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Abstract

Our main goal in this thesis is to simulate different control laws and strategies. This work is

dedicated mostly to the theoretical study of an inverted pendulum, we explained the dynamics and state

representation of one and two inverted pendulums and generalise the equations of motion until we reach

the n-link pendulums. We also designed a controller for the swing-up through the study of energy and

designed our LQR controller for stabilization. Finally, we designed a controller for the two inverted

pendulums and talked about some control laws. As result, we simulated the control law that we talked

about and compared between them.

Key words inverted pendulum, n-link inverted pendulum, LQR, Pole placement, swing-up.
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Résumé

Notre objectif principal dans cette thèse est de simuler différentes lois et stratégies de commande.

Ce travail est dédié principalement à l’étude théorique du pendule inversé, nous avons expliqué la dy-

namique et la représentation de l’état d’un et deux pendules inversés et généralisé les équations de mou-

vement jusqu’à ce que nous atteignions les pendules à n liens, nous avons aussi conçu un contrôleur pour

le swing-up à travers l’étude de l’énergie et un contrôleur LQR pour la stabilisation. Finalement, nous

avons conçu un contrôleur pour les deux pendules inversés, et parlé de certaines lois de contrôle. Comme

résultat, nous avons simulé la loi de commande dont nous avons parlé et essayer de les comparer.

mots clés pendule inversé , pendule inversé n-lien, LQR, placement de pole, balancer.
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General introduction

Almost all of us have already tried the experience of vertically stabilizing a stick on our

index finger. In order to keep this stick in balance, we must move our index so as to permanently

prevent it from tipping over. It’s exactly the same challenge offered by the inverted pendulum

system, but the motion of the inverted pendulum system consists of translational movement on

limited rail and rotational movement. It will be necessary to define specific strategies to ensure

automated maintenance of the inverted pendulum. And of course, the performances obtained

thanks to an automated system are far superior to those which would be obtained by man.

To define the specific strategies that we talked about we need to understand the mathe-

matical model [1].

The strongly non-linear and unstable dynamics of this physical system have made it a very

interesting and widely studied system in the automation community. As well, in the scientific field

and education, automatic control often uses specific case studies, which are representative of large

classes of applications. Moreover, with experience, the knowledge of these cases has been refined

and they now provide an ideal basis for validly comparing the advantages and disadvantages of

different approaches.

The inverted pendulum is one of those typical cases that occupies an important place in

the industry as a transport tool, which has been the subject of great discussion throughout the

last years. This explains the existence of several aspects and forms of inverted pendulums [2]. We

can find various types of inverted pendulums such as the simple inverted pendulum, the double

1



inverted pendulum, the Furuta inverted pendulum, etc.

Our system belongs to the class of fast single input, multiple-output (SIMO), it is an under-

actuated system and satisfies a set of complicated characteristics, such as fourth-order highly non-

linear dynamics, open-loop instability, state coupling, and non-minimum-phase (NMP) behavior

which affects stability margins and robustness, provides many challenging problems to standard

and modern control techniques [1].

In the context of the inverted pendulum on a cart system stabilization, moving the cart

from an initial position to a final destination while keeping the pendulum erected in the upright

position has been extensively studied in the past, and many output-feedback and (static and

dynamic) state-feedback control techniques have been developed to solve it [3].

Nearly all work on pendulum control concentrate on two problems: pendulums swing up

control design and stabilization of the inverted pendulums. There are different types of control

methods that have been applied to inverted pendulum systems, such as PID controller, a combi-

nation of feedforward and feedback control to solve the swing-up of an inverted pendulum problem

was proposed in (Rubi et al., 2002). (Graichen et al., 2007) , LQR controller, A side-stepping

control, and there is more even the fuzzy logic was applied.

This work is divided into 3 chapters, in the first one we extracted the equations of motion of

one inverted pendulum using language’s equation, and after we turn these equations of motion into

state space representation. Next, we extracted the equations of motion of two inverted pendulums

and wrote them in matrix form eventually from those sections and after some research, we managed

to get the equations of motions for the n-link inverted pendulum. In the second chapter, we divided

the problem of controlling an inverted pendulum onto two problems the swing-up control and the

stabilisation control. started with the swing-up control we did a study based on the energy of

the system after we got our equilibrium points and then we linearised our system around those

equilibrium points next we did the stabilisation control of one inverted pendulum we tasted its

stability by Lyapunov function. In the next section of this chapter, we tried to design an LQR

controller for two inverted pendulums after we talked about different control strategies to stabilise

the pendulum. In the last chapter by using MATLAB we managed to get the simulation of one

2



inverted pendulum on a cart, and by using the ODE45 function we solve the dynamics equations

and then we simulate it in an open loop with and without friction after we simulate our system

with a different control method.

3



Chapter 1. Mathematical modeling of an inverted pendulum

Chapter 1
Mathematical modeling of an inverted pendulum

1.1 Introduction

The inverted pendulum on a cart system is a multi-variable, coupled, non-linear, and un-

stable system. there are many parasitic effects such as friction, and the rotational movement of an

electric motor is transformed into the movement of translation of the carriage using a pulley and

a toothed belt. The movement of the carriage in one direction or the other ensures by reaction

the vertical balance of the pendulum arm. The mathematical model of a dynamic is defined as

a set of equations that represents the dynamics of the system accurately. It is the best and the

most important tool to describe the physical system, so we can design a controller and simulate it,

we will extract the potential and the kinetic energies, and by applying the Lagrange method we

will deduce the mathematical model. Finally, we can represent it as state space form, or transfer

function form. In this chapter, we will try to deduct the mathematical model of one and two

inverted pendulums on a cart, and we will deduct just the equations of motion of n-link inverted

pendulums.
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Chapter 1. Mathematical modeling of an inverted pendulum

1.2 One inverted pendulum mathematical model

1.2.1 Describing the system

Figure 1.1: 1 link inverted pendulum

This mechanical system consists of a carriage of mass M which can move horizontally and

freely on a guide rail by supporting a rod of mass m1 and free in rotation around a pivot. The DC

motor will apply a force F (the control input it’s the force F we can describe it as u = u(t)) (see fig

1.1) that causes the cart to move so it has two degrees of freedom whose coordinates generalized are

respectively x for the horizontal movement of the carriage and θ for the rotation of the pendulum,

as the pendulum rotate that involved the existence of moment of inertia I [4], and the positive

direction of x is the right direction in meters and that of the angle is the clockwise direction in

radians. There are many different modelling strategies, one of them by determining the equations

of motion of the pendulum by applying Lagrange’s formalism. Lagrange’s equations are one of the

best-known methods for solving dynamic problems with constraints. The Lagrangian L is defined

as L = K-P, where K is the kinetic energy and P is the potential energy of the system in question.

The length of the pendulum is denoted by 2l so the gravity center is in distance equal to l.

5



Chapter 1. Mathematical modeling of an inverted pendulum

We denote by θ1 = θ1(t) the deviation of the pendulum from the upright position at time t ∈ <

as depicted in the image above. By x = x(t) we denote the horizontal position of the cart and we

assume that the cart cannot move vertically [5].

The derivatives with respect to time are denoted by

d

dt
x(t) = ẋ, and

d

dt
θ1

The goal is to stabilize the pendulum in an upright position above the cart by only applying

forces to the cart itself.

We assume that external disturbances w0, w1, act as forces on x and θ1 think of these

external forces as wind or some human pushing the rods. We introduce the damping coefficients

d0, d1 and consider the friction/damping force of the cart to be −d0ẋ while the friction/damping

forces in the joints are assumed to be −d1θ̇1 and the positions of the masses M and m1 are given

by

Coordinates of the system :

The cart

c0 =

 x

0


the pendulum:

c1 =

 Xm

Ym

 =

 x+ l sin θ

l cos θ


1.2.2 The potential energy

The cart only moves on a horizontal rail, so its potential energy is zero, therefore only the

moving pendulum has potential energy, so the potential energy in the pendulum can be given as

P = mgh

= m1gl cos θ1

6



Chapter 1. Mathematical modeling of an inverted pendulum

1.2.3 The kinetic energy

We know that the pendulum moves in horizontal rail and rotates on its own axe of rotation,

this rotational movement causes rotational kinetic energy we can describe it as

Krot =
1

2
Iω2

with ω is the angular velocity. So the kinetic energy can be given as

K =
1

2
mv2 +

1

2
Iω2

=
1

2

{
M ‖ċ0‖2 +m1||ċ1||2

}
+

1

2
Iθ̇2

1

K1 =
1

2
Mẋ2

K2 =
1

2
m1(ẋ2 + ẏ2) +

1

2
Iθ̇2

1

K =
1

2
Mẋ2 +

1

2
m1(ẋ2 + ẏ2) +

1

2
Iθ̇2

1

=
1

2

{
Mẋ2 +m1

[(
ẋ+ lθ̇1 cos θ1

)2

+
(
lθ̇1 sin θ1

)2
]}

+
1

2
Iθ̇2

1

=
1

2
Mẋ2 +

1

2
m1ẋ

2 +
1

2
m1(lθ̇1 cos θ1)2

+m1ẋlθ̇1 cos θ1 +
1

2
m1(lθ̇1 sin θ1) +

1

2
Iθ̇2

1

1.2.4 Lagrange’s equation

L = K − P

L =
1

2
(M +m1)ẋ2 +

1

2
m1l

2θ̇1
2

+m1lθ̇1 cos θ1ẋ+
1

2
Iθ̇2

1 −m1gl cos θ1

7



Chapter 1. Mathematical modeling of an inverted pendulum

1.2.5 The equations of motion

u+ w0 − d0ẋ =
d

dt
(
∂L

∂ẋ
)− ∂L

∂x

=
d

dt

{
Mẋ+m1(ẋ+ lθ̇1 cos θ1)

}
− {0}

= (M +m1)ẍ+m1lθ̈1 cos θ1 −m1lθ̇1
2

sin θ1

w1 − d1θ̇1 =
d

dt
(
∂L

∂θ̇1

)− ∂L

∂θ1

=
d

dt

{
m1l

2θ̇1 +m1lẋ cos θ1 + Iθ̇1

}
+
{
−lm1ẋ sin θ1θ̇1 +m1gl sin θ1

}
= m1lẍ cos θ1 + l2m1θ̈1 + Iθ̈1 − gm1l sin θ1

as the pendulum can rotate without a big resistance and it is easy to accelerate it so we can neglect

the moment of inertia, therefore the second equation of motion can be given as

w1 − d1θ̇1 = m1lẍ cos θ1 + l2m1θ̈1 − gm1l sin θ1

1.2.6 State space representation

Our system can be presented in the state space form [6], and we consider disturbance w = 0

and the inertia moment I = 0 :

M(q)q̈ + C(q, q̇)q̇ +Dq̇ +G(q) = F (1.1)

where

q =

x
θ1



M(q) =

M +m1 m1l cos θ1

m1l cos θ1 m1l
2

 (1.2)

8



Chapter 1. Mathematical modeling of an inverted pendulum

C(q, q̇) =

0 −m1l sin θ1θ̇1

0 0

 (1.3)

D =

d0 0

0 d1

 (1.4)

G(q) =

 0

−m1gl sin θ1

 , F =

u
0

 (1.5)

The matrix M(q) is a symmetric inertia matrix with a determinant equal to

det(M(q)) = (M +m1)m1l
2 − (m1l cos θ1)2

= m1l
2(M +m1 sin2 θ1) > 0 (1.6)

that shows it is positive definite for all q.C(q, q̇) represents centrifugal and Coriolis forces. In term

D there are viscous damping coefficients while G(q) accounts for gravitational forces and is given

as the derivative concerning q of the potential energy P (q) . Moreover, through equations 1.11,

1.3 is defined

Ṁ(q)− 2C(q, q̇) =

 0 m1l sin θ1θ̇1

−m1l sin θ1θ̇ 0

 (1.7)

that is a skew-symmetric matrix, that follows

zT (Ṁ(q)− 2C(q, q̇))z = 0 (1.8)

∀z ∈ <2

Using the system 1.1 the term q̈ can be obtained from

q̈ = M(q)−1(−C(q, q̇)q̇ −Dq̇ −G(q) + F )

9
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The term M−1 can be attained using 1.11, 1.3, 1.6 and is defined as

M−1 =
1

det(M)

 m1l
2 −m1l cos θ1

−m1l cos θ1 M +m1

 (1.9)

Thus, the nonlinear state space model is reached:

 ẍ
θ̈1

 =
1

det(M)

 m1l
2 −m1l cos θ1

−m1l cos θ1 M +m1


(−C)

 ẋ
θ̇1

+ (−D)

 ẋ
θ̇1

+ (−G) + F



=
1

det(M)

 m1l
2 −m1l cos θ1

−m1l cos θ1 M +m1



0 m1l sin θ1θ̇1

0 0


 ẋ
θ̇1



+

−d0 0

0 −d1


 ẋ
θ̇1

+

 0

m1gl sin θ1

+

u
0




=
1

det(M)

 m1l
2(m1l sin θ1θ̇

2 − d0ẋ+ u)−m1l cos θ(−d1θ̇1 +m1gl sin θ1)

−m1l cos θ1(m1l sin θ1θ̇
2
1 − d0ẋ+ u) + (M +m1)(−d1ẋ+m1gl sin θ1)



=
1

det(M)

 m2
1l

3 sin θ1θ̇
2
1 −m1l

2d0ẋ+m1l cos θ1d1θ̇1 −m2
1gl

2 cos θ1 sin θ1

−m2
1l

2 cos θ1 sin θ1θ̇
2
1 +m1l cos θ1d0ẋ− (M +m1)d1θ̇1 + (M +m1)m1gl sin θ1



+

 m1l
2u

−m1l cos θ1u


 ẍ
θ̈1

 =
1

det(M)


0 m2

1l
3θ̇1 sin θ1

0 −m2
1l

2θ̇1 sin θ1 cos θ1


 ẋ
θ̇1

+

 −m2
1l

2g sin θ1 cos θ1

(M +m1)m1gl sin θ1



+

 −m1l
2d0 m1l cos θ1d1

m1l cos θ1d0 −(M +m1)d1


 ẋ
θ̇1

+

 m1l
2u

−m1l cos θ1u


 (1.10)
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Chapter 1. Mathematical modeling of an inverted pendulum

to get out non-linear state representation we need to find our state variables as shown :



x1 = x

x2 = ẋ

x3 = θ1

x4 = θ̇1

which defines the state equations for ẍ and θ̈1 , we get this non-linear equations :



ẋ1 = ẋ = x2 = f1(x, θ1, u)

ẋ2 = ẍ = f2(x, θ1, u)

ẋ3 = x4 = θ̇1 = f3(x, θ1, u)

ẋ4 = θ̈1 = f4(x, θ1, u)

Thus we have

ẍ =
m2

1l
3 sin θ1θ̇

2
1 −m2

1l
2g sin θ1 cos θ1m1l

2d0ẋ+m1l cos θ1d1θ̇1 +m1l
2u

m1l2(M +m sin2 θ1)

=
m1 sin θ1(lθ̇2

1 − g cos θ1)− d0ẋ+ d1 cos θ1θ̇1
l

M +m1 sin2 θ1

+
u

M +m1 sin2 θ1

(1.11)

θ̈1 =
−m2

1l
2 sin θ1 cos θ1θ̇

2
1 +m1ld0 cos θ1ẋ− (M +m1)d1θ̇1 + (M +m1)gm1l sin θ1

m1l2(M +m1 sin2 θ1)
(1.12)

+
−m1l cos θ1u

m1l2(M +m1 sin2 θ1)

1.3 Equations of motions for double pendulum

The length of the first pendulum is denoted by 2l1 and from it, we have the gravity center

of the first link is l1 and the length of the second pendulum by l2 so the gravity center of the

second link is l2. The mass of the cart is denoted by M. The mass of the first pendulum m1, and

The mass of the cart is denoted by M see fig 1.2. The mass of the first pendulum m2.

11



Chapter 1. Mathematical modeling of an inverted pendulum

Figure 1.2: 2-link inverted pendulum

We denote by θ1 = θ1(t) and θ2 = θ2(t) the deviation of the rods from the upright position at time

t ∈ < as depicted in the image above. By x = x(t) we denote the horizontal position of the cart and

we assume that the cart cannot move vertically. The derivatives with respect to time are denoted by

d

dt
x(t) = ẋ,

d

dt
θ1(t) = θ̇1,

d

dt
θ2(t) = θ̇2.

The control input u = u(t) is thus the force that we can apply to the cart. Furthermore,

we assume that external disturbances w1, w2, w3 act as forces on x, θ1, θ2, think of these external

forces as wind or some human pushing the pendulum. The friction in the joints and the friction of

the moving cart are modeled via a linear ansatz. We therefore introduce the damping coefficients

d0, d1, d2and consider the friction or the damping force of the cart to be−d0ẋ while the friction or

damping forces in the joints are assumed to be −d1θ̇1 and −d2θ̇2 we suppose that the moment of

inertia I = 0 because it is too small [7].

The positions of the masses The positions of the masses M , m1, and m2 are given by

c0 =

 x

0

 , c1 =

 x+ l1 sin θ1

l1 cos θ1

 , and c2 =

 x+ l1 sin θ1 + l2 sin θ2

l1 cos θ1 + l2 cos θ2

 ,
12
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The kinetic energy of double inverted pendulum

respectively. Thus, the kinetic energy in the system is

K =
1

2
[M ||ċ0||2 +m1||ċ1||2 +m2||ċ2||2] +

1

2
(I1θ̇

2
1 + I2θ̇

2
2)

=
1

2

{
Mẋ2 +m1

[
(ẋ+ l1θ̇1 cos θ1)2 + (l1θ̇1 sin θ1)2

]
+m2

[
(ẋ+ l1θ̇1 cos θ1 + l2θ̇2 cos θ2)2

+(l1θ̇1 sin θ1 + l2θ̇2 sin θ2)2.
]}

+
1

2
(I1θ̇

2
1 + I2θ̇

2
2)

=
1

2
Mẋ2 +

1

2
m1ẋ

2 +
1

2
(m1l

2
1 + I1)θ̇2

1 +m1l1ẋθ̇1 cos θ1

+
1

2
m2ẋ

2 +
1

2
m2l

2
1θ̇

2
1 +

1

2
(m2l

2
2 + I2)θ̇2

2

+m2l1ẋθ̇1 cos θ1 +m2l2ẋθ̇2 cos θ2

+m2l1l2θ̇1θ̇2 cos(θ1 − θ2)

The potential energy of double inverted pendulum

It can be given as

P = g{m1l1 cos θ1 +m2(l1 cos θ1 + l2 cos θ2)}
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Lagrange equation

L =
1

2
(M +m1 +m2)ẋ2

+
1

2
(m1l

2
1 +m2l

2
1 + I1)θ̇2

1 +
1

2
(m2l

2
2 + I2)θ̇2

2

+(m1l1 +m2l1) cos(θ1)ẋθ̇1

+m2l2 cos θ2ẋθ̇2 +m2l1l2 cos(θ1 − θ2)θ̇1θ̇2

−(m1l1 +m2l1)g cos θ1 −m2l2g cos θ2

by applying the principle of lagrangian mechanics we get the equations of motion, they are :

u+ w0 − d0ẋ =
d

dt
(
∂L

∂ẋ
)− ∂L

∂x

=
d

dt

{
Mẋ+m1

(
ẋ+ l1θ̇1 cos θ1

)
+m2

(
ẋ+ l1θ̇1 cos θ1 + l2θ̇2 cos θ2

)}
= (M +m1 +m2)ẍ+ l1(m1 +m2)θ̈1 cos θ1

+m2l2θ̈2 cos θ2 − l1(m1 +m2)θ̇2
1 sin θ1 −m2l2θ̇2

2 sin θ2

w1 − d1θ̇1 =
d

dt
(
∂L

∂θ̇1

)− ∂L

∂θ1

=
{
l1(m1 +m2)ẋθ̇1 sin θ1 + l1l2m2θ̇1θ̇2 sin(θ1 − θ2)− g(m1 +m2)l1sinθ1

}
+
d

dt

{
l1(m1 +m2)ẋ cos θ1 + l21(m1 +m2 + I1)θ̇1 + l1l2m2θ̇2 cos(θ1 − θ2)

}
=
{
l1(m1 +m2)ẋθ̇1 sin θ1 + l1l2m2θ̇1θ̇2 sin(θ1 − θ2)− g(m1 +m2)l1 sin θ1

}
+
{
l1(m1 +m2)ẍ cos θ1 + l21(m1 +m2 + I1)θ̈1 + l1l2m2θ̈2 cos(θ1 − θ2)

−l1(m1 +m2)ẋθ̇1 sin θ1 − l1l2m2θ̇2(θ̇1 − θ̇2) sin(θ1 − θ2)
}
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= l1(m1 +m2)ẍ cos θ1 + l21(m1 +m2 + I1)θ̈1 + l1l2m2θ̈2 cos(θ1 − θ2)

+l1l2m2θ̇2
2 sin(θ1 − θ2)− g(m1 +m2)l1 sin θ1

w2 − d2θ̇2 =
d

dt
(
∂L

∂θ̇2

)− ∂L

∂θ2

=
{
−l2m2g sin θ2 + l2m2ẋθ̇2 sin θ2 − l1l2m2θ̇1θ̇2 sin(θ1 − θ2)

}
+
d

dt

{
(l22m2 + I2)θ̇2 + l2m2ẋ cos θ2 + l1l2m2θ̇1 cos(θ1θ2)

}
=
{
−l2m2g sin θ2 + l2m2ẋθ̇2 sin θ2 − l1l2m2θ̇1θ̇2 sin(θ1 − θ2)

}
+
{

(l22m2 + I2)θ̈2 + l2m2ẍ cos θ2 + l1l2m2θ̈1 cos(θ1 − θ2)

−l2m2ẋθ̇2 sin θ2 − l1l2m2θ̇1(θ̇1 − θ̇2) sin(θ1 − θ2)
}

= l2m2ẍ cos θ2 + l1l2m2θ̈1 cos(θ1 − θ2)

+(l22m2 + I2)θ̈2 − l1l2m2θ̇2
1 sin(θ1 − θ2)− l2m2g sin θ2

let y be

y =


x

θ1

θ2


here also we consider the disturbance force equal to zero, we can describe our equations in matrix

form

M(y)ÿ = f(y, ẏ, u). (1.13)

where 
M +m1 +m2 l1(m1 +m2) cos θ1 m2l2 cos θ2

l1(m1 +m2) cos θ1 l21(m1 +m2) l1l2m2 cos(θ1 − θ2)

l2m2 cos θ2 l1l2m2 cos(θ1 − θ2) l22m2


︸ ︷︷ ︸

M2(y)


ẍ

θ̈1

θ̈2


︸ ︷︷ ︸
ÿ
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=


l1(m1 +m2)θ̇2

1 sin θ1 +m2l2θ̇
2
2 sin θ2

−l1l2m2θ̇
2
2 sin(θ1 − θ2) + g(m1 +m2)l1 sin θ1

l1l2m2θ̇
2
1 sin(θ1 − θ2) + gl2m2 sin θ2

−

d0ẋ

d1θ̇1

d2θ̇2

+


u

0

0


︸ ︷︷ ︸

f(y,ẏ,u)

we calculate the determinant of M2(y) gives

detM2(y) = l21l
2
2m2

(
Mm1 +m2

1 sin2 θ1 +m1m2 sin2 θ1 +Mm2 sin2(θ1 − θ − 2)
)
> 0

as the detM2(y) > 0 we conclude that M2(y) is invertible for all y ∈ <3, Thus we can rewrite 1.13

as

ÿ = M−1
2 (y)f(y, ẏ, u)

with

x =

y
ẏ


So

ẋ =

ẏ
ÿ

 =

 ẏ

M−1
2 (y)f(y, ẏ, u)


︸ ︷︷ ︸

F (x,u)

ẋ = F (x, u)

1.4 Equations of motion for N-inverted pendulum on a cart

By using the Lagrange method as we did in the previous sections, we will derive the equa-

tions of motions of the n-link inverted pendulum on a cart. Let’s define the coordinate : x is the

position of the cart and M is the mass of the cart, θi , i = 1, ..., n, angle of i − th pendulum,

with respect to the vertical axis. The characteristic of each pendulum is five physical parameters:

the pendulum length li, the pendulum mass mi, the relative position ai of center of gravity, i.e.

|Ai−1Ti| = aili, where Ti is the center of gravity of the i − th pendulum, Ai denotes the i − th
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Figure 1.3: n-link inverted pendulum

revolute joint (see Fig 1.3), Ii denotes the moment of inertia about the axis through the center of

gravity, and di denotes the coefficient of friction in the i− th joint, thus the total number of these

parameters is 5n. Unfortunately, these parameters can not be directly identifiable. In this section,

we show, that for arbitrary n, we can introduce the vector of the standard dynamic parameters δ,

which are directly identifiable [8].

Consider the notations introduced in Fig. 1.3, and denote the x-coordinate of the point Ti

as Xi , and its y-coordinate as Yi , i = 1, 2, . . . , n. Now, it follows

Xi =
i∑

j=1

ljsinθj + ailisinθi + x

Yi =
i∑

j=1

lj cos θj + aili cos θi

Potential energy of n-link inverted pendulum

For potential energy P and kinetic energy K of the n-link inverted pendulum we get

P =
n∑
i=1

mkgYk
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K =
n∑
k=1

1

2

{
mk

[(
dXk

dt

)2

+

(
dYk
dt

)2
]}

+
1

2
M

(
dx

dt

)2

(1.14)

Equation (1.14) leads to arbitrary n to

Pn =
n∑
i=1

mig

(
i−1∑
j=1

lj cos θj + aili cos θi

)

Kn =
n∑
k=1

[
1

2

k−1∑
i=1

mkl
2
i θ̇

2
i +

k−1∑
j=1,j>i

k−1∑
i=1

mklilj θ̇iθ̇j cos(θi − θj)

+
k−1∑
j=1

mkakljlkθ̇j θ̇k cos(θj − θk) +
k−1∑
j=1

mklj θ̇jẋ cos θj +
1

2
mkẋ2

+
1

2
mka

2
kl

2
kθ̇

2
k +mkaklkθ̇kẋ cos θk +

1

2
Ikθ̇k

]
+

1

2
Mẋ2

Proposition 1: For arbitrary n, the potential energy of the n link inverted pendulum on a

cart can be expressed as

Pn =
n∑
i=1

vig cos θi

where

vi = miaili + li

(
n∑

j=i+1

mj

)
, i = 1, · · · , n.

kinetic energy of n-link inverted pendulum

Proposition 2: For arbitrary n, the kinetic energy of the n link inverted pendulum on a cart

can be expressed as

Kn =
1

2

n∑
i=1

kiθ̇2
i +

n∑
j=2,j>i

n−1∑
i=1

µij θ̇iθ̇j cos(θi − θj)

+
n∑
i=1

viθ̇iẋ cos θi +
1

2
ẋ2

n∑
i=0

mi,

where

ki = Ii +mia
2
i l

2
i + l2i

n∑
k=i+1

mk, i = 1 · · · , n
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and

µij = li(mjajlj + lj

n∑
k=j+1

mk), 2 ≤ j ≤ n, 1 ≤ i ≤ n− 1, i < J.

dissipation and friction :

Rayleigh’s dissipation function known as

D =
1

2
d1θ̇

2
1 +

n∑
k=2

1

2
dk

(
θ̇k − θ̇k−1

)2

+
1

2
d0ẋ2 (1.15)

where di , for i = 0, · · · , n denotes the friction coefficient in the i− th joint.

Lagrange equation We define qi = θi, i = 0, · · · , n, qn+1 = x, q̇0 = 0 and w denotes the

external force on the cart, then for L = K − P so

0 =
d

dt

∂L

∂q̇i
− ∂L

∂qi
+
∂D

∂q̇i
= kiq̈i +

n∑
j=1,j 6=i

µij q̈j cos(qi − qj)

+
n∑

j=1,j 6=i

µij q̇j
2 sin(qi − qj) + vi cos qiq̈n+1 − vig sin q1

+di(q̇i − q̇i−1)− di+1(q̇i+1 − q̇i) (1.16)

f =
d

dt

∂L

∂q̇n+1

− ∂L

∂qn+1

+
∂D

∂q̇n+1

=
n∑
i=1

viq̈j cos qi−
∑

i = 1nviq̇2
i sin qi + q̈n+1

(
n∑
i=0

mi

)
+ d0q̈n+1

Because, concerning x, equation (1.16) depends only on its second derivative ẍ, we can consider

that the cart acceleration represents the input u of the n link inverted pendulum, i.e. ẍ = u. The

equation for x can be completely omitted in this case. By reordering the terms in (1.16) we obtain

the matrix model

M(q)q̈ + C(q, q̇)q̇ +G(q)q = V (q)u (1.17)

where q is the n-th vector of the joint angles and the matrices, M(q), C(q, q̇), G(q), V (q)
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are given by

M(q) =



M11 M12 · · · · · · M1n 0

M21 M22 · · · · · · M2n 0

... . . . . . . . . . ...
...

... . . . . . . Mn−1n−1 Mn−1n 0

Mn1 · · · · · · Mnn−1 Mnn 0

0 · · · · · · · · · 0 1


with

(M11 = k1); (M12 = µ12 cos(q1 − q2)); (M1n = µ1n cos(q1 − qn))

(M21 = µ12 cos(q1 − q2)); (M22 = k2); (M2n = µ2n cos(q2 − qn))

(Mn1 = µ1n cos(q1 − qn)); (Mnn−1 = µn−1n cos(qn−1 − qn)); (Mnn = kn)

(Mn−1n = µn−1n cos(qn−1 − qn)); (Mn−1n−1 = kn−1)

C(q, q̇) =



C11 C12 C13 · · · C1n 0

C21 C22 C23 · · · C2n
...

C31 C32
. . . . . . ...

...
... . . . . . . . . . ...

...
... . . . . . . Cn−1n−1 Cn−1n 0

Cn1 · · · · · · Cnn−1 Cnn 0

0 · · · · · · · · · 0 0


with

(C11 = d1 + d2); (C12 = −d2 + µ12q̇2 sin(q1 − q2)); (C13 = µ13q̇3 sin(q1 − q3))

(C1n = µ1nq̇n sin(q1 − qn)); (C21 = −d2 − µ12q̇1 sin(q1 − q2))

(C22 = d2 + d3); (C23 = −d3 + µ23q̇3 sin(q2 − q3)); (C2n = µ2nq̇n sin(q2 − qn))

(C31 = −µ13q̇1 sin(q1 − q3)); (C32 = −d3 − µ13q̇1 sin(q1 − q3))
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(Cn−1n−1 = dn−1 + bn); (Cn−1n = −bn + µn−1nq̇n sin(qn−1 − qn))

(Cn1 = −µ1nq̇1 sin(q1 − qn)); (Cnn−1 = −bn − µn−1nq̇n−1 sin(qn−1 − qn); (Cnn = dn)

G(q) = diag

(
−v1g sin q1

q1

,
−v2g sin q2

q2

, · · · , −vng sin qn
qn

, 0

)

V =

[
−v1 cos q1 · · · −vn cos qn 1

]T
The dynamic model (1.17) is linear in the r-vector

δ̃ = [µ12, µ13, · · · , µ1n, µ23, · · · , µ2n, · · · , µn−1n,

, k1, · · · , kn, v1, · · · , vn, d1, · · · , dn]T (1.18)

containing the parameters introduced in Propositions 1, 2, and in equation (1.15). Thus, (1.17)

can be expressed in the form

Φ̃(q, q̇, q̈, u)δ̃ = 0 (1.19)

where Φ̃(q, q̇, q̈, u) = [Φ̃1Φ̃2Φ̃3Φ̃4] is n × rmatrix, depending on the joint angles q, velocities q̇,

accelerations q̈ and the acceleration u of the cart with

Φ̃1 =



f1,2 f1,3 · · · f1,n 0 · · · · · · 0 · · · 0

f2,1 0 · · · 0 f2,3 f2,4 · · · f2,n · · · 0

0 f3,1 f3,2 0 · · · 0 · · · ...
... . . . . . . · · · fn−1,n

0 fn,1 0 fn,2 · · · fn,n−1


where

fi,j = f(qi, qj) = cos(qi − qj)q̈j + sin(qi − qj)q̇2
j , for i, j = 1, · · · , n, i 6= j,
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Φ̃2 = diag(g1, · · · , gn), Φ̃3 = diag(h1, · · · , hn),

where

gi = q̈i, hi = u cos qi − g sin qi, with i = 1, · · · , n,

Φ̃4 =



k1 −k1,2 0 · · · 0

0 k1,2 −k2,3 · · · 0

... 0 k2,3
. . .

... . . . . . . −kn−1,n

0 0 kn−1,n



k1 = q̇1 and ki,j = q̇j − q̇i, for i = 1, · · · , n− 1, j = i+ 1.

We obtain a new system of equations if we divide each equation of the system 1.19 by µn−1n. the

new system form is

Φ(q, q̇, q̈, u)δ = Ψ(q, q̇, q̈, u) (1.20)

The equation (1.20) represents the regression model, where Φ(q, q̇, q̈, u) is n× (r − 1) matrix, δ is

(r − 1) vector of parameters, and Φ̃(q, q̇, q̈, u) is n vector, and all these symbols are given by (15),

the dimension (r − 1) of the vector δ is equal to 3n+
n(n− 1)

2
− 1.

Φ(q, q̇, q̈, u) =

[
fm gm hm km

]
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with

fm =



f1,2 f1,3 · · · · · · f1,n 0 · · · · · · · · · 0 · · · 0 0

f2,1 0 · · · · · · 0 f2,3 f2,4 · · · · · · f2,n · · · 0 0

0 f3,1 f3,2 0 · · · 0 · · · ...
...

... . . . . . . · · · fn−2,n−1 fn−2,n

0 fn−1,1 0 fn−1,2 · · · fn−1,n−2 0

0 fn,1 0 fn,2 · · · 0 fn,n−2



gm =



g1 0 · · · 0

0 g2

...
. . .

...

0 gn


, hm =



h1 0 · · · 0

0 h2

...
. . .

...

0 hn



km =



k1 −k12 0 · · · 0

0 k12 −k23

... . . . . . .

−kn−1n

0 kn−1n



δ = 1
µn−1n

[
µ12 µ13 · · · µ1n µ23 · · · µ2n · · · µn−2,n−1 µn−2,n

]
[
k1 · · · kn v1 · · · vn d1 · · · dn

]T

Ψ(q, q̇, q̈, u) =

[
0 0 · · · −fn−1,n −fn,n−1

]T
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1.5 Conclusion

The equation of motion is a mathematical equation describing the motion of a physical

object. In general, the equation of motion includes the acceleration of the object as a function of

its position, velocity, mass, and any variables affecting any of these. And the state representation

makes it possible to model a dynamic system using state variables. This representation, which can

be linear or not, continuous or discrete, makes it possible to determine the state of the system at

any future instant if one knows the state at the initial instant and the behavior of the exogenous

variables which influence the system.
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Chapter 2
Inverted pendulum control

2.1 Introduction

A swing-up controller is used to overcome the non-linearity of the system. Since the system

is linearised near the equilibrium position, swing-up tries to bring the system near the equilibrium

position. Initially, the cart pendulum system is presented in a state space form using generalized

coordinates. Afterward, the total energy of the system is defined. It is used in the formulation of

the control law. Eventually, using LaSalle’s invariance principle the control law is obtained.

2.2 Controllability

we want to control our system, we need to construct laws of control and that is not possible

only if our system is controllable, if not, the non-controllable modes have to be stable.

2.2.1 Controllability of the non-linear system

the inverted pendulum on a cart is a non-linear system in the form of

ẋ = f(x) + g(x)u

y = h(x)
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we extract the controllability matrix as

Cfg =

[
g(x) adfg(x)ad2

fg(x) · · · adn−1
f g(x)

]

where adfg(x) is the hook lie of f and g defined as

adfg(x) = [f, g] = Lfg − Lgf

=
∂g

∂x
f − ∂f

∂x
g

where ∂g
∂x

and ∂f
∂x

are the jacobiennes matrix So to say the system non-linear is controllable it must

the det(Cfg) 6= 0 which means the rank of Cfg equal to n

2.2.2 Controllability of the linear systems

after defining the equilibrium we can make a linear approximation around equilibrium points

so our system becomes this form

ẋ = Ax+Bu

y = cx

we can control it but it is necessary to be controllable, the controllability matrix of kalman is

C =

[
B AB · · · An−1B

]

to say it’s controllable the rank of C must be n.
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2.3 Observability

The observability of the system is important in the full-state estimation

2.3.1 Observability of the linear systems

The observability matrix of kalman in the linear systems is

O =



c

cA

...

cAn−1


to say the system is observable the observability matrix must be of rank n.

2.4 One inverted pendulum swing up control

Figure 2.1: Swing up

The swing up process is described in fig 2.1 in (I) the pendulum is in the stable equilibrium

point, in (II) after applying a force (F) on the cart you see the pendulum swing a little bit, after

we apply a force in the other direction so the pendulum swings more and more until it reaches

the stabilisation range and with the help of the control law we stabilise it [9]. We use a strategy

that controls the total amount of energy in the system to swing up the pendulum to its upright

position [6], The total energy of the system E(q, q̇) is defined as the sum of its kinetic and potential

energies, (K(q, q̇)) and (P (q)). In the origin without the control (u = 0), P (q) is chosen to be
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zero P (0) = 0 but, because of conditions imposed on the derivative of the Lyapunov function,

as described later, an offset Poff = 3m1gl has been added. The offset Poff has been chosen big

enough (but cautiously) to ensure positive total energy and not introduce substantial modifications

in the system. So the energy of the system in the initial is P (0) + Poff . The total energy of the

inverted pendulum considering (3.23) is:

E(q, q̇) = K(q, q̇) + P (q) + Poff

=
1

2

[
ẋ θ̇1

]
M(θ)

 ẋ
θ̇1

+m1gl(cos θ1 − 1) + 3m1gl
(2.1)

Equilibrium points :

a point x = x∗ in the state, space is said to be an equilibrium point ( or singular point, fixed point,

stationary state) of the system if the state initiated at x∗ will stay in x∗ for all future times. We

can get the equilibrium points by ẋ = 0 so

ẋ1 = ẋ = 0

ẋ2 = 0⇒ sin θ1 = 0⇒ θ1 = iπ

ẋ3 = 0⇒ θ̇1 = 0

ẋ4 = 0⇒ θ̈1 = 0

So there are two equilibrium points

x∗1 = (αx, 0, 0, 0)

x∗2 = (αx, 0, π, 0)
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where (αx) can be any possible value of the cart displacement x. or we can get them by making

the derivative of P (q) equal to zero

∂P (q)

∂q
= 0⇒ −m1gl sin θ1 = 0.

Linearisation around the equilibrium points :

The linearisation around the equilibrium points helps us to make study the local behaviour of

the system. The linearisation is obtained by using the Taylor expansion and neglecting the higher

order terms for small variations around the equilibrium point. We need to find the Jacobian matrix

of f , let A be the Jacobian matrix evaluated at the points of equilibrium, So

Jf = A =



a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


x=x∗

=
∂f

∂x
|x=x∗

B =



∂g
∂x1

∂g
∂x2

∂g
∂x3

∂g
∂x4


x=x∗1

B1 =



0

1
M

0

−1
lM


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B2 =



0

1
M

0

1
lM


with aij = ∂fi

∂xj
i ∈ N we find

A =



0 1 0 0

0 ∂f2
∂x2

∂f2
∂x3

∂f2
∂x4

0 0 0 1

0 ∂f4
∂x2

∂f4
∂x3

∂f4
∂x4


where

∂f2

∂x2

=
−d0(M +m1 sin2 x3)

(M +m1 sin2 x3)2

∂f2

∂x3

=
(M +m1 sin2 x3)

[
m1 cosx3(lx2

4 − g cosx3) +m1g sin2 x3

]
(M +m1 sin2 x3)2

−(m1 sin 2x3) [m1 sinx3(lx2
4 − g cosx3)]

(M +m1 sin2 x3)2

∂f2

∂x4

=
(M +m1 sin2 x3)(2lx4m1 sinx3)

(M +m1 sin2 x3)2

∂f4

∂x2

=
m1l

2(M + sin2 x3)(m1ld0 cosx3)

(m1l2(M + sin2 x3))2

∂f4

∂x3

=
m1l

2(M + sin2 x3)
[
−m2

1l
2x2

4(cos2 x3 − sin2 x3)−m1ld0x2 sinx3 + (M +m1)gm1l cosx3

]
(m1l2(M + sin2 x3))2

−(m1l
2 sin 2x3)(−m2

1l
2 sinx3 cosx3x

2
4 +m1ld0 cosx3x2 + (M +m1)gm1l sinx3)

(m1l2(M + sin2 x3))2

∂f4

∂x4

=
((m1l

2(M + sin2 x3))(−2m2
1l

2 sinx3 cosx3x4)

(m1l2(M + sin2 x3))2
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A1 |x=x∗1
=



0 1 0 0

0 −d0
M

−m1g
M

0

0 0 0 1

0 d0
lM

(M+m1)g
M

0



A2 |x=x∗2
=



0 1 0 0

0 −d0
M

−m1g
M

0

0 0 0 1

0 −d0
lM

−(M+m1)g
M

0


Those equilibria result to be [q, q̇]T = [iπ, 0], i ∈ Z. The second derivative of P (q) instead is

negative for q = 0 and positive for q = π. Origin corresponds then to a local maximum of the

potential energy (unstable) while q = π is a minimum (stable).

We wrote that the potential energy in the upright position is P (0)+Poff = 0+3m1gl while

in the downright position, the distance become 2l from the reference, so the potential energy equal

to 3m1gl − 2m1gl = m1gl. So, it is P (q) ∈ [m1gl, 3m1gl].

As respects initial kinetic energy, it is proportional to the squared value of the velocity

and it assumes its minimum value when velocity is zero. The potential the energy of the inverted

pendulum is defined as

P (q) = m1gl(cos θ1 − 1)

and its derivative is related to the G(q) as

G(q) =
∂P

∂q
(2.2)
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From equations (1.1)-(1.5) and (1.7)-(2.2) it is obtained the rate of the energy change of

system

Ė = q̇TM(q)q̈ +
1

2
q̇TṀ(q)q̇ + q̇TG(q)

= q̇T
(
−C(q, q̇)q̇ −Dq̇ −G(q) + F +

1

2
Ṁ(q)q̇

)
+ q̇TG(q)

= q̇T
(
−C(q, q̇)q̇ −Dq̇ +

1

2
Ṁ(q)q̇

)
+ q̇TF

=
1

2
q̇T (Ṁ()q − 2c(q, q̇))q̇ + q̇TF − q̇TDq̇

= q̇TF − q̇TDq̇

= q̇T

u
0

− q̇T
d0 0

0 d1

 q̇
= ẋu− ẋ2d0 − θ̇1

2
d1

(2.3)

The behavior of our system can be represented in the phase plane, where variables are angular

position (θ) and angular velocity ( θ̇).

NB: The phase plane method refers to graphically determining the existence of limit cycles in the

solutions of the differential equation.

At any instant of time, the system is characterized by a certain pair (q, q̇) due to its motion. This

variable pair traces out a phase plane orbit which corresponds to a specific total energy E according

to (2.5 ). Different initial conditions for the system give different values of total energy E, hence

different orbits. The behavior of the system can be shown through its phase portrait which can

be used to obtain the various values of the total energy E of the system. Due to the potential

energy offset (Poff ), the total energy will now converge to 3m1gl when q and q̇ converge to zero

Substituting matrices from (1.11) in equation (2.5) and considering ẋ = 0 and E(q, q̇) = 3m1gl,

for the case of an upright stabilized inverted pendulum it is obtained

K(q, q̇ + P (q)︸ ︷︷ ︸
=0

+Poff =
1

2
θ̇2

1m1l
2 +m1gl(cos θ1 − 1) + Poff
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1

2
θ̇2

1m1l
2 = −m1gl(cos θ − 1) (2.4)

which expresses the homoclinic orbit

NB: a homoclinic orbit is a trajectory of a flow of a dynamical system that joins a saddle equilibrium

point to itself.

Also, when θ1 = 0 (then θ̇1 = 0), the the pendulum has reached an equilibrium point. Generally,

when the pendulum is in the region θ1 ∈ [0, 2π], the system (1.1) has two sets of equilibrium

points:(x, ẋ, θ1, θ̇1) = (αx, 0, 0, 0) for the unstable equilibrium points,(x, ẋ,θ1, θ̇1) = (αx, 0, π, 0) for

the stable equilibrium points, If the system can be brought to the homoclinic orbit then the task

of swinging up the pendulum has been solved since the pendulum, eventually, will approach an

unstable equilibrium point if it follows the homoclinic orbit. Finally, the swing up control will be

switched to a linear controller which will ensure (local) asymptotic stability for this equilibrium

point and will stabilize the pendulum in the upright vertical position

2.5 One inverted pendulum stabilization control

Lyapunov stability Our system is

ẋ = f(x) (2.5)

where x ∈ < and for which we assume that f(0) = 0, i.e. the origin is an equilibrium of the

system. One of the most important properties related to this equilibrium is its stability, and

assessing whether the stability of the equilibrium holds has been at the center of systems and

control research for more than a century. Lyapunov formulated sufficient conditions for the stability

that does not require knowledge of the solution, but is based on the construction of a function,

well known nowadays as a "Lyapunov function". More precisely, the conditions are : For an open

set D ⊂ <n with 0 ∈ D, suppose there exists a continuously differentiable function V : D → <

such that

V (0) = 0

V (x) > 0
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∀x ∈ D \ {0}
∂V (x)

∂x
f(x) 5 0

∀x ∈ D Then x = 0 is stable, moreover, if

∂V (x)

∂x
f(x) < 0

∀x ∈ D then x=0 is asymptotically stable.

The proposed candidate function is expressed as the sum of squares of total energy, position and

velocity of the cart. The purpose is to have all the terms of V (q, q̇) equal to zero in the upright

position:

V =
KE

2
(E − poff )2 +

Kv

2
ẋ2 +

Kx

2
x2 (2.6)

where gains KE, Kv, Kx are strictly positive constants. Lyapunov’s stability theorem requires the

candidate function (2.6) to be positive definite but from the expression of energy (2.5) it is possible

to get E − Poff = 0 by the combination of θ and θ̇ values other than zero. Therefore, (2.6) is

not a Lyapunov function. Failing to design a Lyapunov function does not preclude alternative

approaches: conditions in Lyapunov’s stability theorem are only sufficient

Lyapunov-LaSalle Let V : D → <+ a function admitting continuous partial derivatives

such that there exists l for which the region Dl defined by V (x) < l s bounded and V̇ (x) 5 0 for

all x ∈ Dl. Let R = {x ∈ Dl : V̇ (x) = 0} and let M be the largest positively invariant set included

in R. Then any solution from Dl tends to M when t → ∞. In particular if 0 is the only orbit

contained in R then x = 0 is asymptotically stable and Dl is contained in its basin of attraction.

The set Dl represents an estimation for the region of attraction to the equilibrium se

LaSalle’s theorem allows us to use function (2.6) also if it is not positive definite, there

are conditions only on the derivative of V (q, q̇). It extends Lyapunov’s theorem and can be used

when instead of an isolated equilibrium point, the system has an equilibrium set. Using LaSalle’s

theorem principle, a control law will be designed to bring the pendulum to the invariant set M,

starting from a region of attraction
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2.5.1 Control Law

The terms d0ẋ will disappear, because the friction will be compensated by u so the equation

2.3 and as we supposed in chapter 1 the friction at the joint equal to zero becomes [6]

Ė = ẋu (2.7)

the derivative of lyapunov’s function becomes

V̇ = KE(E − Poff )Ė +Kvẋẍ+Kxxẋ

= KE(E − Poff )ẋu+Kvẋẍ+Kxxẋ

= ẋ [Ke(E − Poff )u+Kvẍ+Kxx] (2.8)

To simplify our system let make

m sin θ1(lθ̇2
1 − g cos θ1) + u

M +m sin2 θ1

=
α(θ1, θ̇1) + u

β(θ)1

(2.9)

By substituting equation 2.9 into 2.8 we get

V̇ = ẋ

KE(E − Poff )u+Kv(
α(θ1, θ̇1) + u

β(θ)1

) +Kxx︸ ︷︷ ︸
−Kδẋ

 (2.10)

−Kδẋ = u

(
KE(E − Poff +

Kv

β(θ1)

)
+Kv

α(θ, θ̇

β(θ1)
+Kxx (2.11)

We can deduce u

u =
β(θ1)(−Kδẋ−Kxx)−Kvα(θ, θ̇)

β(θ1)KE(E − Poff ) +Kv

(2.12)
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The control u is defined if we avoid singularities in 2.11

KE(E − Poff ) +
Kv

β(θ1)
6= 0

Kv

KE

6= −(E − Poff )(M +m sin2 θ1) (2.13)

we suppose the term (E − Poff ) is not smaller than −2m1gl

E − Poff = −2m1gl (2.14)

From 2.13 and 2.14, the following constrain is achieved

Kv

KE

> 2m1glmaxθ{M +m1 sin2 θ1}

⇒ Kv

KE

> 2m1gl(M +m1) (2.15)

The ratio of Kv to KE will be provided according to inequality 2.15. Substituting 2.11 in 2.10 it

is obtained

V̇ = −Kδẋ
2 − θ2

1d1KE(E − Poff ) (2.16)

with d1 = 0 the equation become

V̇ = −Kδẋ
2

where Kδ > 0 to ensure that V̇ (q, q̇) is negative semi definite as required in the LaSalle’s invariance

principle.
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2.6 Control strategies

Away from the control-based energy, there are many controllers we can apply to our ap-

proximated system around the equilibrium points as

2.6.1 Pole placement control

The pole placement method is undoubtedly a very powerful design tool, especially for the

preliminary assessment of the feedback gains needed to achieve a specified level of closed-loop

stability. our approximated system is

ẋ = Ax+Bu

where the pair (A,B) is stabilize, are often stabilized by designing a linear feedback control law

u = −Kx such that the matrix K is chosen so that the eigenvalues of the closed-loop matrix [A -

BK] are placed arbitrarily in the left-half plane.

Re[eig[A−Bk]] < 0

so, the feedback gainK = [k1, k2] can be designed conveniently in order to place the poles anywhere

in the left-half plane, hence the control u(t) will drive the system response from a set of initial

conditions x(0) to zero as t→ 0. NB: we get out system eigenvalues by solving

det(A− λI) = 0

2.6.2 Linear Quadratic regulation

The linear quadratic regulator is likely the most important and influential result in optimal

control theory to date. It is considered as a feedback controller. Nevertheless, LQR computes the

control signals by modelling it as an optimization problem. That is, it tries to compute control
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Figure 2.2: Stabilisation with pole placement feedback control

signals that minimizes some cost function. We have our approximated system

ẋ = Ax+B

we have the desired state we want to reach xd Our job is to find a sequence of control signals u that

will take us to this goal state. The assumption we make in LQR is that the controller is a linear

controller. In turns out that in most cases, a simple linear controller as in the pole placement in

the form of u = −kx to define k there are some steps. First, we need to define a cost function that

quantifies the performance of the controller. In LQR we define the cost function as a quadratic

cost function:

J =

∫ ∞
0

[(xt − xd)TQ(xt − xd) + uTt Rut]dt

while Q and R are positive definite matrices where off-diagonal elements in the matrix are all 0.

each of the diagonal elements in Q reflects how much we care about a particular error signal and

R reflect how much we care about performing a particular action. we choose them manually. Now

that we have defined the cost function, our job is to find the best sequence of u that minimizes

this cost. since u = −kx finding k is the same as finding u so one of the common methods to solve

for k is by first solving Riccati equation
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ẏ = a(x)y + b(x)y2 + c(x)

where a(x),b(x),c(x) are continuous functions of x.

2.6.3 Kalman filter

Kalman filtering is an algorithm that provides estimates of some unknown variables given

the measurements observed over time [10]. Kalman filters are used to estimate states based on

linear dynamical systems in state -space format.

xk = Fxk−1 +Buk − 1 +Wk−1

where F is the state transition matrix applied to the previous state vector xk−1, B is the control-

input matrix applied to the control vector uk−1 , andWk−1 is the process noise vector (disturbances

) The measurement model is known as:

zk = Hxk + vk

where zk is the measurement vector, H is the measurement matrix , vk is the measurement noise

vector. consequently, the kalman filter provides an estimate of ck at time k, you enter the measures

z1, z2...zk and the information of the system described by F,B,H,Q and R.

The applications of kalman filter

you can find the kalman filter in many process such as [11]

• Tracking objects

• Economics

• Navigation

• Image processing

• State and parameter estimation ( as in the inverted pendulum system )

• Data merging and others [12]
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2.7 Double inverted pendulum control

Matrix form : if we suppose that the friction and the disturbance can be neglected, then

we can write the dynamic that we get in chapter 1 as this matrix form [8]

D(θ)ÿ + C(θ, θ̇)ẏ +G(θ) = Hu

where D(θ) is symmetric and non-singular and equal to

D(θ) =


M +m1 +m2 l1(m1 +m2) cos θ1 m2l2 cos θ2

l1(m1 +m2) cos θ1 l21(m1 +m2) + I1 m2l1l2 cos(θ1 − θ2)

m2l2 cos θ2 m2l1l2 cos(θ1 − θ2) m2l
2
2 + I2


and

C(θ, θ̇) =


0 −l1(m1 +m2) sin θ1θ̇1 −m2l2 sin θ2θ̇2

0 0 m2l1l2 sin(θ1 − θ2)θ̇2

0 −m2l1l2 sin(θ1 − θ2)θ̇1 0



G(θ) =


0

−(m1 +m2)gl1 sin θ1

−m2gl2 sin θ2


Cost function we define the state vector x ∈ <6 as

x =

θ
θ̇


the dynamic equation can be given as

ẋ =

0 I

0 −D−1C

x+

 0

−D−1G

+

 0

D−1H

u (2.17)

the design of an optimal control means the minimizing of an accumulative cost function Jt
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where

Jt =

tfinal∑
k=t

Lk(xk, uk) (2.18)

the optimization is done with respect to the constraints of the system dynamics, in our system

Lk(xk, uk) = xTkQxk + uTkRuk (2.19)

Linear quadratic control to drive an approximate linear solution to the optimal control

problem 2.18 2.19 we need to linearise the non-linear system, the linearisation around x = 0 gives

ẋ = Ax+Bu (2.20)

where

A =

 0 I

−D(0)−1 ∂G(0)
∂θ

0

 (2.21)

B =

 0

D(0)−1H

 (2.22)

thus the LQR solution is obtained by

u = −R−1BTPcx = −Kcx (2.23)

where Pc is s a steady-state solution of the differential Riccati equation. To implement computer-

ized digital control, dynamic equations (2.20) are approximately discretized as Φ ≈ eA∆t, Γ ≈ B∆t

and digital LQR control is then given

uk = −R−1ΓTPxk = −Kxk (2.24)

where P is the steady state solution of the difference Riccati equation, obtained by solving
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the discrete-time algebraic Riccati equation

ΦT
[
P − PΓ(R + ΓTPΓ)−1ΓTP

]
Φ− P +Q = 0 (2.25)

where Q ∈ <6×6 and R ∈ < are positive definite state and control cost matrices. Since

linearisation (2.20)–(2.22) accurately represents the double inverted pendulum on a cart system

(2.17) in the equilibrium, the LQR control (2.23) or (2.24) will be a locally near-optimal stabilizing

control.

2.8 Conclusion

The purpose of the command would be to bring the pendulum back from its initial position

to its position of unstable equilibrium and maintain it around this position. In general, the control

problem consists of obtaining dynamic models of systems and using these models to determine

control laws or strategies to achieve the desired system response and performance. Many control

systems for stabilizing the inverted pendulum have been presented like the PID controller, pole

placement feedback control, and linear quadratic regulator we talked about some of them in this

chapter.
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Chapter 3
Simulation

3.1 Introduction

The inverted pendulum system is one of the most popular experimental apparatuses used

for control education. The simulation of the system has an important role to show us the reaction

of the system and the best strategies to know which parameters and control laws are the best. By

using the control law shown in the previous chapter we will try to simulate our system in MATLAB

so we can see the system without a controller and after with one.

3.2 Open loop simulation

ODE45 solver is a standard solver for ordinary differential equations in matlab, it implements

a Runge-Kutta method with a variable time step for efficient compilation. This solver is designed

to handle the general problem
dx

dt
= f(t, x)

with x(t0) = x0 and t is the independent variable,x is a a vector of dependent variables [13]

NB Runge–Kutta method is a method for solving the initial-value problems of differential

equations. it can be used to construct high order accurate numerical method by functions’ self

without needing the high order derivatives of functions [14].

To use the ODE45 function in MATLAB you need to divide your program into two scripts,
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the first one is the function ( you need to name the function as the name of the script) and in

the second script you can call the function (the file of the function and the main script need to be

in the same folder). We simulate the open loop (see fig 3.1 ) which mean our system without a

controller it period of t = 10s without friction and with x0 =

[
0 0 5π/6 0

]

Figure 3.1: Simulation of an inverted pendulum on cart without controller

As we said our system is installable, so like you see in the fig 3.1 θ just oscillates, and the

cart move with right and left.

Figure 3.2: Simulation of the open loop with friction

After we did the same simulation with choosing the friction d0 = 1 and d1 = 0.1 , you see

(3.2) the deference in the angle θ . It starts oscillating at first but after the effect of the friction,
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the oscillation starts damping until it reaches the stable equilibrium point.

Observation the pendulum is pointing downwards. In the absence of any control force,

the system will naturally return to this state

3.2.1 Open loop poles

After the ode45 openloop test, you create a new script to write in it the approximated state

space around the equilibrium points. We call them poles or eigenvalues of the matrix A, we can

get them by applying a simple code

eig(A)

after applying this code we find those eigenvalues

λ1 = 0

λ2 = −0.0294

λ3 = −3.9853

λ4 = 3.9814

so we see that λ2 and λ3 are stable but λ4 is unstable.

3.3 Stabilisation with Pole Placement

We talked about the pole placement control method in chapter 2 [15]. Now we will simulate

it. In Matlab it is very easy to simulate this control method just by writing a simple code.

K = place(A,B, eigs)

where eigs are poles that had been chosen manually. Let chose the desired eigenvalue to be

λd1 = −1
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λd2 = −1.5

λd3 = −2.5

λd4 = −2

3.3.1 Controllability test

Before we can apply the pole placement we need to see if our system is controllable or not,

we talked about it theoretical but in Matlab we test it just by writing

ctrb(A,B)

then we see if the rank of our controllability function is under 4 degree, or we see if the det(ctrb(A,B)) 6=

0 we found

rank(ctrb(A,B)) = 4

So our system ( the approximation around equilibrium points) is controllable.

after placing our desired pole in Matlab we get our vector control K. where

K =

[
1.607 3.1250 2.83 11.8125

]

to check if our desired poles were placed we write this code

eig(A−BK)

we apply K in the ODE45 function we get our feedback control ( see fig 3.3 )
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Figure 3.3: Simulation with pole placement feedback control

Here we don’t concentrate on the position of the cart so as you see it’s moving anywhere

to stabilise the pendulum, in our example the cart stop at -5.5. Observe in parallel at ẋ and θ

you see at first we chose θ = 5π/6 so the DC motor turn right in a fast way to pouch θ to become

θ = 3.25 Rad, and this angle is in the right of our desired angle so it turns left to stabilise in θ = pi

3.4 LQR simulation

In the pole placement method we choose the eigenvalues manually, but where are the best

eigenvalues? you can spend a long time trying a lot of eigenvalues combinations, and how do we

know if we found the best one. The linear quadratic regulator is amazing powerful tool in control

theory [16], the idea is to build a cost function to tell me how bed is it if my state is really slow to

converge to where i want it to. and also to build a cost function to the energy ( maybe the input

cost is much and expensive). in the second chapter, we explain that the cost function

J =

∫ ∞
0

(xTQx+ uTRu)dt

if my state is not where i tell it to be , Q tries to stabilize to zero so i make Q big. while we use

DC motor so we don’t care enough about input energy so we make R small. We define the matrix
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Q and R in Matlab. In Matlab it is easy to make the LQR just by one line code

k = lqr(A,B,Q,R)

we get our control vector k

kLQR−1 = 31.6228

kLQR−2 = 54.9721

kLQR−3 = 281.6849

kLQR−4 = 69.29

after we see eig(A−B ∗ k) to see what LQR had chosen as eigenvalues we find

λLQR−1 = −48.4475

λLQR−2 = −1.0053

λLQR−3 = −1.1 + 1.349i

λLQR−4 = −1.1 + 1.349i

interestingly LQR takes one eigenvalue and makes it really aggressive λLQR−1. To see the most

stabilising direction, we must our eigenvalue T and eigenvector D by using this code

[T,D] = eig(A−B ∗ k)

our eigenvalues are the real part of D . the aggressive pole is the first one so we need to see the

first column of T by using

T (:, 1)

T1,1 = 0.0119
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Figure 3.4: Simulation of the LQR responses

T2,1 = −0.5756

T3,1 = 0.0169

T4,1 = −0.8175

we observe that the most stabilising direction are the first and the third thus : are ẋ and θ̇ see fig

3.4

NB as you see , the regulator choose the eigenvalues by itself i didn’t tell him to do this,

i just gave it a weight on how much i care about the stabilisation and energy and it tuned it for

me.

Let’s see how the system reacts when we enter the kLQR

As we saw that the most stabilising direction are ẋ and θ̇ so in the fig 3.4 we see the response

of ẋ does not have an overshoot as in the pole placement method, even the convergence time is

shorter ( in LQR took 4s and in Pole placement took 10s).

49



Chapter 3. Simulation

3.5 Kalman filter

we will develop Kalman filter to estimate the full state from a single measurement C [16],

in our case we consider that we have only one encoder or a sensor to observe x ( the position of

the cart ) so

C =

[
1 0 0 0

]
In the up position, the system is unstable and here we are estimating to build the kalman filter,

we are not doing a feedback control, so the instability of the pendulum in the upright position will

pouch it to fall in the down, that means the only way to have kalman filter for the pendulum in

the up position is to already be stabilising it in the upright position using full state feedback and

that will happen when we combine the lqr and kalman filter in the next section but now we will

study it when the pendulum in the down position.

3.5.1 observability test

As the controllability, there is simple code we write obsv(A,C) to get our observability

matrix and then we see rank(obsv(A,C)) we find it equal to 4 which mean it’s observable.

3.5.2 Augment system

To build the kalman filter there are a few steps as we talked about in chapter 2 , we will

build the augment system with disturbance and noise. We write in Matlab

Vd = 0.1 ∗ eye(4)

Vn = 1

where Vd is the matrix of disturbance covariances, eye is identity matrix and Vn is the measurement

noise covariances. as in the LQR Vd and Vn are the tuning knobs if i think that i have a big

disturbance i make Vd bigger and if i think that i have big sensor noise i make Vn larger

now we build our augmented system BF where

BF =

[
B Vd 0 ∗B

]
next we will build the estimated state space system

sysC = ss(A,BF , C, [0 0 0 0 0Vn])
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then we will describe the system’s full output by using

sysFullOutput = ss(A,BF , eye(4), zeros(4, size(BF , 2)));

we make c = eye(4) because in the full output we measure all the system. we code the system’s

full output so we can simulate it and compare it to the system with noise.

3.5.3 Building Kalman filter

in Matlab it is easy to build the kalman filter, there is a command LQE which means linear

quadratic estimator you give A , Vd C and Vn as inputs

[Kf , P, E] = lqe(A, Vd, C, Vd, Vn)

there is another method by choosing

Kf = (lqr(AT , CT , Vd, Vn))T

here Vd and Vn can be as Q and R in LQR method. In our system to get the kalman gain matrix

Kf by the second method finally, we define the state space for the kalman filter by

sysKF = ss(A−Kf ∗ C︸ ︷︷ ︸
Ak

, [BKf ]︸ ︷︷ ︸
Bk

, eye(4)︸ ︷︷ ︸
Ck

, 0 ∗ [BKf ])︸ ︷︷ ︸
Dk

here Ck = eye(4) because you measure all the states of kalman filter.

Simulate the estimated system :

we command the cart from (100:120) to go to 50 and from (1500:1520) to go to -100 , we chose

this interval to show clearly the noise in the system.
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Figure 3.5: Simulation of the estimated system

The fig 3.5 shows the measurement y as you see it is a fussy measurement because of the

disturbances and the noises, to compare it and to understand the noises and disturbances we need

to plot the real measurement with disturbances but without noises (see 3.6).

Figure 3.6: Simulation of the estimated system and the real

To see the x̂ we need to enter the input u and y to the kalman filter, and after doing that

we get this simulation
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Figure 3.7: Simulation of the estimated system and the real with kalman filter

Where the red one is the kalman filter, and you see in fig 3.5 the kalman filter almost lies

on top of the real measurement ( see fig 3.8 to see the difference between the real measurement

and the kalman filter estimation )

Figure 3.8: The deference between the real measurement and the kalman filter estimation

As you see in the fig 3.8 the kalman filter estimate the system with noise and the result are

almost similar to the real measurement
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3.6 Conclusion

In this chapter we simulate our system and the control strategies via Matlab, we explained

how to use and write codes,and we interpreted the results. by reaching the simulation we reach

our main goal to see and study the difference between automation control.
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General conclusion

An inverted pendulum on a cart is a typical nonlinear system with an unstable equilibrium

point. This has been used a test bed to evaluate the performance of a controller, there are several

approaches for the control of a nonlinear system. But first the determination of the dynamics of the

system is obligated and once a system is represented in a linear form, we can apply any conventional

linear control method as we did in the first chapter, after that we described in theoretical way about

swing-up control using non-linear controller, the stabilisation control of one inverted pendulum,

and then we developed it to get the controller for two inverted pendulum. We went through

control laws theoretically we talked about the pole placement method and the linear quadratic

regulator we talked also aout the kalman filter for the full state estimation to estimate the noises

and disturbances and to make the cart go to the desired point smoothly. In the last, we tried

to simulate different control strategies of one inverted pendulum system that we talked about we

saw the difficulties, requirement of each control strategies and even the results of each one and the

effect of them on the cart position and pendulum and their speeds.

Our system is among the classic mechanical systems that have been studied extensively in

control theory during the last four decades. This system was originally used as a benchmark for

educational purposes.

This work makes me passionate about control strategies. I think that I can do better in this

domain and develop this work to another level. In the future I will try the other control strategies

and control law that I steadied in these years. I am passionate about the AI and neural networking,
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I will try to apply it in this work at least in the simulation. I will develop my pendulum into two

inverted pendulums.
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Appendix

0 ODE45 MAtlab

function dx = invertedpendcart(t, x)

M=3;

m=0.4;

l=0.7;

g=-9.8;

dc = 1;

dp = 0.1;

U=0;

Cx = cos(x(3));

Sx = sin(x(3));

dx = zeros(4,1);

dx(1)=x(2);

dx(2)=((-(m^2)*(l^2)*g*Sx*Cx)+((m^2)*(l^3)*Sx*(x(4)^2))-(m*(l^2)*dc*x(2))

+(m*l*Cx*dp*x(4))+(m*(l^2)*U))/((m*(l^2))*(M+(m*(Sx^2))));
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dx(3)=x(4);

dx(4)=((-(m^2)*(l^2)*Sx*Cx*(x(4)^2))+(m*l*dc*Cx*x(2))-((M+m)*dp*x(4))+((M+m)*g*m*l*Sx)

-(m*l*Cx*U))/((m*(l^2))*(M+(m*(Sx^2))));

%%

clc

clear all

close all

%%

f1=@invertedpendcart;

%%

Tf=10;

T=[0:0.01:Tf];

%%

x0=[0.5 0 5*pi/6 0]

%%

% K=[-35 -34 -150 -34];

%%

[t,x]=ode45(f1, T, x0);

%% PLOT

figure(1)

subplot(2,2,1)

plot(t, x(:,1))

xlabel(’t’)

ylabel(’x(t)’)

title(’x’)

grid
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subplot(2,2,2)

plot(t, x(:,2))

xlabel(’t’)

ylabel(’dot(x)(t)’)

title(’dot(x)’)

grid

subplot(2,2,3)

plot(t, x(:,3))

xlabel(’t’)

ylabel(’\theta(t)’)

title(’\theta’)

grid

subplot(2,2,4)

plot(t, x(:,4))

title(’theta dot’)

xlabel(’t’)

ylabel(’theta dot’)

grid

% %% animation

%

% X0=0;

% Y0=0;

%

% for i=1:length(t)
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% Xc=x(i,1);

% Xp=x(i,1)+l*(sin(pi-x(i,3)));

% Yp=l*cos(pi-x(i,3));

%

%

% figure(2)

% plot([-3 5],[0 0],’linewidth’,6,’color’,’g’);

% axis([-4 6 -4 4]);

% line([Xc Xp],[Y0 Yp],’linewidth’,2,’color’,’b’);

% hold on

% plot(Xc,Y0,’s’,’markersize’,30,’markerfacecolor’,’y’);

% plot(Xp,Y0,’o’,’markersize’,15,’markerfacecolor’,’r’);

% hold off

% end

0 Pole Placement

clear all, close all, clc

M=3;

m=0.4;

l=0.7;

g=-9.8;

dc = 0.1;

dp = 0.1;

s = 1;

A= [ 0 1 0 0;

0 -dc/M (-m*g)/M 0;
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0 0 0 1;

0 -(s*dc)/(M*l) -(s*(m+M)*g)/(M*l) 0];

B= [0; 1/M; 0; s*1/(M*l)];

eig(A)

plot(eig(A),’r*’,’LineWidth’,2)

grid on

ctrb(A,B);

rank(ctrb(A,B));

eigs = [-3; -1.5; -2; -2.5];

k = place(A,B,eigs);

eig(A-B*k);

0 Pole Placement drawn

function invertpend(t , x, k)

function v=f(x,u)

v=[x(2);(m*sin(x(3))*(g*cos(x(3))-l*x(4)^2)+u)/(M+m*sin(x(3))^2);

x(4);

(sin(x(3))*((M+m)*g-m*l*x(3)^2*cos(x(3)))+u*cos(x(3)))/(l*(M+m*sin(x(3))^2))];

end;

function draw(x)
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clf(); hold on; axis(’off’); axis([-3,3,-3,3]);

plot([ x(1), x(1)-l*sin(x(3))], [0, l*cos(x(3))],’blue’,’LineWidth’,2);

plot(x(1)+[-.5,.5,.5,-.5,-.5], [0,0,-.25,-.25,0],’black’,’LineWidth’,3);

drawnow()

end

l=1; dt=0.01; M=5; g=9.81 ; m=1;

A=[0 1 0 0;0 0 (m*g)/M 0;0 0 0 1;0 0 (M+m)*g/(l*M) 0];

B=[0 ; 1/M ; 0 ; l/(l*M)];

K=place(A,B,[-2 -2.1 -2.2 -2.3])

x=[0;0;0.5;0];

for t=0:dt:5

u=-K*x;

x=x+dt*f(x,u);

draw(x);

end

end

0 LQR code

clear all, close all, clc

M=3;

m=0.4;

l=0.7;

g=9.8;

dc = 1;

dp = 0.1;

s = 1;
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A= [ 0 1 0 0;

0 -dc/M (-m*g)/M 0;

0 0 0 1;

0 -(s*dc)/(M*l) -(s*(m+M)*g)/(M*l) 0];

B= [0; 1/M; 0; s*1/(M*l)];

ctrb(A,B)

rank(ctrb(A,B))

Q= [1 0 0 0;

0 1 0 0;

0 0 10 0;

0 0 0 10];

R= 0.001;

k = lqr(A,B,Q,R)

eig(A-B*k);

[T,D] = eig(A-B*k);

diag(real(D));

T(:,1);

% eigs = [-1.1; -1.2; -1.4; -1.3]

% k = place(A,B,eigs)
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0 Kalman filter

clear all, close all, clc

m = 0.4 ;

M = 3 ;

l = 0.7 ;

g = -9.8 ;

dc= 1 ;

s = -1;

A= [ 0 1 0 0;

0 -dc/M (-m*g)/M 0;

0 0 0 1;

0 -(s*dc)/(M*l) -(s*(m+M)*g)/(M*l) 0];

B= [0; 1/M; 0; s*1/(M*l)];

C= [1 0 0 0];

D= zeros(size(C,1),size(B,2));

rank(obsv(A,C));

%% augment system + disturbance + noise

Vd= 0.1*eye(4);

Vn = 1;

BF = [B Vd 0*B];

sysC = ss(A,BF,C,[0 0 0 0 0 Vn]);
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sysFullOutput = ss(A,BF,eye(4),zeros(4,size(BF,2)));

%% building a kalman filter

% [Kf,P,E] = lqe(A,Vd,C,Vd,Vn);

Kf= (lqr(A’,C’,Vd,Vn))’;

sysKF = ss(A-Kf*C,[B Kf],eye(4),0*[B Kf]);

%% Estimation of the system

dt = 0.01;

t = dt:dt:50;

uDIST = randn(4,size(t,2));

uNOISE = randn(size(t));

u = 0*t;

u(100:120) = 50;

u(1500:1520) = -100;

uAUG = [u; Vd*Vd*uDIST; uNOISE];

[y,t] = lsim(sysC,uAUG,t);

plot(t,y);

xlabel(’t’)

ylabel(’the cart position’)

%% the true cart position without noise
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[xtrue,t] = lsim(sysFullOutput,uAUG,t);

hold on

plot(t,xtrue(:,1),’g’,’Linewidth’,3)

%% kalman filter

[x,t] = lsim(sysKF,[u; y’],t);

plot(t,x(:,1),’RED ’,’LineWidth’,2);

legend(’measurement noises’,’the true cart positin’,’kalman filter estimations’)

plot(t,xtrue,’blue’,t,x,’green’,’LineWidth’)
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