Sahlaoui Mohammed mohammed.sahlaoui@gmail.com

Sekkal Abdessamad

a.sekkal@epsta.dz

Premier Cycle Classe Préparatoire, École Supérieure en Sciences Appliquées de Tlemcen.

Le pont de Wheatstone a été inventé en 1833 par Samuel Hunter Christie. C'est un instrument utilisé pour mesure une résistance électrique inconnue avec une grande precision. L'instrument a été amélioré par Charles Wheatstone, popularisé en 1843 par ce dernier d'où le nom.

Objectif

- Mesure d'une résistance électrique inconnue par équilibrage de tension en utilisant:
 - Le pont de Wheatstone.
 - Le pont à fil.

1 Étude Théorique

1.1 Pont de Wheatstone

Le circuit sur la figure 1 représente le pont de Wheatstone.

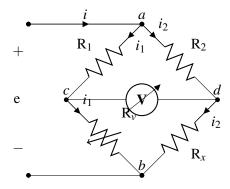


Figure 1: Pont de Wheatstone

Il contient deux branches reliées avec un générateur de tension. La première branche contient deux conducteurs ohmiques en série, R_1 connue et R_x inconnue. La deuxième branche contienne les résistances R_2 connue et R_y variable.

La mesure de la résistance R_x consiste à équilibrer les potentiels u_c et u_d entre les points c et d, c-à-d; trouver la valeur de la résistance R_v pour laquelle le voltmètre (ou galvanomètre) indique une tension $u_{cd} = u_c - u_d = 0$.

A partir du circuit de la figure 1, nous remarquons que l'intensité i_1 du courant électrique passe dans la première branche. Nous pouvons déduire que

$$|u_a - u_c| = R_1 i_1 \tag{1}$$

$$|u_c - u_b| = R_v i_1 \tag{2}$$

Ainsi, si l'intensité i_2 passe dans la deuxième branche nous pouvons déduire que

$$|u_a - u_d| = R_2 i_2 (3)$$

$$|u_d - u_b| = R_x i_2 \tag{4}$$

Quand les potentiels u_c et u_d deviennent équilibrés, nous pouvons déduire des équations ci-dessus que :

$$R_1 i_1 = R_2 i_2 \tag{5}$$

$$R_v i_1 = R_x i_2 \tag{6}$$

Le rapport entre ces deux equations nous ramène à déduire le résultat

$$R_x = \frac{R_2}{R_1} R_v \tag{7}$$

Par conséquent, pour déduire la résistance R_x d'un conducteur ohmique, il suffit de trouver la valeur de la résistance R_v qui annule la tension u_{cd} .

Remarque: Afin d'avoir une valeur précise de la résistance R_x , il faut choisir un appareil précis de mesure de tension ou de courant. Pour cette raison un galvanomètre est souvent utilisé au lieux d'un voltmètre.

1.2 Pont à fil

Le pont à fil est un pont de Wheatstone dans lequel les résistances R_2 et R_x de la deuxième branche sont remplacer par un fil conducteur ohmique de longueur L, de section S et de résistivité ρ (voir figure 2).

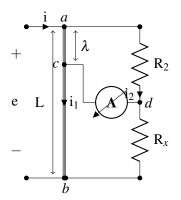


Figure 2: Pont à fil

Il existe sur le fil un point c où le potentiel u_c est équilibré au potentiel u_d du point d, c-á-d, $u_{cd} = u_c - u_d = 0$. Il s'ensuit que, pour déterminer la valeur de la résistance R_x il suffit de trouver le point c sur le fil.

En comparant les deux circuit représentés sur les figures 1 et 2 nous pouvons directement voir que la portion du fil de longueur λ joue le rôle de la résistance R_1 et la portion de longueur $L-\lambda$ joue le rôle de la résistance R_{ν} du premier circuit. En utilisant l'équation (7), et sachant que la résistance R du fil conducteur est égale à:

$$R = \rho \frac{L}{S} \tag{8}$$

$$R_x = \frac{L - \lambda}{\lambda} R_2 \tag{9}$$

Remarque: D'après cette équation, nous pouvons voir que nous n'avons pas besoins de connaître la résistivité du fil conducteur pour déterminer la valeur de la résistance R_x .

2 Travail expérimental

2.1 Pont de Wheatstone

1 Réaliser le circuit électrique de la figure 3 (équivalent au circuit de la figure 1), en utilisant une résistance $R_2 = 50 \Omega$.

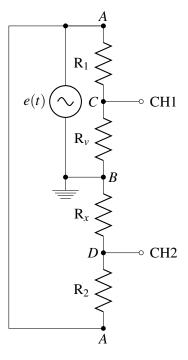


Figure 3: Pont de Wheatstone

- 2 Pour différentes valeurs de R_1 trouver la valeurs de R_{ν} qui équilibre de pont de Wheatstone en utilisant l'oscilloscope.
- 3 Déterminer les incertitudes ΔR_1 , ΔR_2 et ΔR_{ν} .
- 4 Organiser les résultats dans le tableau suivant:

R_1	50	100	150	200
ΔR_1				
R_{v}				
ΔR_{v}				

- 5 Tracer la courbe $R_v = f(R_1)$ et déduire la valeur de la résistance inconnue R_x .
- 6 Utiliser le tableau pour calculer l'incertitude ΔR_x . Écrire le résultat sous la forme :

$$[R_x] = R_x \pm \Delta R_x \tag{10}$$

7 Discuter les résultats.

2.2 Pont á fil

1 Réaliser le circuit électrique de la figure 4 (équivalent au circuit de la figure 2).

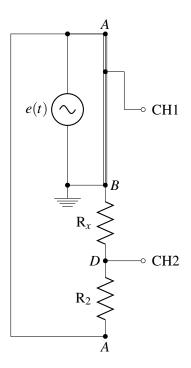


Figure 4: Pont à fil

- 2 Pour différentes valeurs de R_2 trouver le point d qui équilibre le pont à fil en utilisant un oscilloscope.
- 4 Relever les valeurs de λ la longueur de la portion ac du fil conducteur et organiser les résultats dans le tableau suivant:

R_2	50	100	150	200
ΔR_2				
λ				
$\Delta\lambda$				

- 5 Calculer la valeur moyenne $\langle R_x \rangle$ de la résistance inconnue.
- 6 Utiliser le tableau pour déduire l'incertitude ΔR_x . Écrire le résultat sous la forme :

$$[R_x] = \langle R_x \rangle \pm \Delta R_x \tag{11}$$

7 Discuter les résultats.

3 Conclusion (4 points)

A partir des résultats obtenues donner une conclusion générale.