is that the quadrotor converges to the desired coordinates x0, y0 and

z0 , as well as maintaining the yaw angle in the given direction ψ0. These outputs constitute

the set of invariants. The set of objectives can be written as follows:∑
1

= {x = x0, y = y0, z = z0, ψ = ψ0} (2.37)

The main purpose of the control law synthesis is to ensure the stability of the UAV under differ-

ent disturbances. The principle of integral adaptation in the SCT can be used for disturbance

rejection. By adding the external disturbance estimation equations to the previous quadrotor

dynamic model, the extended mathematical model of the quadcopter is as below:

ẋ = Vx; ẏ = Vy; ż = Vz; ϕ̇ = ωϕ; θ̇ = ωθ; ψ̇ = ωψ;

V̇x = −U1

m
[sinϕ sinψ + cosϕ cosψ sin θ] + γx

V̇y = −U1

m
[− cosψ sinϕ+ cosϕ sinψ sin θ] + γy

V̇z = g − U1

m
[cosϕ cos θ] + γz

ω̇ϕ = [ Iy−Iz
Ix

ωψωθ +
U2

Ix
] + γϕ

ω̇θ = [ Iz−Ix
Iy

ωϕωψ + U3

Iy
] + γθ

ω̇ψ = Ix−Iy
Iz

ωϕωθ +
U4

Iz
+ γψ

(2.38)
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and:

γ̇x = η1(x0 − x); γ̇y = η2(y0 − y); γ̇z = η3(z0 − z);

γ̇ϕ = η4(ϕ0 − ϕ); γ̇θ = η5(θ0 − θ); γ̇ψ = η6(ψ0 − ψ);

(2.39)

where:

• γ̇; γ̇y; γ̇z; γ̇ϕ; γ̇θ; γ̇ψ: The estimates of external disturbances.

• η1; η2; η3; η4; η5; η6 : are positive constants.

2.7.2 Control law synthesis

Position controller

A quadrotor’s x and y axis positions are controlled by a conventional method called position

control. By manipulating the roll and pitch angles, a quadrotor can rotate in either the x or

y axes. For example, to move the quadrotor on the y-axis, one should regulate the roll angle,

which will cause the quadrotor to tilt.

From the dynamic model expressed in (2.24), we have [67]:ẍ = −U1

m
[sinϕ sinψ + cosϕ cosψ sin θ]

ÿ = −U1

m
[− cosψ sinϕ+ cosϕ sinψ sin θ]

(2.40)

The pitch angle is used to make a rotation around the x axis, we can consider ϕ = ψ ≈ 0.

Therefore, we can write:

ẍ = −U1

m
sin θ (2.41)

We can design the PD control as:

θ = arcsin (Kpx(xd − x) + kdx(ẋd − ẋ) ∗ −m
U1

) (2.42)

In the same way, the roll angle is used to make a rotation around the y axis, we can consider

θ = ψ ≈ 0.

ÿ = −U1

m
sinϕ (2.43)

ϕ = arcsin (Kpy(yd − y) + kdy(ẏd − ẏ) ∗ −m
U1

) (2.44)

where kpx, kpy, and kdx, kdy stand for proportional and derivative control gain, respectively, and

xd and yd indicate the required references.
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Attitude and altitude controller

The Analytical construction of aggregate regulators (ACAR) method is the most used method

for control law synthesis utilizing the SCT approach. To begin, define a set of control criteria

for the system [63]. The system is then expressed as a system of invariants, with the invariants

acting to achieve the control goals. As a result, the SCT procedure is reduced to the search

for control laws to implement these invariants. Based on synergetic control theory and ACAR

method, we define the following set of macrovariables:

Ψ1 = Vz −K1(z0 − z)− γz;

Ψ2 = Vϕ −K2(ϕ0 − ϕ)− γϕ;

Ψ3 = Vθ −K3(θ0 − θ)− γθ;

Ψ4 = Vψ −K4(ψ0 − ψ)− γψ;

(2.45)

where:

Ki ; i = 1, .., 4: are positive constants.

Ψ1 serve to ensure the quadrotor motion converge to the desired position.

Ψ2,Ψ3,Ψ4 serve to maintain the angles of orientation.

The control law force the system to exponentially converge the desired manifold Ψ = 0. The

dynamic evolution of the manifold can be expressed as:

Ψ̇i + λiΨi = 0; i = 1, ..4 (2.46)

where:

λi are positive constants that describe the convergence rate of the system states.

Therefore, The control syneregtic laws can be calculated from relations (2.7.1),(2.45) and (2.46):

U1 =
m(−λ1γz−λ1k1z0+k1Vz−η3z0+η3z+g+λ1k1z+λ1Vz+γz)

cos θ cosϕ
;

U2 = −k2ωϕIx − ωθωψIy + ωθωψIz − λ2Ixωϕ − γϕIx + η4Ixϕ0 − η4Ixϕ+ λ2Ixk2ϕ0

−λ2Ixk2ϕ+ λ2Ixγϕ;

U3 = −k3ωθIy − ωϕωψIz + ωϕωψIx − λ3Iyωθ − γθIy + η5Iyθ0 − η5Iyθ + λ3Iyk3θ0

−λ3Iyk3θ + λ3Iyγθ;

U4 = −k4ωψIz − ωϕωθIx + ωϕωθIy − λ4Izωψ − γψIz + η6Izψ0 − η6Izψ + λ4Izk4ψ0

−λ4Izk4ψ + λ4Izγψ;

(2.47)

From the relations of control inputs, we can the speed of rotation of the propellers according
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to the inputs:

Ω1 =
√

1
4b
U1 − 1

2bl
U3 − 1

4d
U4;

Ω2 =
√

1
4b
U1 − 1

2bl
U2 +

1
4d
U4;

Ω3 =
√

1
4b
U1 +

1
2bl
U3 − 1

4d
U4;

Ω4 =
√

1
4b
U1 +

1
2bl
U3 +

1
4d
U4;

(2.48)

Therefore, the velocity control for the motors Ω1,Ω2,Ω3 and Ω4 can be derived by taking

into account the dynamic model of quadcopter (2.25), the control inputs (2.26), and equation

of interrelations (2.48) to provides and improve a asymptotic stability in an environment with

external disturbances [64].

To prove the asymptotic stability,we use Lyapunov method; the candidate Lyapunov function

is chosen in terms of micro-variables is expressed as:

V =
1

2
(ΨT

1Ψ1 +ΨT
2Ψ2 +ΨT

3Ψ3 +ΨT
4Ψ4) (2.49)

We derive the previous equation (2.49):

V̇ = (ΨT
1 Ψ̇1 +ΨT

2 Ψ̇2 +ΨT
3 Ψ̇3 +ΨT

4 Ψ̇4) (2.50)

Substituting Equation (2.46) into(2.50):

V̇ = (ΨT
1 (−λ1Ψ1) + ΨT

2 (−λ2Ψ2) + ΨT
3 (−λ3Ψ3) + ΨT

4 (−λ4Ψ4)) (2.51)

V̇ = −(λ1Ψ
2
1 + λ2Ψ

2
2 + λ3Ψ

2
3 + λ4Ψ

2
4) (2.52)

Therefore, V̇≤ 0. As a result, the stability of the Quadrotor system is asymptotic.

Conclusion

In the second chapter, we presented the structure of the fleet control and the mathematical

model of quadcopter using Newton-Euler formalism. Then we synthesize a control laws using

synergetic approach and PD controller’s to provide the stability in an environment with external

disturbances and to reach the desired positions.
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3

PATH PLANNING FOR FLEET OF DRONES

Introduction

Following the synthesis of the control law, each vehicle’s stability is guaranteed. The key

goal now is to develop a robust optimization algorithm for each UAV that knows its neighbors

coordinates, with the intended configuration at each sample time, and finds the next optimal

location at the following simple time by minimizing its own cost function while considering

motion constraints.

This chapter will define and classify the different metaheuristic methods, explaining their

multiple advantages and applications. Then, we used Particle Swarm Optimization (PSO) as

our path planning algorithm, followed by the Gaussian plume function to show the spread of

air pollution, ending with an implementation of the PSO algorithm into our system.

3.1 Metaheuristic

Optimization has become a big part of our everyday life. Applied everywhere, be it in

(engineering, design, business, or even regular tasks) like planning a party or an event.

The use of optimization will always be present willingly or instinctively, mainly to find the
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best solution from a variety of options to our problems. That is why researchers created an

algorithmic framework used in different optimization problems with relatively few to no modifi-

cations named metaheuristic algorithms, this type of methods are widely used and implemented

due to their simplicity and robustness in exploring the search space to get efficiently optimal

and near-optimal solutions.

A metaheuristic is defined commonly as an iterative process that guides a subordinate heuris-

tic by combining different concepts to explore and exploit the search space and find solutions

in affordable computational times.

3.1.1 Metaheuristics classification

Metaheuristic algorithms can vary from simple local search methods to complex learning

processes based on global search, but different search strategies will give different results.

The most known local search method is the hill-climbing algorithm and its ability to find

any local optimum without guarantee of finding the global optimum solution.

On the other hand, there are global search methods with many population-based metaheuris-

tics, including (ant colony optimization, particle swarm optimization, and genetic algorithm)

[68].

However, some metaheuristic algorithms can be part of local and global search methods, such

as (iterated local search, variable neighborhood search, and GRASP).

Most of the well-known algorithms are mainly separated into single-solution methods and

population-based methods. Either by developing one singular candidate solution, for example

(iterated local search and variable neighborhood search) or multiple potential solutions, at

the same time including (particle swarm optimization, evolutionary computation, and genetic

algorithms).

Figure 3.1 shows an abstract of all the algorithms present in metaheuristics and the methods

overlapping on multiple areas.
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Figure 3.1: Metaheuristics methods

Many of the metaheuristics algorithms are inspired by natural systems, such as biology

(evolutionary and genetic algorithms) or ethology (ant colony algorithms and bee colony algo-

rithms).

To use a metaheuristic method there must be four criteria needed and pursued as a result,

it should be an optimal solution followed with accurate, precise, and complete results and with

a fast execution time.

• Optimality: The results needed must be optimal or near-optimal, even in the presence

of multiple solution for the same problem.

• Accuracy and precision: The provided results by the heuristics must be in a trustful

range, with a minor marge or error.

• Completeness: Needing all the possible solutions.

• Execution time: The problem and the applied method need to be compatible, because

some heuristics algorithms can find the desired solution faster than others [69].

3.1.2 Advantages and applications

Metaheuristic algorithms can have a variety of advantages:

• Easily understandable and fast to implement.

• Very efficient; it can solve larger problems in short periods of time.
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• Broad application: Used for optimization purposes it needs to be applied for a widespread

range of problems.

• Good aspect of different methods can be exploited using hybridization or by combining

them with traditional methods.

• It can be used to solve complex problem or multiple possible solutions problems.

They shine most when used in the right area of application. As we mentioned, different search

strategies will give different results according to the problem.

Researchers explained how to find the right approach using this kind of method:

“A metaheuristic will be successful on a given optimization problem if it can provide a balance

between the exploitation of the accumulated search experience and the exploration of the search

space to identify regions with high-quality solutions in a problem-specific, near-optimal way.”

[70]

Figure 3.2 shows the different uses of metaheuristic algorithms in multiple areas of applica-

tions:

Figure 3.2: Metaheuristic applications

29



CHAPTER 3. PATH PLANNING FOR FLEET OF DRONES

3.2 Particle swarm optimization (PSO)

3.2.1 Introduction

Particle swarm optimization (PSO) is a population-based metaheuristic method for the op-

timization of non-linear functions. It can navigate the search space seeking optimality using its

population-based aspect and relying on the initial distribution of this group of particles.

PSO is a global search Swarm intelligence (SI) metaheuristic purely inspired by nature by

mimicking the social behavior of birds when searching for food.

3.2.2 Operating principle

The particle swarm optimization (PSO) method is considered to be one of the most popular

and used algorithms for swarm intelligence development [71]. By starting with a set of particles

distributed in random locations and considered as potential solutions, the (PSO) algorithms

can be used to change the positions of the particles around the search space in order to improve

the last solution and to locate the global optimum thru particle inter-communications, using a

predefined group of mathematical equations.

Using this set of mathematical expressions, it can predict the best possible positions for our

swarm by anticipating each particles movement to the best available location.

Figure 3.3 will show the potential movement of each particle.

Figure 3.3: Movement of a particle

The particle swarm optimization algorithm depends greatly on two major phases named the
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Exploitation and Exploration of the search space, creating a balance in the algorithm.

In general, Exploration represents the ability of the algorithm to search for a new solution

different from the current one in the search space, and Exploitation searches the surrounding

area around the current solution, similar to local search seeking for better solutions.

For the PSO algorithm, the two phases are different from each other, in the first phase the

algorithm starts with the exploration to search in large space area because of its higher particle

velocity. When the velocity of the particles lowers, it switches to the final phase, where it

will start the exploitation of the search space by pushing the algorithm to focus on the best

solutions.

3.2.3 Historic of PSO algorithm

Particle Swarm Optimization (PSO) have been developed by Russ Eberhart and Jim Kennedy

in 1995 but it all started when William. T. Reeves tried to create a particle system predefined

with a set of points and assigning a velocity vector to each one of them, then Robert Reynolds

developed this system by granting it the ability of inter-communication between each particle,

after that Kennedy and Eberhart came up with the idea to use the social behavior of birds to

solve various problems of optimizations explaining that this kind of method had huge potential

because it applied all the principles of swarm intelligence (proximity, quality, diverse responses,

stability, and adaptability) all this principles were mentioned [72] when proving the importance

of collective intelligence for swarms.

• Principle of proximity: They should be able to manage simple spaces with short time

computations.

• Principle of quality: They should be able to detect quality factors in the environment

in our case, by using a fitness function.

• Principle of diverse responses: they should be able to practice its activities in wide

channels.

• Principle of stability: They should maintain the same behavior even in cases of envi-

ronmental changes.

• Principle of adaptability: They should be able to change behavior if they can reduce

the computational time.
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In the end Kennedy and Eberhart agreed on the name particle swarm optimization for it inter

particle communication aspect and it optimization seeking properties .

3.2.4 Advantages and applications

- The PSO algorithm has a lot of advantages many of them being:

• Simple to understand, to program and to use.

• It is efficient on a wide variety of problems, particularly on optimization problems with

continues variables.

• Many algorithms in metaheuristics encourage survival of the fittest, but in PSO there is

no such thing, in reality a currently poor particle can become the best solution eventually.

In other words, the particles are cooperating in the search for the global optimum rather

than in competition. Which means that the PSO algorithm is influenced by social be-

havior rather than survival of the fittest.

-The particle swarm optimization algorithm has multiple ares of application (electrical engi-

neering, electronic engineering, mechanical engineering and computer engineering) with a lot

of other areas of research proving the efficiency of this meta heuristic algorithm, for example:

• In electrical engineering, the Proportional-Integral-Derivative (PID) Controllers is present

for multiple supervision applications. The PSO algorithm can provide optimal operations

for the PID controller with proper tuning of (Kp, Ki, and Kd) parameters [73].

• It was also used in home energy management system by taking in consideration the

different energy sources of the infrastructure, the cost rate and the multiple household

appliances that consume the energy. Using all this information the PSO algorithm is

applied to reduce the costs [74].

• On the other hand, in electronic engineering PSO algorithm was used in similar ways to

our research for swarm intelligence development. Due to the fact that PSO method does

not require a leader to coordinating the movement of the swarm [75].

• Also used for allocation tasks in wireless sensor networks, by designating the workload

for each task to proper nodes efficiently and in shorter periods of time [76].
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• Applied as well to supervise and detect faults in industrial machinery, in this case. PSO

was used to find machine bearing faults by grouping the optimal inputs provided by the

system [77].

• As for computer engineering the most known application was the Face Recognition sys-

tems based on videos. By combining fuzzy logic and artificial neural network many

researches were able to use PSO algorithm to guide the classifiers which decides whether

the taken image is negative or positive based on the desired output [78].

3.3 Path planning of fleet of drones using PSO

The main mission of the drone fleet is to converge on the point or location that manages

the pollution. Otherwise, the drones converge on the point with the highest concentration of

pollution.

With the decentralized approach for synthesizing a drone fleet control method, the goal is to

have each drone self-organize around a rendezvous point while avoiding collisions between team

members.

The synthesis of drone formation control is considered as a distributed optimization problem.

Each drone is assigned an optimization algorithm that optimizes the cost function while allowing

the fleet to reach the set objective.

3.4 Synthesis of path planning optimization

We assume a fleet of unmanned aerial vehicles (UAVs) made up of n homogeneous UAV

agents. The goal is to get a group of UAVs to fly in two dimensions, x and y, while conver-

gent around a rendezvous point that is either a pollution source or a place with the highest

concentration of pollution, while avoiding collisions.

3.4.1 Quadrotor formation topology

In the Cartesian plane or the inertial frame reference, we describe the motion control of each

UAV and their positions is denoted as:

qi = [xi, yi]
T , qi ∈ R2 (3.1)

where:

33



CHAPTER 3. PATH PLANNING FOR FLEET OF DRONES

• xi: The position of UAV in x axis.

• yi: The coordinate of the UAV in y axis.

The graph theory can be used to define the interaction topologies of m agents in a multi-agent

system, where the whole system can be represented by an undirected graph G = (V , E), with V

V = {1, 2, .., n} are the set of the nodes and E ⊆ {(i, j) : i, j ∈ V , i ̸= j} is the edges. Therefore,

the quadrotor is represented by the node and the communication between two quadrotor is

described by the edges.

Let’s define A ∈ Rn∗n the adjacency positive and symmetric matrix as aij > 0 if (j, i) ∈ ε.

Cause we have a undirected graph, ∀(i, j) ∈ ε→ ∀(i, j) ∈ ε

The set of neighbors of each node i is defined as [41]:

Ξi(t) = {j ∈ n : ∥qj(t)− qi(t) < l∥} (3.2)

where:

• l: Scope of the neighborhood.

• Ξ: The metrical neighborhood of the UAV i.

The constraint of collision avoidance between agents can be described as follows:

∥qi − qj∥ > rs, rs ∈ Rn∗n (3.3)

where:

• rs: The safety distance between two agents.

In order to avoid collisions between swarm members, a strategy based on repellent morse

potential was developed. The method is defined by the control rule between the i’th and j’th

agents as follows [79]- [80]:

U r
ij =

α(exp{−β∥rij∥} − exp{−β ∗ rs}) If ∥rij∥ < rs

0 Otherwise

(3.4)

where:

• α, β > 0 are the control gain and the exponent scalar respectively.

• rij is the distance between two agents.

As a result, the total repellent force acting on each quadrotor i can be given as:

uri =
n∑
j=1

urij (3.5)
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3.4.2 Cost function optimization

To model air dispersion pollution, many dispersion models have been developed and used to

estimate the downwind ambient concentration of air pollutants from sources such as industrial

facilities. The Gaussian model is considered the most widely utilized of these. The mathe-

matical model was developed using the experimental campaign’s boundary conditions, and the

major benefit of Gaussian plume models is their extraordinarily quick, virtually instantaneous

response time. For each receptor site, their calculation is dependent on the resolution of only

one formula. The main assumptions to use this model are [81]:

• The emission rate of the source is constant.

• Horizontal meteorological conditions are homogeneous over the space modeled. The wind

speed, wind direction, temperature mixing height are constant.

• The pollutants are non-reactive gases or aerosol.

• The plume is reflected at the surface with no deposition or reaction with the surface.

• The dispersion in the crosswind and vertical direction take the form of Gaussian distri-

butions.

The Gaussian plume model is illustrated in the figure below:

Figure 3.4: Gaussian plume model

The origin of an orthogonal Cartesian reference system is considered to correspond to the

source’s base position, with the x axis parallel to the wind direction. The y axis is horizontal
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and parallel to the x axis, whereas the z axis is vertical and corresponds to the distance from

the ground. Equation (3.6) describes the concentration C(x,y,z) in any position [82].

C(x, y, z) =
Q

2πσyσz ∗ U
. exp

{
−(

y2

2σ2
y

+
(z −H)2

2σ2
z

)

}
(3.6)

where:

• σy, σz[m] are horizontal and vertical dispersion coefficients. They depend on the distance

x from the source.

• Q: The source strength or mass flow rate (mass/time).

• U [m/s]: The time-averaged wind speed at source height.

• H[m]: The height of the emitter or stack.

The main goal is to converge the UAV fleet to the point where the concentration of pollutants

is maximum by maximizing the cost function in (3.6) by particle swarm optimization with

collision avoidance between agents.

3.4.3 Implementation of particle swarm optimization algorithm

To start the PSO process, we create a random population of potential solutions x(t), under-

stood as particles traveling in the search space with V(t) representing their speed. Each particle

is drawn to its best known position in the past, P1, as well as the best known position of the

particles in its immediate vicinity, P2. Several setup factors are included in the algorithm to

act on the compromise Exploration-Exploitation [83].

The velocity and position of each particle are expressed as:

V (t+ 1) = a ∗ V (t) + b1r1(P1(t)− x(t)) + b2r2(P2(t)− x(t)) (3.7)

X(t+ 1) = X(t) + V (t+ 1) (3.8)

where:

• a: The coefficient of inertia.

• b1 and b2: The intensity of attraction.

• r1,r2 ∈ [0; 1]: Random values.
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Each drone in our model symbolizes a particle, and the number of drones in the fleet indi-

cates the swarm’s population. The method of maximizing the air dispersion pollution function

using PSO metaheurstic with collision avoidance between agents is described by the following

algorithm.

Algorithm 1 Particle swarm optimization with collision avoidance

for each drone in the fleet do

Initialize its position and velocity

end for

while iteration < maxiterations do

for each drone in the fleet do

Evaluate the fitness function

if the objective fitness value is better than the personal best objective fitness value

P1 in history then

current fitness value set as the new personal best P1

end if

end for

From all the drones, choose the drone with best fitness value as P2

for each drone in the fleet do

Update the drone velocity according equation (3.7)

Update the drone position according equation (3.8)

if The distance between agents is shorter than the safety distance then

Calculate the control rule using equation (3.3)

Update drone position

end if

end for

end while

3.5 Conclusion

The third chapter covers the trajectory planning of a UAV fleet. Starting with the reformu-

lation of the problem and the definition of the topology of the quadrotors formation. Next, we

have modeled the dispersion of air pollution by the Gaussian plume function. Then, we have

used particle swarm optimization metaheuristics for the implementation of the algorithm with

the synthesis of the collision avoidance law between fleet members.
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CHAPTER

4

SIMULATION AND EXPERIMENTAL

RESULTS

4.1 Introduction

After presenting the dynamic model of each UAV in the second chapter and synthesizing the

control law to reach the desired position in the second chapter, and planning the trajectories

to follow for each UAV by optimizing the objective function using the PSO algorithm in the

previous chapter, this chapter presents the simulation of each UAV to evaluate the performance

of controllers and the simulation of the path planning algorithm.

4.2 Quad-copter control results

As we have seen, we have developed a cascade structure to control the quadrotor. Where

the internal controller controls the attitude (ϕ, θ, ψ) as well as the altitude (z) using synergetic

control and the external loop is responsible for the control of the position (x, y) by PD controller.

In this section we will present the quadrotor parameters and the temporal responses.
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4.2.1 Quadrotor parameters

The parameters of quadcopter are presented in table:

Parameter Notation Unit Value

The quadcopter’s mass m kg 1

The distance between the center

of quadcopter and the center of

the propeller

b Ns2 26.5.10−6

The aerodynamic component of

the resistance of the medium

d Nm s2 0.6.10−6

The moment of inertia about the

axis X

Ixx Kg m2 0.1

The moment of inertia about the

axis Y

Iyy kg m2 0.1

The moment of inertia about the

axis Z

Izz kg m2 0.1

Table 4.1: Design parameters of the quadcopter

The parameter of the external and internal controller are summarized in Table.

Parameter Value

Kp 2

Kd 1

Table 4.2: Design parameters of PD controller

The goal of employing a PD controller is to assure reaction stability and accuracy. Propor-

tional gain makes the system fast and accurate, but it also puts it at risk of being unstable,

while derivative gain improves the system’s stability and speed while affecting the oscillations

in the response. Because the outer loop’s response time is considerably longer than the inner

loop’s, lower PD values are chosen.
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Parameter Notation Value

Parameter of the 1st functional equation

(2.46)

λ1 8

Parameter of the 2nd functional equation

(2.46)

λ2 90

Parameter of the 3rd functional equation

(2.46)

λ3 90

Parameter of the 4th functional equation

(2.46)

λ4 80

Parameter of the macrovariable Ψ1 k1 50

Parameter of the macrovariable Ψ2 k2 25

Parameter of the macrovariable Ψ3 k3 25

Parameter of the macrovariable Ψ4 k4 80

Parameter of the estimation of the external

disturbances for z

η1 0.2

Parameter of the estimation of the external

disturbances for ϕ

η2 10

Parameter of the estimation of the external

disturbances for θ

η3 10

Parameter of the estimation of the external

disturbances for ψ

η4 10

Table 4.3: Design parameters of the internal controller

The choice of the values parameters of the internal controller is made by the observation of

responses of the system for different values. The gain K influences the speed, the stability of

the system. For small values of the gain the system response has oscillations. The value of the

parameter λ influences the oscillations of the system as well as the overshoot.

4.2.2 Simulation results of a single quadcopter

Simulation experiments of the attitude control of a single quadcopter were performed to

evaluate the efficiency of the synergetic control before implementing the control laws in all of

the fleet’s UAVs. The dynamic model of the quadcopter was simulated with both controllers

without and with external disturbances using MATLAB software. The desired positions are {
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x0 = 1, y0 = 1, z0 = 20} with the yaw angle ψ0 = 0.3. The simulation results are presented

below:
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Figure 4.1: xyz positions and the yaw angle ψ
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Figures 4.1 show the evolution of the translation and yaw positions. The quadcopter can

follow the reference trajectories, as can be observed. The z position has a much faster response

than the x and y positions. Therefore, the performances of the controllers are proven. The

outer loop controller generated roll and pitch trajectories for the vehicle to follow the x and

y reference trajectories, as shown in Figure 4.2. Because of the coupling of the quadcopter

between translational and rotational dynamics, there are some peaks of considerable amplitude

when the quadrotor changes its position.

To evaluate the performance of the synergetic control in the presence of disturbances, we

introduce disturbance signals as square wave signals, as shown in Figure 4.3. Figures 4.4,

and 4.5 present the simulations results.
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The simulation results confirm the effectiveness of the control laws developed for disturbance

rejection without linearizing the dynamic system. In the trajectory of the z position and the

ψ angle response, we also notice that the disturbance rejection time is short. There are slight

oscillations in the roll and pitch angle responses when the disturbance is applied, but these

dissipate after a few seconds.

4.3 Path planning simulation results

The proposed method for UAV fleet trajectory planning was evaluated in simulation for a

group of 6 agents. The results presented in the following are given from multiple simulations

with different initial conditions on drone positions. The main objective is to find the position

that has the maximum concentration of pollutants and cluster around it. The time constant

is set to 1 second. The position of the drones according to x to is set x0 = 1 to have constant

values of σy and σz. The initial positions and the simulation parameters are presented in table

1 and 2

UAV1 UAV2 UAV3 UAV4 UAV5 UAV6

y0 (m) 70 30 40 5 10 60

z0(m) 25 50 40 45 15 40

Table 4.4: Initial positions of UAVs

kp kc α β c maxite rs

1.1 0.85 4 0.3 [1.5 1.5] 200 1

Table 4.5: Simulation parameters

The parameters of the atmospheric pollution model are summarized in table:

H [m] u[m/s] σy[m] σz[m] Q [kg/s]

20 3 30 20 20

Table 4.6: Atmospheric pollution model parameters
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Figure 4.6: Air pollution dispersion plot

Figure 4.6 shows the pollution dispersion in an area of 100m2. By a graphical observation,

we can see that the pollution source is located at point (0,20) with a concentration of 0.00176

µg/m3.

Figure 4.8 shows the evolution of trajectories of each drone from the initial position to the

desired location, where the pollution concentration is maximum.

Figure 4.7: 2D targets and trajectory generated by PSO algorithm with collision avoidance
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Figure 4.8: UAVs positions with concentrations measurement
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Figure 4.9: z and y positions for UAVs

We notice the UAVs converge to the optimal position where the industrial stack is located;

the coordinates of the optimal position are (1,0.2409,20.0217) founded by the UAV4, where

the concentration is 0.0018 µg/m3. The convergence time is estimated to be the 60s. The

convergence time depends mainly on the initial conditions of the UAVs, which proves the

performance of algorithm PSO. We also note the importance of the collision avoidance law

when the UAVs become very close.

After evaluating the performance of the control laws implemented in a single UAV and

ensuring that the algorithm can find the optimal position for the pollution source, we implement

the control laws and UAV dynamics in the algorithm to see if they can follow the desired

trajectories. We take into account the stabilization time of the UAVs in each position. The

figure shows the evolution of the trajectories for UAV1.

46



CHAPTER 4. SIMULATION AND EXPERIMENTAL RESULTS

0 50 100 150 200 250 300 350 400

t(s)

0

10

20

30

40

50

60

70

y
(m

)

y position for UAV1

(a) y position for UAV1

0 50 100 150 200 250 300 350 400

t(s)

12

14

16

18

20

22

24

26

z
(m

)

z position for UAV1

(b) z position for UAV1
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The system responds well, the trajectories follow the references. The convergence time is

estimated at 400s to stabilize the system at each sample. As can be seen in Figure 4.11, there

is some oscillation in the response of the y position before it stabilizes. A disturbance was

introduced at time 150s for the variable y, the controller was able to reject the disturbance. As

the drone changes position every second, there are oscillations in the pitch response before the

system enters the steady state, as shown in Figure 4.12.

4.4 Conclusion

The simulation of synergetic control and implementation of the PSO algorithm for UAV fleet

trajectory planning are presented in this chapter. The procedure of synthesis of synergetic

control for the quadrotor UAV in an environment with external disturbances with the use

of complete nonlinear models developed in the second chapter has ensured the asymptotic

stability of the system in closed loop, and the rejection of disturbances by using the law of

synthesis of adaptive control systems ”integral adaptation” in particular. The asymptotically

stable equilibrium can be easily proved by applying Lyapunov methods to the resulting closed-

loop system of the quadcopter. For the purpose of planning the drone fleet’s trajectories.

The PSO algorithm’s result is satisfactory; the drones have converged on the optimal position

48



CHAPTER 4. SIMULATION AND EXPERIMENTAL RESULTS

for detecting the polluting source. The convergence time is determined by both the initial

conditions. The control laws were successfully implemented, with positive results for each

agent.
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GENERAL CONCLUSION

Drones in training are becoming the focus of interest for researchers around the world. The

use of multiple unmanned aerial vehicles (UAVs) is highly recommended for military, govern-

ment, and commercial tasks such as intelligence, surveillance and reconnaissance, border patrol,

and environmental emergency detection. The goal of our thesis is to control and plan the tra-

jectories of the UAV fleet to converge on the most polluting source in a region. We started

our thesis with a general overview of UAV fleets with their applications and cited the different

approaches and strategies in the literature review to control UAVs in formation. Next, we

employed a decentralized structure to control each drone using PD and synergetic controllers

to granulate the stability of each agent in the fleet. Then, we modeled the dispersion of the

air pollution generated by the factories by the the Gaussian plume model or function. For the

planning of the trajectories of the fleet of drones, we used the PSO algorithm to maximize the

dispersion function while avoiding collisions between agents. The results got by the synthesis

of the control laws and implementation of the PSO algorithm are satisfactory. The drones

converged towards the desired positions while ensuring their stability and the algorithm found

the optimal position with good accuracy.

Our study can be developed by the design and implementation of distributed path planning

algorithm for a fleet Of UAVs by implementing command laws in the flight controllers.
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APPENDIX

A

LYAPUNOV STABILITY

Consider the autonomous system:

ẋ = f(x) (A.1)

where f : D → Rn is a locally Lipschitz map from a domain D ⊂ Rn into Rn Suppose x ∈ D is

an equilibrium point of A.1, that is, f(x) = 0. Our goal is to characterize and study stability

of x. For convenience, we state all definitions and theorems for the case when the equilibrium

point is at the origin x = 0.

Definition 1

The equilibrium point x=0 of A.1 is stable if, for each ϵ > 0,there is δ = δ(ϵ) > 0 such that

|x(0)| < δ ⇒ ||x(t)|| < ϵ for all t ≥ 0 unstable if not stable: asymptotically stable if it is stable

and can be chosen such that ||x(0)|| < δ ⇒ lim
x→+∞

x(t) = 0.

Let V : D → R be a continuously differentiable function defined in a domain D ⊂ Rn that
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contains the origin The derivative of V along the trajectories of A.1 denoted V̇ is given by

v̇(x) =
n∑
i=1

∂V

∂xi
xi = [

∂V

∂x1
,
∂V

∂x2
, ....,

∂V

∂xn
]



f1(x)

f2(x)

.

.

fn(x)


=
∂V

∂x
f(x) (A.2)

If V̇ (x) is negative, V will decrease along the trajectory of A.1 passing through x. A function

V(x) is positive definite if V(0) = 0 and V (x) > 0 for x ̸= 0. It is positive semi-definite if it

satisfies the weaker condition V (x) ≥ 0 for x ̸= 0. A function V(x) is negative definite or

negative semi-definite if -V(x) is positive definite or positive semi-definite, respectively.
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MATION CONTROL FOR A LARGE SCALE SWARM OF QUADROTOR HELI-

COPTERS”. In: 2019.

[43] Hicham Megnafi and Walid Yassine Medjati. “Study and Assembly of Quadrotor UAV for

the Inspection of the Cellular Networks Relays”. In: International Conference in Artificial

Intelligence in Renewable Energetic Systems. Springer. 2020, pp. 659–668.

56



BIBLIOGRAPHY

[44] Erdinc Altug, James P Ostrowski, and Robert Mahony. “Control of a quadrotor helicopter

using visual feedback”. In: Proceedings 2002 IEEE international conference on robotics

and automation (Cat. No. 02CH37292). Vol. 1. IEEE. 2002, pp. 72–77.

[45] Francesco Sabatino.Quadrotor control: modeling, nonlinearcontrol design, and simulation.

2015.

[46] Atheer L Salih et al. “Modelling and PID controller design for a quadrotor unmanned air

vehicle”. In: 2010 IEEE International Conference on Automation, Quality and Testing,

Robotics (AQTR). Vol. 1. IEEE. 2010, pp. 1–5.

[47] Samir Bouabdallah. Design and control of quadrotors with application to autonomous

flying. Tech. rep. Epfl, 2007.

[48] Ehsan Abbasi, Mohammad Mahjoob, and Reza Yazdanpanah. “Controlling of quadrotor

uav using a fuzzy system for tuning the pid gains in hovering mode”. In: 10th Int. Conf.

Adv. Comput. Entertain. Technol. 2013, pp. 1–6.

[49] Sumaila Musa. “Techniques for quadcopter modeling and design: A review”. In: Journal

of unmanned system Technology 5.3 (2018), pp. 66–75.

[50] Luis Rodolfo Garcı´a Carrillo et al. “Modeling the quad-rotor mini-rotorcraft”. In: Quad

Rotorcraft Control. Springer, 2013, pp. 23–34.

[51] Jose de Jesus Rubio et al. “Comparison of two quadrotor dynamic models”. In: IEEE

Latin America Transactions 12.4 (2014), pp. 531–537.

[52] Dewei Zhang et al. “The quadrotor dynamic modeling and indoor target tracking control

method”. In: Mathematical problems in engineering 2014 (2014).

[53] Tammaso Bresciani. “Modelling, identification and control of a quadrotor helicopter”. In:

MSc theses (2008).

[54] Abhijit Das, Kamesh Subbarao, and Frank Lewis. “Dynamic inversion with zero-dynamics

stabilisation for quadrotor control”. In: IET control theory & applications 3.3 (2009),

pp. 303–314.

[55] Samir Bouabdallah, Andre Noth, and Roland Siegwart. “PID vs LQ control techniques

applied to an indoor micro quadrotor”. In: 2004 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566). Vol. 3. IEEE. 2004,

pp. 2451–2456.

57



BIBLIOGRAPHY

[56] A Benallegue, A Mokhtari, and L Fridman. “Feedback linearization and high order sliding

mode observer for a quadrotor UAV”. In: International Workshop on Variable Structure

Systems, 2006. VSS’06. IEEE. 2006, pp. 365–372.

[57] Samir Bouabdallah and Roland Siegwart. “Full control of a quadrotor”. In: 2007 IEEE/RSJ

international conference on intelligent robots and systems. Ieee. 2007, pp. 153–158.

[58] Guilherme V Raffo, Manuel G Ortega, and Francisco R Rubio. “An integral predic-

tive/nonlinear H∞ control structure for a quadrotor helicopter”. In: Automatica 46.1

(2010), pp. 29–39.

[59] Saddam Hocine Derrouaoui, Yasser Bouzid, and Mohamed Guiatni. “Adaptive integral

backstepping control of a reconfigurable quadrotor with variable parameters’ estimation”.

In: Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and

Control Engineering (2022), p. 09596518221087803.
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