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GENERAL INTRODUCTION

The ambition to build skilled and intelligent machines has existed since the dawn of
time ; and humans have continually sought alternatives capable of interacting with their
surroundings in the same manner people do. In Greek mythology, the story of the Titan
Prometheus corresponds to this desire ; and so do many other imaginative historical
realisations. From Frankenstein’s monster to Star Wars, science fiction films and novels
have used the theme of robots and their interactions with humans. The term ”robot”
means ”subordinate labour” and it was first presented by Karel Čapek [1].
Automata were incredibly complex clock-work machines loaded with gears and cams in
the 18th and 19th centuries 1a. Vaucanson’s mechanical duck is a famous example 1b,“The
Duck stretches out its neck to take corn out of your hand; it swallows it, digests it, and
discharges it digested by the usual passage.” Jacques Vaucanson, 1738.

(a) 18th and 19th century automata (b) Vaucanson’s mechanical duck

Figure 1: Automata : complex clock-work machines

Following that, Joseph Jacquard relied on previous works to develop the so called Jacquard
loom see 2 ; which is a device that manages the weave pattern through a sequence of
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punched wooden cards. This was a type of automated machine that could be programmed.
The pattern that emerged was determined by the holes punched in those wooden cards
[1].

Figure 2: Jacquard loom - 1801

Another significant achievement in the history of robotics was made at the Argonne Na-
tional Laboratory in the United States, and it is the notion of teleoperation. This allowed
them to handle radioactive materials with two mechanical hands see 3.

(a) (b)

Figure 3: Argonne National Laboratory robot

In 1956 Devol and Joseph Engelberger founded Unimation, the first robotic firm, to
manufacture their first industrial robot arm which would later go to work in General
Motors plants [1]. Since then many complex and advanced robots have been developed
by numerous companies.
Science fiction novels and movies have heavily shaped the way in which many people
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perceive robots to be and what they can perform. Robots, on the other hand, are machines
that intelligently link perception and action [2]. Robotics is an academic field that studies
how to design, model, plan and control those machines ; with living creatures and how
they perform complex tasks as its main inspiration.
Robots are categorised into two classes: fixed basis robots, robot manipulators, and moving
base robots, mobile robots 4a. Robot manipulators are an interconnection of links (rigid
bodies) by means of joints (articulations). This type of robots can be an open kinematic
chain (serial) or a closed kinematic chain (loop) 4b. The joints can either be prismatic
that present translational motion along its axis or revolute that present rotational motion
along its axis ; each of them presents one degree of freedom. Different robot structures
were developed by configuring different connections and joints [2], such as the SCARA
configuration which is the topic of this work.

(a) TurtleBot3 Waffle Pi (b) Delta robot by Omron

Figure 4: Different types of robots

The modelling of a robots consist of the kinematics analysis of their structure that is
to say the description of their motion with respect to a fixed Cartesian frame ignoring
the cause of motion. It determines the analytical relationship between the end-effector
pose (position and orientation) and joint position, not to be confounded with differential
kinematics which studies that relationship in term of velocities [2]. Modelling also studies
dynamics that consist of the derivation of the equations of motion as functions of forces
and moments acting on the robot. The dynamic equations are complex and rely on accu-
rate knowledge of each link’s mass and inertia, which may not be readily available. Even
if it were, the dynamic equations would still fail to account for physical phenomena like
friction, elasticity, backlash, and hysteresis [3].
According to the task assigned to the robot e.g painting ; a desired trajectory is needed.
The aim of planning a trajectory for a robot is to generate a geometric sequence of con-
figurations of a robot with respect to a time scaling [3]. To achieve the wanted behaviour
for a robot, controls strategies are developed namely motion or position control, force
control, hybrid motion-force control, impedance control and computed torque control.
The control problem is complex [2] ; however, they compensate for uncertainties by using
feedback from different sensors.
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In this project, we aimed to design and realise a 4 degrees of freedom robot manipulator
type SCARA for pick-and-place applications. Additionally, we established the objective to
obtain modest to decent performances as well as making it a platform for the application
of control theory by ourselves and future users as a didactic robot.
In this work composed of 3 main chapters, we will first introduce in chapter 1 the history
of robotics from etymology and a fruit of the imagination of mankind to modern robotics
and its many applications. We will then in chapter 2 walk the reader step by step on the
process of design of the mechanical structure and the electronics as well as the assembly
of the robot. In chapter 3, we will first derive forward and inverse kinematic models in
addition to deriving the velocity equations. We will then introduce the notion of trajectory
planning with its subsequent simulation on Matlab Simulink using the URDF model of
our robot. Additionally, we will showcase the intricacies of the manipulator’s workspace
using a Matlab simulation.
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CHAPTER

1

STATE OF THE ART

1.1 Introduction

The word robot is known to most people and projects a certain image in their minds ;
mostly that of a sentient humanoid machine. However, an empirical definition of the term
is more generalized and free from the influence of the cultural depiction of the term.
A robot is defined by the ISO1 as an

‘Automatically controlled, reprogrammable, multipurpose manipulator,
programmable in three or more axes, which can be either fixed in place or
mobile for use in industrial automation applications’ (ISO 8373)

Since the dawn of robotics in the 1960s, robots have been used for a multitude of tasks
that fit the term ”4D tasks” : Dangerous, Dull, Dirty, Dumb [4]. In other words, we
send robots to get us out of harm’s way on a mine field for example ; or for repetitive
tasks that might be too boring for us. Additionally, robots might perform dirty tasks
like painting or soldering especially where gases and particle emissions might constitute
a health hazard with prolonged exposition.
The main focus of this chapter is to relate the evolution of robotics across history from a
fantasy to today’s advancements and what lies beyond.

1.2 History of robotics

1.2.1 A long-lived dream

For millennia, mankind has dreamt of an autonomous machine that would help it in its
tasks. A relic of this dream can be found in the form of a sentient man-made humanoid
machine in multiple mythologies : The Greeks had Talos 1.1 and Galatea, the Hebrews
spoke about the Golem and the Inuits in Greenland fantasized about Tupilak [5].

1 International Organization for Standardization
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1.2. HISTORY OF ROBOTICS

Figure 1.1: Talos - Jason and the Argonauts, 1963

Over the centuries, humanity developed more and more ways to automate their tasks. For
instance, the invention of the first automated loom using punched cards in 1801 by the
Frenchman Joseph Jacquard. Further steps were made towards automation by the Serbian
inventor Nikola Tesla who invented amongst other things the first radio-controlled boat
in the late 19th century.
The first use of the word robot is credited to the Czech Joseph Čapek who in 1920 came
up with the term to help his brother Karel Čapek writing his play Rossum’s Universal
Robots [5] better known as RUR. It is derived from the Czech words robotnik meaning
peasant and robota meaning servitude. This etymology replaced the previously used word
automaton.
Robots would still remain only a fruit of the imagination of authors and scenarists at
the time ; fascinating the public with stories and the first movies including robots in the
golden age of cinema 1.2.

Figure 1.2: First robot in film history - Metropolis, 1927
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1.2. HISTORY OF ROBOTICS

Among the most influential people in the early history of robotics was Isaac Asimov
(1920-1992), one of the first science-fiction writers who was the pioneer of robotics in
popular culture. He introduced the term robotics as the science and technology behind
the design and construction of a robot. Additionally, we owe him the famous three laws
of robotics published in 1942 and further corrected in 1985 to add a ”zeroth” law that
read as follows [5] :

‘

• Zeroth Law: A robot may not injure humanity, or, through inaction,
allow humanity to come to harm.

• First Law: A robot may not injure a human being, or, through inaction,
allow a human being to come to harm, unless this would violate a higher
order law.

• Second Law: A robot must obey the orders given to it by human beings,
except where such orders would conflict with a higher order law.

• Third Law: A robot must protect its own existence, as long as such
protection does not conflict with a higher order law.

’ (Isaac Asimov, 1985)

The impact of Azimov’s work on the technical side of robotics cannot be understated as
his stories inspired a generation that would be the pioneers of the dawn of robotics in the
late 1950s and early 1960s.

1.2.2 History of manipulator robots

The advent of robotics coincided with the post-world war II technological boom. The
remarkable advances made in electronics and computing suddenly made an automated
machine controlled by computer a possibility.
In 1946, an inventor named George C.Devol, Jr., made his first leap in the world of
automation by patenting a magnetic playback design used for the control of machines.
His continuous pursuit of this path led him to another invention in 1954 of a multipur-
pose mechanical arm that he attempted patenting under the name universal automation,
better known as unimation. It was able to move objects from one place to another via
programming only ; a truly remarkable feat for the technology of the time.
Two years later, he met Joseph F. Engelberger, a physics major from Columbia University
who worked as a nuclear physicist. Their conversation revolved around Devol’s invention.
Engelberger, who was a grand admirer of Azimov’s stories immediately associated the
invention to the robots that Azimov described. This meeting marked the beginning of a
partnership between the two men that led to the dawn of industrial robotics.
They worked together on developing that invention for an industrial purpose and gave
birth to the Unimate whose first prototype the Unimate #001 1.3 was completed in 1959
and greatly attracted General Motors.
In 1961, Engelberger founded Unimation.Inc and in the same year, which later became
the worldwide leader in robotics. They achieved fame in 1966 with the first demonstration
of the Unimate on live television at the tonight show on NBC live from New York. Later
that year, they sold a licence to Nokia and Kawasaki in order to make and commercial-
ize the Unimate on the European and Asian markets [6]. For all his contributions to the
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1.2. HISTORY OF ROBOTICS

Figure 1.3: Unimate - The first industrial robot in history, 1959

field, Joseph Engelberger is wildly considered today as the father of robotics and the En-
gelberger Robotics Awards are presented annually by the Robotic Industries Association
since 1977 [5].
The advent of this new age of robotics quickly passed down to universities and research
laboratories all racing to fund the creation of their first prototype. The Stanford university
in California, USA emerged as the leader in this field by founding the Stanford Research
Institute (SRI) in 1946 [5] which then saw the creation within it in 1966 of the Artificial
Intelligence Center (AIC ). A key revolution in the field was the introduction of sensors
in robots which some consider to be the dawn of the second generation of robots [7]. This
major change permitted to better control the robot by the use of PLCs2.
One of the early projects at the AIC and a pioneer to this new generation was the
development of the robot Shakey 1.4 by the team of the Dr.Charles Rosen between 1966
and 1972. It was equipped with a camera and multiple sensors to determine its position
and avoid collisions (although it was very slow due to the computing speed of its time) It
is still today regarded as one of the major works in the early days of robotics, computer
vision and artificial intelligence as a whole.

Figure 1.4: Shakey - The first autonomous mobile robot, 1972

2 Programmable Logic Controller
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1.2. HISTORY OF ROBOTICS

Still at Stanford University in 1969, Victor Scheinman, a mechanical engineering student
developed the first prototype of the Stanford Arm 1.5. It consists of a 6 degrees of freedom
manipulator with a RRPRRR3 structure 1.6. This design is still one of the major robot
structures known to this day. Moreover, this first prototype was equipped with brakes on
all joints to maintain position in order for the computer to calculate the next move [5].

Figure 1.5: Victor Scheinman with an early prototype of the Stanford arm, 1968

Figure 1.6: The Stanford arm structure

Research in this new field generalized to multiple countries in the late 1960s and early
1970s. A new structure was proposed in 1978 by Japanese scientist Hiroshi Makino from
Yamanashi University [8]. The SCARA4 was an RRPR5 structure with 3 revolute joints
with vertical axes and a prismatic joint at the end of the kinematic chain 1.7. This new
structure was particularly suitable for pick and place applications and assembly tasks.

3 2-Revolute Prismatic 3-Revolute
4 Selective Compliance Assembly Robot Arm
5 2-Revolute Prismatic Revolute
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Figure 1.7: One of Hiroshi Makino’s first prototypes of the SCARA structure

Following those advances, the 1980s and 1990s came as the age of the generalization of
robotics. More investments into the field along with the broader use of internet allowed
for the adoption of the Ethernet communication which was quickly joined by the first
Linux based operating systems [7].
Along with the dawn of the XXIst century came along a new vision of robotics. With
industry no longer being the sole focus of the field, more diversity came into play as
professional and home applications such as collaborative robots changed the way people
look on robotics. Another decisive factor was the newly found accessibility with the advent
of 3D printing, SBCs6 and the hundreds of open source documents and code. This allowed
countless hobbyist and tech enthusiasts such as ourselves to get into robotics without the
need of a large budget and thus bringing more new and creative ideas on the table.

1.3 Current technologies

Since the beginning of the century, robotics design is facing somewhat of a saturation with
few revolutionary changes being added in the last few decades from a design perspective.
However, performances are getting better with improved speed, accuracy and repeatability
[7]. The biggest improvements made over the last years was on the software side, as the rise
of artificial intelligence allowed new control method to emerge. The focus of development
also switched from the industrial side in favor of the humanoid and more generally bio-
inspired robotics 1.9. These factors combined created a state of stagnation in modern
manipulator robotics as the next steps in their evolution are facing some difficulties.
One of the key challenges ahead being the cooperative nature of robot manipulators
and their ability to function with each other is severely hampered by the current closed
system nature of each constructor. This factor makes the communication between multiple
differently manufactured robots very difficult and time consuming [7].

6 Single Board Computers
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Figure 1.8: A panel of modern KUKA robot manipulators

Figure 1.9: The evolution of mobile robots made by Boston Dynamics

1.4 Future challenges

• A solution to the aforementioned compatibility issues could be found in a new stan-
dardized protocol for all manipulators via for example Robotics Operating System
(ROS) that would allow a common control and exploitation software to better han-
dle the cooperation.

• The exponential rise of Artificial intelligence gives endless new possibilities for the
control and supervision of manipulators. Multiple new exploitation methods such
as our master project on visual servoing alongside many others will be key in the
next steps of the evolution of the field.

As demonstrated in this chapter, constructing a robot has been a dream of mankind since
the dawn of time. In the next chapter, we will showcase our own interpretation of this
dream.
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CHAPTER

2

DESIGN AND REALISATION

2.1 Introduction

Robotic manipulators have had a significant role in the industry over the past years due to
their wide range of applications such as welding, painting, precision cutting, assembling,
material transforming and pick-and-place.
Different types of robotic structures exist, among them the SCARA robot manipulator
acronym for Selective Compliance Articulated Robot Arm. The SCARA configuration is
unique and designed to manage various material handling operations. It consists of four
DOF 1, three revolute joints and one prismatic joint. The SCARA is stiff in its vertical
direction but, due to its parallel arranged axes, show compliance in its horizontal working
plane, thus facilitating insertion processes typical in assembly tasks [9].
The goal of this chapter is devoted to the prototyping of a 3D printed SCARA robot arm.

Figure 2.1: Typical SCARA robot, made by FANUC

1 Degrees Of Freedom
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2.2. PROTOTYPING AND DESIGN GOALS

2.2 Prototyping and design goals

The design’s concept was to create an educational platform to be used as a research tool
with a simple implementation of new control algorithms. This is due to the control sys-
tems of such robots being designed for common industrial applications and in general are
not suitable for high level research purposes [10]. The first goals were set to design a
SCARA prototype with 400 mm maximum reach along the x̂, ŷ plane, 300 mm along the
ẑ axis and 1 kg of maximum payload. All while taking in consideration the limitation of
the availability of the majority of the parts at ESSAT2 and the national market in general
on one hand ; and on the other hand most of the parts could be 3D printed, while keeping
an eye on the general cost of the prototyping.
The design process consists of the choice of mechanical and electrical components, more-
over the link and joint design that was inspired from [11].

2.3 Transmission Selection

The design is conceived to constrain the centre of gravity of the arm as near as possible
to base, hence lowering the total inertia and static unbalancing of the system [12]. Thus,
an RPRR3 structure was introduced as shown in figure 2.2b.

(a) Industrial SCARA diagram

(b) The SCARA prototype diagram

Figure 2.2: SCARA robot diagram

2 École Supérieure en Sciences Appliquées de Tlemcen
3 Revolute Prismatic Revolute Revolute
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2.3. TRANSMISSION SELECTION

A variety of transmission systems exists. In [13], the authors demonstrated a new non-
linear direct power transmission system, the Gimbal Drive see 2.3. This moves the motors
from links to the base, thereby eliminating the weight of the motors in the robot’s dy-
namics [10].

(a) (b)

Figure 2.3: The gimbal drive.

In Reference [14] various adaptive controls were compared on a Direct Drive SCARA,
refer to 2.4.

(a) (b)

Figure 2.4: Direct drive rotary motors.

The paper in [15] investigates the effects of Harmonic Drive see 2.5 characteristics on the
dynamic behaviour of industrial SCARA robot.
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2.3. TRANSMISSION SELECTION

Figure 2.5: Harmonic drive
(Encyclopedia Britannica, Inc.)

Timing Belt Drive transmission system was selected as our transmission system to enable
us to move the motors as near to the base as possible while minimising arm inertia.
However, the backlash induced by differential and transmission mechanisms is a drawback
[12]. Planetary gearboxes 2.6 and harmonic drives could be employed, nevertheless they
would be complex to implement and would demand the use of specialised bearings, as
well as increasing the link weight and inertia.

Figure 2.6: Planetary Gearbox
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2.4. JOINTS AND LINKS DESIGN

2.4 Joints and links design

The mechanical parts were created using a 3D modeling software then 3D printed using
Polylactic acid -based material (PLA) 2.8, with assemblability, machinability, and the
presence of dimensionally appropriate bearings taken into account.

Figure 2.7: Rendered image of the SCARA prototype

Figure 2.8: 3D printed parts at ESSAT’s Fablab

The first joint achieves a 175:8 reduction ratio in two stages : the first with a 70:16 ratio
driven by a 240 mm GT3 timing belt and the second with a 110:22 ratio driven by a 300
mm GT2 timing belt 2.9a. The reducer is controlled by a closed loop NEMA 23 with a
holding torque of 2.0 N.m in a full step configuration.
To support axial and radial efforts, an arrangement of thrust ball bearing and radial ball
bearing has been used 2.9b.
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2.4. JOINTS AND LINKS DESIGN

(a) Perspective view of the base (b) Section view of the base

Figure 2.9: Robot base

The second joint is the prismatic joint, which is made up of an 8 mm lead screw, four 10
mm smooth rods and linear ball bearings so that links 1 and 2 can slide 2.10.

Figure 2.10: The prismatic joint

Joint three has a 16:1 reduction ratio and is actuated by 400 mm and 300 mm GT2 timing
belts 2.11a. A 400mm GT2 timing belt drives the last joint that has a 9:2 reduction ratio
2.11b. Each of the last two revolute joints has a radial ball bearing and is operated by a
closed loop NEMA 17 motor with a holding torque of 0.55 N.m in full step configuration.
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2.4. JOINTS AND LINKS DESIGN

(a) First link (b) Second link

Figure 2.11: Link one and two

The links are made of 3D printed slots with lengths of 228 mm for the first and 136,50
mm for the second 2.12. The joints are hollow so that the wires from the motors and
micro switches may flow through.pulley idles can be placed to tighten the belts . Each
joint may spin 161.57° in both directions in theory 2.14.

Figure 2.12: Links dimensions
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2.4. JOINTS AND LINKS DESIGN

Figure 2.13: Z axis offset

Figure 2.14: Base joint limits

2.4.1 The assembly

The robot was assembled according the the following steps :

• First, a radial ball bearing with a 35mm inner and 47mm outer diameter was placed,
followed by the first thrust bearing with a 40mm inner and 60mm outside diameter.
This bearing will be sandwiched between the joint coupler and the base.

• Following that, we used four M4 bolts of 55mm length to connect the pulley and
top section. We need to utilise self-locking nuts and tighten them properly so that
the connection is robust while still allowing for free rotation.

• The middle pulley was then fitted. This pulley is used in conjunction with the
joint pulley and a 300mm GT2 belt. We utilised two 608 ball bearings, one on
top and one on the bottom side of the base, to mount this pulley. The pulley was
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2.4. JOINTS AND LINKS DESIGN

then held in place using a 45mm M8 bolt, a washer, and a self-locking nut. The
stepper motor for this joint was then mounted. A 240 mm GT3 belt was used to
connect the stepper to the centre pulley. We stretched the belt as far as we could
before tightening the nuts; if the belts were not tight enough, idler pulleys may be
used to tighten them further. Following that, the micro switches for the joints were
installed.

• The Z-axis was then put together. First, we had to mount the Z-axis bottom plate
component on top of the joint coupler. On top of that, the four clamps for the
smooth rods were fastened. The smooth rods were then inserted. At this stage, we
needed to insert the lead screw bearing. To complete this portion, we simply put in
a basic cover that will hide everything and give the robot a cleaner appearance.

• We then proceeded to assemble the robot’s first link. The connection was made
up of two bolted together sections. The linear bearings that will slide through the
smooth rods were placed in the first section. We joined the two sections of the arm.
The motor, bearing, belts, and pulleys for the third joint were then placed; the
second link is connected to the preceding joint through a joint coupler.

• We continued putting together the second link. For the fourth joint, we first fitted
a motor, bearing, and pulley. When we completed building both links, we attached
them to the Z-axis rods.

• The Z-axis top plate, which supports the upper ends of the rods, was next prepared
and installed. We installed the lead screw and used a 5mm to 8mm shaft coupler
to connect the motor to the lead screw; cable management was taken into account
throughout the assembly.

Nota bene: It should be noted that any type of end effector might be linked to the final
joint.
When the SCARA assembly was finished, we fixed it in the centre of a piece of wood cut
to the dimensions of the robot’s safe zone. The pieces where 3D printed using Creality
Ender 3, Creality CR-10, Flashforge Adventurer 3 3D printers at ESSAT Fablab, using
30% infill. the final result is shown in the figure 2.15
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2.5. ELECTRONICS

(a) (b)

Figure 2.15: The assembled SCARA prototype

2.5 Electronics

2.5.1 Initial version

Early on in the project’s life-cycle, we made the initial plan on the electronics to use in
our prototype according to their availability at our school and on the Algerian market as
a whole.
First, to actuate the joints we chose Closed-loop stepper motor kits made by Dewo motor
comprised of motors with integrated encoders and appropriated drivers.
For the base joint, we chose the NEMA 23 kit showcased in figure 2.16 due to the need
for higher torque on that specific joint. The motor specifications are mentioned in table
2.1 alongside the tension requirement of its’ particular driver.

Table 2.1: Closed loop NEMA 23 kit specifications

Model No. Driver tension Current
57HSE2N-D25 24-50 V 4.2 A

Step angle Holding torque Encoder resolution
1.8° 2.0 N.m 1000 ppr
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2.5. ELECTRONICS

Figure 2.16: NEMA 23 kit

As for the other 3 joints, we chose the NEMA 17 kit showcased in figure 2.17 with
specifications mentioned in table 2.2 for weight reduction purposes.

Table 2.2: Closed loop NEMA 17 kit specifications

Model No. Driver tension Current
42HSE05N-D24 24-50 V 1.5 A

Step angle Holding torque Encoder resolution
1.8° 0.55 N.m 1000 ppr

Figure 2.17: NEMA 17 kit
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2.5. ELECTRONICS

Figure 2.18: Motor with its encoder

As shown in figure 2.18, the motors are all equipped with magnetic encoders with 1000
ppr4 resolution. These encoders detect the rotation of a cylindrical magnet fixed at the
second end of the motor’s shaft via a hall effect sensor.
Two square signal emitting channels are then derived with a + and - side that are 180° out
of phase from each other. Ultimately, only one input signal from each channel is enough to
read the information although the complementary signals are useful for troubleshooting.
The A and B channels are for their part always ± 90° out of phase from each other, with
the sign depending on sense of the rotation of the motor as described in figure 2.19. The
speed is then proportional to the frequency of the signal.

4Pulse per revolution
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2.5. ELECTRONICS

Figure 2.19: Magnetic encoder output

In order to power these motors we chose a 24V power supply displayed in figure 2.20 that
would provide sufficient current for our needs.

Figure 2.20: 24V DC power supply

We also decided to use an Arduino mega 2560 shown in figure 2.21 due to its availability
as well as ease of use with the availability of the Accelstepper library that would allow
us to easily run our motors in parallel and implement the acceleration, deceleration and
control speed.
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Figure 2.21: Arduino mega 2560

We also added limit switches showcased in figure 2.22 to each axis for safety purposes as
well as allowing a homing process. We used the Normally Open mode meaning the signal
was HIGH every time the switch was pressed and LOW at rest.

Figure 2.22: Limit switch

Finally we soldered extensions to the cables and tidied the cable management so that we
arrived to the stage depicted in figure 2.23.

Figure 2.23: Initial version cable management
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2.5.2 Final version

Along with our progress during the project’s life-cycle, we encountered some hardships
that forced us to deviate somewhat from our initial plans detailed in section 2.5.1.
The main issue we have faced was the total lack of documentation from the constructor
Dewo motor, thus forcing us to blindly find ways to make the motors work as intended.
In this process, one of the NEMA 17 motors got mechanically damaged rendering it un-
usable and we had to replace it with an encoder-less NEMA 17 shown in figure 2.24 for
the prismatic joint alongside an open loop driver showcased in figure 2.25.

Figure 2.24: Replacement open loop motor

Figure 2.25: Open loop driver M545D

Furthermore, the lack of documentation left us to manually determinate the pinout of
the encoder as showcased in figure 2.26 using an oscilloscope with 2 cables remaining
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unknown. We also used trial and error to determine the wires of the motor as showed in
figure 2.27

Figure 2.26: NEMA 17 Encoder pinout

Figure 2.27: NEMA 17 Motor pinout

Additionally, the last 2 closed loop NEMA 17 motors presented unpredictable behaviour
most likely due to internal regulation issues as well as signaling a ’Position ultra difference’
error that we did not manage to solve with the lack of documentation.
Thus, with the lack of time on our hands and no response from the constructor ’Dewo
motor ’ we decided to use the open loop drivers M545D showed in figure 2.25 and as such
not using the encoder return directly (although the wiring is all accessible and operational
if needed).
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We also faced issues for the power supply as it was ultimately unavailable at our school,
and thus we used a 30V/3A lab power supply showed in figure 2.28.

Figure 2.28: 30V/3A Lab power supply

Finally, our cable management solution showed in 2.23 turned out problematic as magnetic
interference from the motor coils caused unpredictable behaviour from the end switches
and as such forcing us to revert back on cable management in order for the prototype to
be operational as shown in 2.29.
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Figure 2.29: Final version cable management

2.5.3 Program

For the program of our prototype we have used two parts, one high level program writ-
ten in Python in order to read and process the user command and make the necessary
calculations for the forward and inverse kinematics that will be explained in more details
in chapter 3 and a lower end program on Arduino in order to send the command to the
motors and receive the signal from the limit switches.
We have implemented 3 main functionalities in our program :

• Forward kinematics : A calculation of the forward kinematics on Python to show
the user the corresponding end-effector position and orientation for the inputted
data and then sending the command to the Arduino via serial communication.

• Inverse kinematics : A calculation of the inverse kinematics on Python to show
the user the corresponding joint angles for the inputted end-effector position and
orientation then sending the appropriate command to the Arduino via serial com-
munication while managing configuration duality.

• Homing : Allows the robot to go back to it’s 0 point by using the limit switches
to calculate the position. We have implemented this function as both a general way
to home all axes and in separate manner for any individual axis if need be.

• Moving the motors : An Arduino implemented function which calculates the
corresponding stepper motors steps required in order to fulfill the required command
by taking account of the motor step angle, the microstepping and the reduction ratio
specific to each joint ; and moves the motors accordingly with absolute positioning
while implementing the speed and acceleration and deceleration.
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Those functions are the basic blocs that could be used to build a complete program for
this prototype with small adjustments and improvements.
However, two main issues remain in the absence complete parallelism in the motors’
movements (in order for them to all start and stop at the same time) and also speed
limitations due to the limitation of the frequency of the Arduino. This drawback can be
mitigated with a change in the controller (such as a Raspberry Pi for example) at the
cost of trading the ease of use of the Accelstepper library.
Nota bene: The microstepping used is 64 times for the NEMA 23 motor and 16 times
for the NEMA 17 motors.

2.6 Conclusion

In this chapter we presented the design and realisation process of the SCARA prototype.
During this process, we have made many changes due to difficulties met along the way
from a lack of documentation, time and resources ; the last of which was the change in
the base joint reduction by eliminating the intermediate stage and obtaining an overall
11:2 ratio through the addition of a custom length GT2 belt.
We have also managed to achieve one of our main design goals of keeping the center of
mass close to the base as proved by our verification using a 3D modelling software.
Although this first prototype is far from perfection, with numerous flaws such as play,
backlash, being open loop, desynchronization of the joint movements, inadequate cable
management ; we achieved modest performances with our robot with 364.5mm maximum
reach, along the x̂, ŷ plane; 323mm along the ẑ axis. Calculated speeds of 10, 227 deg/s
for the first joint, 10 mm/s for the prismatic joint, 28.125 deg/s for the third joint and
100 deg/s for the fourth joint. No less than 1 kg of payload tested with the maximum
extension configuration alongside the maximum speed, an accuracy of about 1 mm on
the the x̂, ŷ plane and a repeatability of about 1 mm on the the x̂, ŷ plane.
The following step will be to make the robot move and as such, the mathematical model
is needed and will be presented in the next chapter.
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CHAPTER

3

MODELING AND SIMULATION

3.1 Introduction

In order to manipulate objects in the space, the end-effector’s configuration relative to the
base must be studied, in addition to its velocities with respect to that frame. Therefore
in this chapter the direct kinematics equations as well as inverse kinematics problems
are derived. In the SCARA case, the direct kinematics equations are relatively easy to
obtain using a geometrical approach, but a more systematic general approach was used.
We introduced the trajectory planning problem with a simulation using the URDF model
and Matlab alongside a simulation of the workspace of the robot.

3.2 Direct and differential kinematics

The forward kinematics of a robot refer to the calculation of the end-effector pose relative
to a fixed frame given the joint variables. In order to tackle this problem we use the
modified Denavit-Hartenberg convention which is a set group of rules for frame attachment
rather than randomly assigning them. The forward kinematics are then derived form the
knowledge of the transformation between two successive frames. The coordinate frames
have to be assigned as follows :

• ẑi axis coincides with joint axis i and the ẑi−1 axis coincides with joint axis i− 1.

• The origin of frame {i− 1} is then located at the point where the common normal1

intersects joint axis i− 1.

• The x̂ axis is to be chosen along the common normal pointing from the i − 1 axis
to the i axis.

• The ŷi axis follows the right hand rule.

1 The line segment that orthogonally intersects both the joint axes ẑi−1 and ẑi
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Figure 3.1: Denavit–Hartenberg kinematic parameters

Now we can fully describe the rotation and translation using only four parameters :

• The length of the common normal, denoted by the scalar ai−1 ; is called the link
length of link i− 1.

• The link twist αi−1 is the angle from ẑi−1 and ẑi measured about x̂i−1.

• The link offset di is the distance from the intersection x̂i−1 and ẑi to the origin of
the link i frame.

• The joint angle ϕi is is the angle from x̂i−1 to x̂i measured about the ẑi axis.

It is now possible to express the transformation between the frame i and i−1, by combining
translation and rotation as follows :

Ti−1,i = Rot(x̂i, αi−1)Trans(x̂i, ai−1)Trans(ẑi, di)Rot(ẑi, ϕi) (3.1a)

=


cos ϕi −sin ϕi 0 ai−1

sin ϕicos αi−1 cos ϕicos αi−1 −sin αi−1 −disin αi−1

sin ϕisin αi−1 cos ϕisin αi−1 cos αi−1 dicos αi−1

0 0 0 1

 (3.1b)
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(a)

(b)

Figure 3.2: Frame assignment for the SCARA prototype

Now that we’ve covered the fundamentals, we can calculate the homogeneous transforma-
tion between the base and the last joint. The figure 3.2 represents the frame assignment
for the SCARA prototype according to the D-H conversion where frame {0} corresponds
to the base frame and it coincides with the coordinate frame {1} of the first joint. The
D-H parameters are listed in the table 3.1 .

Table 3.1: SCARA prototype D-H parameters table

i αi−1 ai−1 di ϕi

1 0 0 0 ϕ1

2 0 0 d2 0
3 0 L1 = 228 mm 0 ϕ3

4 π L2 = 136.5 mm r = 146.25 mm ϕ4

Substituting the parameters in (3.1b) yield the following homogeneous transformation
matrices

34



3.2. DIRECT AND DIFFERENTIAL KINEMATICS

T01 =



cos ϕ1 −sin ϕ1 0
... 0

sin ϕ1 cos ϕ1 0
... 0

0 0 1
... 0

· · · · · · · · · · · ·
0 0 0

... 1


(3.2a)

T12 =



1 0 0
... 0

0 1 0
... 0

0 0 1
... d2

· · · · · · · · · · · ·
0 0 0

... 1


(3.2b)

T23 =



cos ϕ3 −sin ϕ3 0
... L1

sin ϕ3 cos ϕ3 0
... 0

0 0 1
... 0

· · · · · · · · · · · ·
0 0 0

... 1


(3.2c)

T34 =



cos ϕ4 sin ϕ4 0
... L2

sin ϕ4 −cos ϕ4 0
... 0

0 0 −1
... −r

· · · · · · · · · · · ·
0 0 0

... 1


(3.2d)

The forward kinematics is given by the equation 3.3 :

T04 = T01T12T23T34 (3.3)

Hence we have the final result after simplification :

T04 =



cos(ϕ134) sin(ϕ134) 0
... L1.cos ϕ1 + L2.cos(ϕ13)

sin(ϕ134) −cos(ϕ134) 0
... L1.sin ϕ1 − L2.sin(ϕ13)

0 0 −1
... d2 − r

· · · · · · · · · · · ·
0 0 0

... 1


(3.4)

The equation 3.4 represent the position and orientation of the last joint (frame {4}) with
respect the frame {0}. It is clear that we only have a rotation according to the ẑ0 axis
which describes the orientation. The end-effect frame coincide the the frame {4}. We
define θ as θ = ϕ1 + ϕ3 − ϕ4 as it will become handy for the inverse kinematic problem.
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3.3 Velocity Kinematics

The end-effector of a robot moves in a Cartesian space with a linear and angular velocity,
yet that velocity is a result of the contribution of all joints velocities. The relationship
between those two is the Velocity Kinematics that is described by a matrix termed the
Jacobian which varies depending on the manipulator configuration. The Jacobian is one
of the important characteristics of a manipulator. In fact it is useful for determining sin-
gularities, statics analysis, path planing as well as the dynamics of the robot [2]. In this
section we will derive the geometric Jacobian in the space frame of the SCARA prototype
and its inverse.
Let q =

[
q1 q2 . . . qn

]T
represent the joint variables, ṗe(q) the end-effector linear ve-

locity and the angular velocity ωe(q). Hence, ve is the (6 × 1) vector defined as ve =[
ṗex ṗey ṗez ωex ωey ωez

]T
ve =

ṗe(q)
. . .

ωe(q)

 =

jp(q). . .
jo(q)

 q̇ = J(q)q̇ (3.5)

The J(q) in 3.5 is a (6× n) matrix that represents the geometric Jacobian and n is the
number of joints. Depending on the joint type the Jacobian can be partitioned into (3×1)
columns vectors jpi and joi where :

jpi =

[
zi−1

0

]
for prismatic joints (3.6a)

joi =

[
zi−1 × (pe − pi−1)

zi−1

]
for revolute joints (3.6b)

Where :

• zi−1 is given by the third column of the rotation matrix R0,i−1

• pi−1 is given by the first three elements of the fourth column of the transformation
matrix T 0,i−1

For the SCARA manipulator prototype :

J(q) =

[
z1 × (pe − p1) z2 z3 × (pe − p3) z4 × (pe − p4)

z1 0 z3 z4

]
(3.7)

Nota Bene : In literature the coordinate frame {0} is to be assigned to joint 1, we
have assigned frame {1} to joint 1 which justify the index shifting in the matrix 3.7 i.e.
starting with z1 instead of z0.
The various vectors can be computed from the manipulator direct kinematics :

p1 =

00
0

 ,p2 =

 0
0
d2

 ,p3 =

L1cos(ϕ1)
L1sin(ϕ1)

d2

,
p4 = pe =

L1cos(ϕ1) + L2cos(ϕ13)
L1sin(ϕ1) + L2sin(ϕ13)

d2 − r

 (3.8)
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3.3. VELOCITY KINEMATICS

z1 = z2 = z3 =

00
1

 , z4 =

 0
0
−1

 (3.9)

Substituting 3.8 and 3.9 in 3.7 yield :

J(q) =


−L1sin(ϕ1)− L2sin(ϕ13) 0 −L2sin(ϕ13) 0
L1cos(ϕ1) + L2cos(ϕ13) 0 L2cos(ϕ13) 0

0 1 0 0
0 0 0 0
0 0 0 0
1 0 1 −1

 (3.10)

In the equation 3.10 it is obvious to the reader that there is no rotation about x̂, ŷ axis,
thus the (4× 4) Jacobian can be expressed by eliminating the 4th and 5th rows:

J(q)4×4 =


−L1sin(ϕ1)− L2sin(ϕ13) 0 −L2sin(ϕ13) 0
L1cos(ϕ1) + L2cos(ϕ13) 0 L2cos(ϕ13) 0

0 1 0 0
1 0 1 −1

 (3.11)

The matrix 3.11 allow us to identify poses which leads to an inability of end-effector in-
stantaneous movement in one or more directions, such inability is termed as a kinematic
singularity . Mathematically it is the set of q that causes the matrix 3.10 to be rank
deficient i.e. det(.) = 0, in our case the determinant det(J(q)4×4) is fully depended on
sin(ϕ3) that means we only have a singularity at ϕ3 = 0. Due to the joint physical limit,
other cases are not taken into account. This singularity is a Boundary singularity and
it does not represent a true drawback. [2]. It is interesting to consider the following points
:

• Another form of the Jacobian is the analytical Jacobian, that generally differs from
the geometric one, and that can be derived by direct differentiation of the direct
kinematics function with respect to the joint variables.

• A linear mapping between the joint velocity space and the operational velocity
space is represented by the differential kinematics equation. This fact shows that
the differential kinematics equation might be used to solve the inverse kinematics
problem by using the inverse of the Jacobian matrix [2].

q̇ = J−1
4×4(q)ve

J−1
4×4(q) =



cos(ϕ13)

L1sin(ϕ3)

sin(ϕ13)

L1sin(ϕ3)
0 0

0 0 1 0
−L2cos(ϕ13) + L1cos(ϕ1)

L2L1sin(ϕ1)

−L2sin(ϕ13) + L1sin(ϕ1)

L2L1sin(ϕ1)
0 0

−cos(ϕ1)

L2sin(ϕ3)

−sin(ϕ1)

L2sin(ϕ3)
0 −1


(3.12)

• Using the principle of conservation of power, a static analysis of the robot manipu-
lator can be done using the Jacobian [3].

37



3.4. INVERSE KINEMATICS

• The manipulability ellipsoid describes the ease with which the robot can move in
different directions. The eigenvectors of JJT define the primary axes of the manip-
ulability ellipsoid for a Jacobian J , and the corresponding lengths of the principal
semi-axes are the square roots of the eigenvalues [3].

3.4 Inverse Kinematics

In section 3.2, we have discussed the direct kinematics problem that maps joint variables
q to the end-effector pose pe. To perform the desired motion in the operational space,
we have to determine the corresponding joint angles in the joint space from the end-
effector position and orientation. This problem is known as inverse kinematics and it is a
complex problem with respect to direct kinematics yet with high importance. The reason
for its complexity goes back to the non-linearity of the problem, the existence of multiple
solutions or infinite ones, or even non admissible solutions i.e. physically impossible. The
solution of this problem requires either an algebraic or geometric intuition to get a close
form solution. However, in the case of the non existence or difficulty to find the close form
solution, numerical algorithms could be used, like the use of the inverse Jacobian [2].
For the SCARA manipulator, it is relatively easy to get a close form solution. The
workspace in the x̂, ŷ plan is an annulus, according to the desired end-effector position
there may exist one, two or no solution depending on if the x, y lies on the boundary,
interior or the exterior of the workspace. In this section we will derive the inverse kinematic
equations using the algebraic intuition.

Let pe =
[
px py pz ϑ

]T
be the desired end-effector position and orientation, we know

from 3.4 that :

px = L1.cos ϕ1 + L2.cos(ϕ13) (3.13a)

py = L1.sin ϕ1 + L2.sin(ϕ13) (3.13b)

pz = d2 − r (3.13c)

ϑ = θ (3.13d)

Combining 3.13a and 3.13b :

p2x + p2y = L2
1 + L2

2 + 2L1L2(cos(ϕ1)cos(ϕ13) + sin(ϕ1)sin(ϕ13))

= L2
1 + L2

2 + 2L1L2cos(ϕ3)
(3.14)

From 3.14 we have

cos(ϕ3) =
p2x + p2y − L2

1 − L2
2

2L1L2

= c3 (3.15)

sin(ϕ3) = ±
√
1− c3 = s3 (3.16)

So :
ϕ3 = atan2(s3, c3) (3.17)

Manipulation equation 3.13a and 3.13b by developing cos(ϕ13) and sin(ϕ13) yield :

px = (L1 + L2c3)cos(ϕ1)− L2s3sin(ϕ1)

py = L2s3cos(ϕ1) + (L1 + L2c3)sin(ϕ1)
(3.18)
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3.4. INVERSE KINEMATICS

Using Kramer’s rule to solve the system 3.18 gives :

cos(ϕ1) =
(L1 + L2c3)px − L2s3py

p2x + p2y
= c1 (3.19a)

sin(ϕ1) =
(L1 + L2c3)py − L2s3px

p2x + p2y
= s1 (3.19b)

ϕ1 = atan2(s1, c1) (3.20)

From 3.13d we know that :
ϑ = θ = ϕ1 + ϕ3 − ϕ4 (3.21)

Then :
ϕ4 = −ϑ+ ϕ1 + ϕ3 (3.22)

And
d2 = pz + r (3.23)

Now we have the vector of joint variables q =
[
ϕ1 d2 ϕ3 ϕ4

]T
given the end-effector

position and orientation pe. Notice how we have two type solutions depending on the
sign of 3.16, it corresponds to the elbow-up and elbow-down configurations see the figure
3.3. Those two configurations have been used to avoid self collision of the prototype.

Nota Bene : the atan2(y, x) function allows us to determine the quadrant of the angle.

Figure 3.3: Elbow-up and elbow-down configurations
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3.5. TRAJECTORY PLANNING

3.5 Trajectory planning

In order for the manipulator to move from point A to point B, a trajectory has to be
determined from the infinite possibilities between the two points in order to minimize
time, energy consumption or manage different constraints such as joint limits, collision
prevention etc.
This subject is called trajectory planning and is a vast portion of robotics that we will
briefly discuss in this section. We will also use the example given on Mathworks’ website
[16] of the trajectory planning of a 7 DOF manipulator to illustrate the different points
in this section.
The basic principle is rather simple to understand, The initial and final points of the
movement are needed alongside eventually some intermediate points called waypoints that
help guide the general trajectory. The next step is to generate the trajectory alongside
the resolution of the inverse kinematic problem in order to determine the joint position
needed from the actuators to produce that movement.
The first major point to discuss is the use of Joint space or Task space for the interpolation
of the trajectories [17].

• Task space : That is the most commonly used cartesian coordinates (x, y, z) along-
side the orientations (ψx, ψy, ψz) around the (x, y, z) axes respectively. The trajec-
tory generation being in the task space is more intuitive to the user rendering it
easier to master and be used to properly plan the trajectory and easily avoid colli-
sions. However, it also comes with the downside of more calculations to be made as
inverse kinematics have to be calculated at every step [16].

• Joint space : Describing the coordinates relative to the actuators (in our case
(q1, q2, q3, q4)). The main reason to use this approach is that the inverse kinematics
have to be applied to the waypoints only, making it much faster for computation
with the interpolation and command parts all done in the joint space directly. It
also comes with smoother actuator motion compared to the task space but is lacking
in terms of collision planning and overall trajectory visualisation [16].

We can easily verify this by plotting the trajectories given by task and joint space gener-
ations :
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3.5. TRAJECTORY PLANNING

Figure 3.4: Comparison of joint space and task space generated trajectories

We can also clearly see the influence of this choice on the smoothness of joint movement :

Figure 3.5: Comparison of joint space and task space joint smoothness

We must also note that the joint space generation was more than 31 times faster than the
task space generation on this particular example.
The other major point in terms of trajectory planning is the type of trajectory generated,
multiple ways exist each with their advantages and disadvantages.
In all cases, the general equation of such movement is as follows [17] :
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3.5. TRAJECTORY PLANNING

Let there be :

q a generalized coordinate.

qi the initial point.

qf the final point.

D = qf − qi

r(t) the trajectory equation with r(0) = 0 and r(tf ) = 1.

(3.24)

{
qt = qi + r(t).D 0 ≤ t ≤ tf

q̇t = ṙ(t).D
(3.25)

The determination of the trajectory equation is subject to different methods :

• Linear : The simplest method of resolution is to determine a polynomial solution to
the problem. This problem has two inner constraints (the position at the beginning
and the end), so a polynomial of degree 1 would fit. This solution, whilst possible in
theory cannot be translated to a real robot with the speed discontinuities it would
imply that the mechanical parts wouldn’t be able to follow [17]. It is therefore in
most cases a rejected possibility.

• Cubic : Imposing constraints on speed alongside the 2 previous ones amounts
to a polynomial of degree 3. This solution is possible to function practically but
still leaves acceleration discontinuities which isn’t very recommended for less robust
robots [17].

• Quintic : Adding constraints to the accelerations render the polynomial of degree 5
and as such become way more stable and predictable for most robotics manipulators
[17].

• Bang-Bang : It consists of implementing the acceleration in form of 2 steps of equal
amplitude and opposite signs in order to minimize the length of the movement of
the robot with respect of time.

• Trapezoidal : An evolution of the Bang-Bang method by pushing the speed and
acceleration to the saturation in order to truly minimize the time of the movement
and resulting in a trapeze-shaped speed graph. It is also widely use due to its’ ease
of recognition and use.

• The introduction of waypoints requires these methods to be applied between each
consecutive waypoints in order to form the complete trajectory. Spline is the
method that generalises this approach by applying the cubic method between all of
the waypoints while assuring the continuity of the speed and acceleration.

While the last 3 mentioned methods are used in most industrial applications, it would be
very hard to obtain such results with our prototype as the discontinuities in speed and/or
acceleration or the complexity of the calculations would be near-impossible to implement.
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3.6 Simulation

3.6.1 Workspace simulation

One of the key factors in judging a robot arm’s effectiveness is its workspace, which is the
total domain in the 3D space that the end effector can reach in at least one configuration
of the arm. Multiple methods exist to determinate the workspace of a robot manipulator
: algebraic, geometric, algorithmic [18]. Each method having its advantages and inconve-
nients. In our case, we simulated all possible points reached by the end effector by using
the forward kinematics equations and then plotting the results on Matlab (the code can
be found in B).
SCARA robots being planar robots, meaning that the top view is sufficient to describe
the full workspace of it. As with a simple translation along the ẑ axis, the total workspace
is a 3D extension of the planar workspace seen from the top view. Therefore, our study
will be focused first on establishing that side. The resulting 3D workspace will be the
extrusion of that 2D profile alongside the ẑ axis. The defining factors are in our case the
length of the 2 segments composing the arm, the angle limits of the two joints and the
translational limit.
We first determined the rough reach the robot was supposed to have to be around 40 cm.
Afterwards we tried out multiple combinations of arm lengths to envision the influence of
the variation of the L2/L1 and θ2/θ1 ratios with a constant reach.

Figure 3.6: Impact of the L2/L1 and θ2/θ1 ratios on the total workspace

This simulation showed us that a L2/L1 > 1 is the best direction to have as it minimizes
the dead zones. However, the aforementioned constrains of the realization obliged us to
have a reach of 364.5 mm with L1 = 228 mm and L2 = 136.5 mm, i.e L2/L1 = 0.5987.
Therefore, the biggest influence possible was to play on the joint angle limits where we
tested out multiple variations of the max angle as showcased with the following figure :
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Figure 3.7: Impact of the maximum joints angle on the total workspace

The max angle being a compromise between maximizing workspace and a few cable man-
agement issues, we decided on a compromise at 161.74◦ that brings us a small centered
dead zone of a diameter around 160 mm which is not an issue considering that area is
occupied by the ẑ axis mount structure. This compromise therefore appears to be good
in theory.

Figure 3.8: Total workspace, reachable zone and deadzone area
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3.6.2 Trajectory planning simulation

The first requirement for the simulation of our manipulator is the creation of the URDF
file (Unified Robot Description Format) that is an XML file generated by the 3D modelling
software that describes a robot. It allows for the kinematic and dynamic description of
the robot, it’s visual representation and collision model.
The URDF description then allows us to get our model in a simulation environment in
Matlab Simulink (Model and solver parameters can be found in C).
It generated the basic structure according to the URDF and we added position, speed,
acceleration and torque sensing to have a full grasp at our manipulator’s behaviour as
shown in 3.9.

Figure 3.9: Robot model in Simulink

We then added two possibilities for the trajectory of our robot. First the simple command
via signal builder and then the trajectory generation bloc with a switch to choose between
what mode is required.
In the simulation 3.10, we chose to generate the trajectory in the task space to have better
control over it’s shape and avoid any collisions and/or getting close to the singularities.
That also meant a compromise on time as with the 10−5 precision parameter chosen
alongside the Levenberg-Marquardt discrete inverse kinematics solver, each simulation
took approximately 10min (for a 10s total time simulated). We then transmitted the
configuration to the robot model referenced above 3.9 and extracted all the previously
cited parameters alongside the coordinates of the end effector in the task space via a
forward kinematics bloc.

Figure 3.10: Trajectory planning simulation

We have also tried out both the cubic and quintic generation in order to compare their
results with an emphasis on the quintic case as acceleration continuity is needed with our
3D printed prototype to limit the mechanical backlash [17].
The results can be viewed directly with an animation of the model as shown in 3.11.
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Figure 3.11: Simulation output

The 2D projection of the input trajectory on the (x, y) plane that is required to be followed
back and forth is depicted in figure 3.12. We can clearly see that the trajectory was closely
followed with a small error and linear paths between the waypoints as expected.
Nota Bene : It is important to note that we only managed to simulate the trajectory
planning with the Cartesian coordinates.

Figure 3.12: Input trajectory and resultant following

In figure 3.13, we can see that the position following is very close on all axes to the
reference on all 3 axes with its’ distinct polynomial shape.
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Figure 3.13: 3 axes position following

This is further demonstrated in figure 3.14 where we can clearly see that the error is of
roughly a few millimetres or even micrometres in the case of the ẑ axis.

Figure 3.14: 3 axes position error

We also computed the overall position error show in figure 3.15 showing us an average
value of less than 5 mm which is an acceptable error across 3 axes.
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Figure 3.15: Total position error

Figure 3.16 shows the joint space movement of the 3 axes and it is clear that task space
trajectory generation is quite demanding on the joints by the looks of this figure.

Figure 3.16: Joint space movement

Other interesting figures to look at are the speed 3.17, acceleration 3.18 and torque 3.19
graphs. We can see that that bar some spikes likely generated from the friction model,
the profiles present a continuity that is specific to the quintic polynomial generation. We
can also note the abrupt speed and acceleration profiles that characterise the task space
generation.
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Figure 3.17: 3 axes speed

Figure 3.18: 3 axes acceleration
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Figure 3.19: 3 axes torque

Regarding the trial of the cubic method, and while most of the position graphs were
nearly identical, one might take a better look at the acceleration 3.20 and torque graphs
3.21. We can clearly see that the acceleration and torque profiles present discontinuities
that would in our case be hard on the mechanical parts and such render it a sub-optimal
choice for practical reasons.

Figure 3.20: 3 axes acceleration - Cubic generation
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Figure 3.21: 3 axes torque - Cubic generation

3.7 Conclusion

The determination of the forward and inverse kinematics in the case of the SCARA
prototype was straight-forward. This allowed us to implement them on our realisation
and obtain decent performances.
As for the workspace simulation, we learned how to maximize the workspace with given
link lengths and joint limits constraints. As well as determining the workspace of our
final realisation and thus knowing its blind spots and safe zone which allowed us to adapt
accordingly.
Finally, the trajectory planning simulation showcased the difference between multiple
trajectory generation schemes as well as obtaining decent performances in trajectory fol-
lowing.
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GENERAL CONCLUSION

In this work, we first introduced the history of robotics over time ; going over the origin of
the words robot and robotics to the historical roots of the field in mythology and popular
culture. We then transcribed the beginnings and evolution of robot manipulators over the
last few decades until present times and presented a few challenges for robotics to face in
the near-future.
We then presented our own manipulator robot and the complete process to realise it
spanning from the choice of transmission systems to the 3D modelling and printing and
subsequent assembly. We then went through the electronics choices and evolution as well
as the program to run the robot permitting to implement the motors’ movement as well
as the forward and inverse kinematics along with the homing function.
Moreover, we discussed the mathematical model of our manipulator from deriving the
forward kinematics that maps the set of joint variables q to the Cartesian space as well
as the inverse kinematics problem that transform the end-effector pose from the task
space to the joint space. The Jacobian matrix that describes the end-effector’s linear
and angular velocity in term of joint variables was then derived. We then introduced
the concept of trajectory planning along with its subsequent simulation, alongside the
workspace simulation varying from the design constraints.
Ultimately, we achieved modest performances with our robot with 364.5mm maximum
reach, along the x̂, ŷ plane; 323mm along the ẑ axis. Calculated speeds of 10, 227 deg/s
for the first joint, 10 mm/s for the prismatic joint, 28.125 deg/s for the third joint and
100 deg/s for the fourth joint. No less than 1 kg of payload tested with the maximum
extension configuration alongside the maximum speed, an accuracy of about 1 mm on
the the x̂, ŷ plane and a repeatability of about 1 mm on the the x̂, ŷ plane.
Additionally, over the course of our project, we identified many areas that our prototype
could be improved upon and that we could not implement by either a lack of resources,
time or both. Among those we can cite the following alongside a few recommendations
to possibly solve them :

• Play in the base joint : Improving the design of the base joint to improve the
disruption tolerance.

• Backlash : Replacing the pulleys with metallic versions or more resistant 3D
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printed version to minimise the wear.

• Power supply : Replacing the lab power supply by a more portable version as
shown in 2.20 that also offers higher current.

• Encoders : Getting the documentation of the current encoders or trying to exploit
the available encoders signal showcased in 2.19 without passing by the driver. Al-
ternatively getting another type of encoder such as the AS5600 magnetic position
encoders.

• Cable management : Adding shielding to the wires in order to prevent the mag-
netic disruption.

• Parallelism of the motors’ movement : Figuring out the exact speed profile to
set the timing of the motors.

• Speed : Changing the microstepping value by trading off some precision and
smoothness or changing the controller for one with a higher frequency at the expense
of the simplicity of use of the Accelstepper library.

• End-effector : The space is left empty and fitting for any kind of end-effector with
space present for its cable management as well.

• Control of the robot : The implementation of the control can easily be done once
the encoders issue is fixed in order to improve the performances of the robot.
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APPENDIX

A

KINEMATICS PROGRAM

This code will calculate the forward kinematics in Matlab for our robot as well as the
Jacobian matrix and its inverse :

1 c l c , c l e a r a l l , c l o s e a l l ;
2

3 % L1 = 228 ;
4 % L2 = 136 .5 ;
5 % theta1 = deg2rad (90) ;
6 % theta3 = deg2rad (0 ) ;
7 % theta4 = deg2rad (0 ) ;
8 % d2 = 0 ;
9 % r = 125 .5 ;

10

11

12

13 syms theta1 d2 theta3 theta4
14 syms L1 L2 r
15

16 di sp ( ’−−−−−FK−−−−− ’ )
17 T 0 1 = [ cos ( theta1 ) −s i n ( theta1 ) 0 0 ;
18 s i n ( theta1 ) cos ( theta1 ) 0 0 ;
19 0 0 1 0 ;
20 0 0 0 1 ] ;
21 T 1 2 = [1 0 0 0 ;
22 0 1 0 0 ;
23 0 0 1 d2 ;
24 0 0 0 1 ] ;
25 T 2 3 =[ cos ( theta3 ) −s i n ( theta3 ) 0 L1 ;
26 s i n ( theta3 ) cos ( theta3 ) 0 0 ;
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27 0 0 1 0 ;
28 0 0 0 1 ] ;
29 T 3 4 = [ cos ( theta4 ) s i n ( theta4 ) 0 L2 ;
30 s i n ( theta4 ) −cos ( theta4 ) 0 0 ;
31 0 0 −1 −r ;
32 0 0 0 1 ] ;
33 T 0 2 = T 0 1 ∗ T 1 2 ;
34 ST 0 2= s imp l i f y ( T 0 2 )
35 T 0 3 = T 0 2 ∗ T 2 3 ;
36 ST 0 3 =s imp l i f y ( T 0 3 )
37 T 0 4 = T 0 3 ∗ T 3 4 ;
38 ST 0 4 = s imp l i f y ( T 0 4 )
39

40

41 di sp ( ’−−−−−jacobian−−−−− ’ )
42 T 0 0 = eye (4 , 4 ) ;
43

44 R 0 0 = T 0 0 ( [ 1 : 3 ] , [ 1 : 3 ] ) ;
45 d 0 0 = T 0 0 ( [ 1 : 3 ] , 4 ) ;
46

47 R 0 1 = T 0 1 ( [ 1 : 3 ] , [ 1 : 3 ] ) ;
48 d 0 1 = T 0 0 ( [ 1 : 3 ] , 4 ) ;
49

50 R 0 2 = ST 0 2 ( [ 1 : 3 ] , [ 1 : 3 ] ) ;
51 d 0 2 = ST 0 2 ( [ 1 : 3 ] , 4 ) ;
52

53 R 0 3 = ST 0 3 ( [ 1 : 3 ] , [ 1 : 3 ] ) ;
54 d 0 3 = ST 0 3 ( [ 1 : 3 ] , 4 ) ;
55

56 R 0 4 = ST 0 4 ( [ 1 : 3 ] , [ 1 : 3 ] ) ;
57 d 0 4 = ST 0 4 ( [ 1 : 3 ] , 4 ) ;
58

59 Z0 = [0 0 1 ] ’ ;
60 J1 = [ c r o s s ( R 0 1∗Z0 , ( d 0 4−d 0 1 ) ) ; R 0 1∗Z0 ] ;
61 J2 = [ R 0 2∗Z0 ; 0 ; 0 ; 0 ] ;
62 J3 = [ c r o s s ( R 0 3∗Z0 , ( d 0 4−d 0 3 ) ) ; R 0 3∗Z0 ] ;
63 J4 = [ c r o s s ( R 0 4∗Z0 , ( d 0 4−d 0 4 ) ) ; R 0 4∗Z0 ] ;
64 J = [ J1 J2 J3 J4 ]
65 J44 = J ( [ 1 2 3 6 ] , : )
66 D = s imp l i f y ( det ( J44 ) )
67 invJ = s imp l i f y ( inv ( J44 ) )
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B

WORKSPACE SIMULATION

This is the Matlab code used for the workspace simulation in 3.6.1.

1 f unc t i on [ out ] = workspace ( l1 , l2 , tmin1 , tmax1 , tmin2 , tmax2 )
2 % input the c on s t r a i n t s
3 r e s o l u t i o n =0.001; % r e s o l u t i o n o f the po in t s gene ra t i on
4 x= [ ] ;
5 y= [ ] ;
6 f o r i=tmin1 : r e s o l u t i o n : tmax1
7 f o r j=tmin2 : r e s o l u t i o n : tmax2
8 x=[x ; l 2 ∗ cos ( i+j )+l 1 ∗ cos ( i ) ] ;
9 y=[y ; l 2 ∗ s i n ( i+j )+l 1 ∗ s i n ( i ) ] ;

10 % forward k inemat ic s equat ions
11 end
12 end
13 out=[x y ] ;
14 end
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C

TRAJECTORY PLANNING

Here is the Levenberg-Marquart solver parameters used in the trajectory planning simu-
lation, see 3.6.2.

Figure C.1: Levenberg-Marquart parameters

57



Here are the simulation models of the trajectory planning simulation, see 3.6.2.

Figure C.2: Robot model in Simulink
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Figure C.3: Trajectory planning simulation
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D

PYTHON CODE

This python code will take commend from the user, calculate the forward kinematics or the
inverse kinematics and sent the resulting data to the Arduino via serial communication:

1 #coding : utf -8

2 import serial

3 import time

4 import numpy as np

5 import math

6 mega = serial.Serial("com4",115200 , timeout= 1)

7 L1 = 228.0

8 L2 = 136.5

9 r = 170.0

10 def read_write_arduino(str ,arduino):

11 arduino.write(str.encode(’utf -8’))

12 time.sleep(0.05)

13 lines = arduino.readlines ()

14 for line in lines :

15 print(line.decode(’ascii ’))

16 def angleCalc(s,c):

17 theta = math.asin(s)

18 if c < 0 :

19 if s > 0 :

20 theta = math.pi - theta

21 elif s < 0 :

22 theta = -math.pi - theta

23 else :

24 theta = math.pi + theta

25 theta = theta * 180 / math.pi

26 return theta

27

28

29

30 while True :

31
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32 command = input("input somthing: ")

33 commandList = command.split(" ")

34 if commandList[0] == "FK" :

35 print("FORWARD KINEMATICS")

36 Ftheta1 = float (commandList[1])

37 Fz = float (commandList[2])

38 Ftheta2 = float (commandList[3])

39 Ftheta3 = float (commandList[4])

40 T04 = np.array([[math.cos(Ftheta1+Ftheta2+Ftheta3), math.sin(

Ftheta1+Ftheta2+Ftheta3),0,

L1*math.cos(Ftheta1)+L2*math

.cos(Ftheta1+Ftheta2)],

41 [math.sin(Ftheta1+Ftheta2+Ftheta3),-math.cos(Ftheta1+Ftheta2+

Ftheta3),0,L1*math.sin(

Ftheta1)+L2*math.sin(Ftheta1

+Ftheta2)],

42 [0,0,-1.0,Fz-r],

43 [0,0,0,1]])

44 print(T04)

45 serialSTR = "data" + " " + str(Fz) + " " + str(Ftheta1) + " " +

str(Ftheta2)+" " + str(

Ftheta3)

46 read_write_arduino(serialSTR ,mega)

47 #print(serialSTR)

48

49

50

51 elif commandList[0] == "IK" :

52 print("INVERS KINEMATICS")

53 px = float (commandList[1])

54 py = float (commandList[2])

55 pz = float (commandList[3])

56 psiDgree= float (commandList[4])

57 #psiRad= (psiDgree * math.pi)/180.0

58 """

59 R = np.array ([[ math.cos(psi), -math.sin(psi) ,0],

60 [math.sin(psi), math.cos(psi),0],

61 [0,0,1]])

62 nx = R[0][0]

63 ny = R[0][1]

64 print(nx)

65 print(ny)

66 """

67

68

69 c2 = (1/(2*L2*L1))*(px ** 2 + py ** 2 - L1 ** 2 - L2 ** 2 )

70 s2 = math.sqrt(1- c2 ** 2)

71 s2v2 = -math.sqrt(1- c2 ** 2)

72 Itheta2 = angleCalc(s2 ,c2)

73 Itheta2v2 = angleCalc(s2v2 ,c2)

74

75 c1 = (((L1 + L2 * c2)*px)- (L2 * s2 *py)) / (px ** 2 + py ** 2)

76 s1 = (((L1 + L2 * c2)*py) - (L2 * s2 *px)) / (px ** 2 + py ** 2)

77 c1v2 = (((L1 + L2 * c2)*px)- (L2 * s2v2 *py)) / (px ** 2 + py ** 2)

78 s1v2 = (((L1 + L2 * c2)*py) - (L2 * s2v2 *px)) / (px ** 2 + py ** 2)

79

80

81 Itheta1 = angleCalc(s1 ,c1)
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82 Itheta1v2 = angleCalc(s1v2 ,c1v2)

83

84 Itheta3 = psiDgree - Itheta1 - Itheta2

85 Itheta3v2 = psiDgree - Itheta1v2 - Itheta2v2

86 Iz = pz

87 print("INVERS KINEMATICS v1 : theta1= {0} theta2= {1} theta3= {

2} z = {3}".format(Itheta1 ,

Itheta2 ,Itheta3 ,Iz))

88 print("INVERS KINEMATICS v2 : theta1= {0} theta2= {1} theta3= {

2} Z = {3}".format(

Itheta1v2 ,Itheta2v2 ,

Itheta3v2 ,Iz))

89 if py > 0 :

90 serialSTR2 = "data" + " " + str(Iz) + " " + str(round(

Itheta1 ,3)) + " " + str(

round(Itheta2 ,3))+" " +

str(round(Itheta3 ,3))

91 print(serialSTR2)

92 read_write_arduino(serialSTR2 ,mega)

93 else :

94 serialSTR2 = "data" + " " + str(round(Iz,3)) + " " + str(

round(Itheta1v2 ,3)) + "

" + str(round(Itheta2v2 ,

3))+" " + str(round(

Itheta3v2 ,3))

95 read_write_arduino(serialSTR2 ,mega)

96 print(serialSTR2)

97

98 elif commandList[0] == "homing" :

99 serialSTR= "homing"

100 read_write_arduino(serialSTR ,mega)

101 elif commandList[0] == "homing" :

102 serialSTR= "homingAxis"+ commandList[1]

103 read_write_arduino(serialSTR ,mega)

104 else :

105 print ("NOT VALID")

106

107 #print (" FORWARD KINEMATICS : Ftheta1= {0} Fz= {1} Ftheta2= {2}

Ftheta3= {3} ". format(Ftheta1 ,Fz

,Ftheta2 ,Ftheta3))
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APPENDIX

E

ARDUINO CODE

The following code is the constant set in the Arduino code for our robot :

1 /*----------------------------*/

2 #define UP -1.0

3 #define DOWN 1.0

4 #define CW -1.0

5 #define CCW 1.0

6 #define motorInterfaceType 1

7

8 bool newData = false;

9 bool isAllowed = true;

10

11 double L1 = 228.0;

12 double L2 = 136.5;

13

14

15 /*----------------------------*/

16

17 /*--------------J1-axis--------------*/

18

19 #define stepPinJ1 4

20 #define dirPinJ1 5

21 #define enablePinJ1 6

22 #define limitSwitchJ1 19

23 #define microSteppingJ1 25600.0 // microstepping * 200

24

25 double cstJ1 = (110.0)/(20.0*360.0);// (175.0)/(8.0*360.0);

26 double homingJ1 = CW * cstJ1 * microSteppingJ1 *176.5 ; // 176 (angle)

27 double degreesJ1 = 0 ;

28

29

30 /*--------------J2-axis--------------*/

31 #define stepPinJ2 7

32 #define dirPinJ2 8

33 #define enablePinJ2 9
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34 #define limitSwitchJ2 20

35 #define microSteppingJ2 3200.0 // microstepping * 200

36 double cstJ2 = (16.0)/(1.0*360.0);

37 double homingJ2 = CW * cstJ2 * microSteppingJ2 *153.0 ; // 157 (angle)

38 double degreesJ2 = 0 ;

39

40 /*--------------J3-axis--------------*/

41 #define stepPinJ3 10

42 #define dirPinJ3 11

43 #define enablePinJ3 12

44 #define limitSwitchJ3 21

45 #define microSteppingJ3 3200.0 // microstepping * 200

46 double cstJ3 = (9.0)/(2.0*360.0);

47 double homingJ3 = CCW * cstJ3 * microSteppingJ3 *148.0 ; // 157 (angle)

48 double degreesJ3 = 0 ;

49

50

51 /*--------------Z-axis--------------*/

52 #define stepPinZ 16

53 #define dirPinZ 15

54 #define enablePinZ 14

55 #define limitSwitchZ 18

56 #define microSteppingZ 3200.0 // microstepping * 200

57 double homingZ = UP*(( microSteppingZ/8.0)*161.5); // 161.5 mm (distance)

8.0 mm pitch of threaded rod

58 double degreesZ = 0 ;

59

60 // -161.5 mm , +154 mm

61

62 /*----------------------------*/

63 AccelStepper StepperJ1(motorInterfaceType , stepPinJ1 , dirPinJ1);

64 AccelStepper StepperJ2(motorInterfaceType , stepPinJ2 , dirPinJ2);

65 AccelStepper StepperJ3(motorInterfaceType , stepPinJ3 , dirPinJ3);

66 AccelStepper StepperZ(motorInterfaceType , stepPinZ , dirPinZ);

67 /*----------------------------*/

The following code will read the serial data :

1 void serialread ()

2 {

3 String receivedCommand ;

4 if (Serial.available () > 0 )

5 {

6 // printOnce = false ;

7 receivedCommand = Serial.readStringUntil(’ ’); // pass the value

to the receivedCommad

variable

8 newData = true; // indicate that there is a new data by setting

this bool to true

9 if(newData == true )

10 {

11 if (receivedCommand == "data")

12 {

13 degreesZ = Serial.parseFloat(SKIP_ALL);

14 degreesJ1 = Serial.parseFloat(SKIP_ALL);

15 degreesJ2 = Serial.parseFloat(SKIP_ALL);

16 degreesJ3 = Serial.parseFloat(SKIP_ALL);

17

18 }
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19 else if (receivedCommand == "homing")

20 {

21

22 homing ();

23

24 }

25 else if (receivedCommand == "homingAxis")

26 {

27 int axis = Serial.parseInt(SKIP_ALL);

28 homingAxis(axis);

29 }

30

31 }

32 newData = false;

33 }

34 }

This is an example of the homing function :

1 //---------------------------------HOMING J1-axis----------------------

------------------ //

2 isAllowed = false ;

3 Serial.println("HOMING SEQUANCE J1... ");

4 StepperJ1.enableOutputs ();

5

6 while (digitalRead(limitSwitchJ1) != LOW)

7 {

8 StepperJ1.setSpeed(CW*4000);

9 StepperJ1.runSpeed ();

10 StepperJ1.setCurrentPosition(homingJ1); // When limit switch

pressed set position to 0

steps

11 }

12

13 delay(20);

14

15 StepperJ1.moveTo(0);

16

17 while (StepperJ1.currentPosition () != 0)

18 {

19 StepperJ1.run();

20 }

21

22 StepperJ1.disableOutputs ();

23 Serial.println("DONE HOMING J1... ");

24 isAllowed = true ;

This is how the motors are moved using Accelstepper:

1 void moveMotors (double J1Degrees ,double Zmilimiter , double J2Degrees ,

double J3Degrees )

2 {

3

4

5 double stepsJ1 = cstJ1 * microSteppingJ1 *J1Degrees ;

6 double stepsJ2 = cstJ2 * microSteppingJ2 *J2Degrees ;

7 double stepsJ3 = cstJ3 * microSteppingJ3 *J3Degrees ;

8 double stepsZ = (( microSteppingZ/8.0)*Zmilimiter);

9
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10 StepperZ .moveTo (stepsZ);

11 StepperJ1.moveTo(stepsJ1);

12 StepperJ2.moveTo(stepsJ2);

13 StepperJ3.moveTo(stepsJ3);

14 if (StepperZ.distanceToGo () != 0 || StepperJ1.distanceToGo ()!= 0 ||

StepperJ2.distanceToGo ()!= 0 ||

StepperJ3.distanceToGo () != 0)

15 {

16 isAllowed = false ;

17

18 StepperZ.enableOutputs ();

19 StepperJ1.enableOutputs ();

20 StepperJ2.enableOutputs ();

21 StepperJ3.enableOutputs ();

22

23 StepperZ.run();

24 StepperJ1.run();

25 StepperJ2.run();

26 StepperJ3.run();

27

28 }

29

30 else if(StepperZ.distanceToGo () == 0 && StepperJ1.distanceToGo ()== 0 &

& StepperJ2.distanceToGo ()== 0 &&

StepperJ3.distanceToGo () == 0)

31 {

32

33 StepperZ.disableOutputs ();

34 StepperJ1.disableOutputs ();

35 StepperJ2.disableOutputs ();

36 StepperJ3.disableOutputs ();

37 isAllowed = true ;

38

39 }

40

41

42 }
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Abstract

In this work, we aimed to design and realise a 4 degrees of freedom robot manipulator
type SCARA for pick-and-place applications with modest to decent performances. We
first introduced the definition and history of robots from the antiquity to modern age.
We then described the full process of the design, printing, assembly and programming of
our robot prototype. The mathematical model of the robot is then derived alongside the
introduction of the concept of trajectory planning subsequent to its own simulation in
addition to the simulation of the total workspace of the robot.
Keywords : Robotics, SCARA, 3D modelling, Kinematics, Trajectory planning

Résumé

Dans cette œuvre, nous avions pour objectif de designer et réaliser un robot manipulateur
à 4 DDL de type SCARA pour des applications pick-and-place avec des performances
décentes. Nous avons tout d’abord introduit la définition et l’historique des robots de
l’antiquité à l’ère moderne. Nous avons ensuite décris en détails le processus de design,
impression, assemblage et programmation de notre prototype. Le modèle mathématique
du robot est ensuite déduit en compagnie de l’introduction du concept de planification de
trajectoire avec sa propre simulation ainsi que celle de l’espace de travail total du robot.
Mots clés : Robotique, SCARA, Modélisation 3D, Cinématique, Planification de trajec-
toire
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