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Résumé

Dans ce travail, nous nous intéressons à la modélisation d’un quadrotor-UAV en util-
isant l’approche quaternion, qui offre une représentation globale non singulière grâce à
l’utilisation d’un vecteur à quatre éléments. Nous nous intéressons également à la con-
ception d’un contrôleur, le contrôleur actif de rejet des perturbations (ADRC). Il est
principalement basé sur un observateur d’état étendu (ESO) qui estime les perturbations.
L’avantage de ce contrôleur est qu’il s’agit d’un contrôleur sans modèle, donc toutes les
erreurs et incertitudes du modèle sont considérées comme des perturbations. Cette loi de
commande a été simulée à l’aide de Matlab/SIMULINK et testée dans des cas réels en
utilisant le QUANSER 3DOF Hover. Les résultats expérimentaux ont montré l’efficacité
de la méthode utilisée.

Mots clés : ADRC, quadrotor, QUAV, VTOL, ESO, Problème de Wahba, Quanser
3DOF Hover, quaternion, Matlab/SIMULINK.
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Abstract

In this work, we are interested in modelling a quadrotor-UAV using the quaternion-
mathmatics approach, which offers a non-singular overall representation through the use
of four-element vector. We are also interested in studying a controller design, which is
the Active Disturbance Rejection Controller (ADRC). It is mainly based on an extended
state observer (ESO) that estimates the disturbances. The advantage of this controller is
that it is a model-free controller, so all model errors and uncertainties are considered as
disturbances. This control law has been simulated using Matlab/SIMULINK and tested
in real-world cases using the QUANSER 3DOF Hover. The results of the experiment
confirmed the method’s effectiveness.

Keywords : ADRC, quadrotor, QUAV, VTOL, ESO, Wahba’s problem, Quanser
3DOF Hover, quaternion, Matlab/SIMULINK.
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ملخص

وصفا يقدم الدي و Quaternion نهج باستخدام المحرك رباعية طيار بدون الطائرات نمدجة على اساسا العمل هدا يرتكز
الطائرات استقرار و ثبات يضمن تحكم تصميم الى العمل هدا ايضا يهدف تفرد, اي من خاليا الطائرات هده لسلوك كاملا
ضمان الى بالاضافة الاعتبار بعين النمدجة في الاخطاء باخد و الخارجية الاضطرابات وجود ضل في المحرك رباعية
في واختباره Matlab/SIMULINK باستخدام هذا التحكم قانون بمحاكاة قمنا المطلوبة. للمسارات دقيقة متابعة
المستخدمة. الطريقة فعالية التجريبية النتائج اظٔهرت Hover. 3DOF QUANSER باستخدام الحقيقي العالم حالات

Hover, 3DOF Quanser , VTOL QUAV, المراوح, رباعي ADRCالتحكم وحدة : مفتاحية كلمات
وهبة مشكل Matlab/SIMULINK quaternion,
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Overall introduction

By dint of recent technological advances in sensors, batteries and processing cards, which
allow embarking on small vehicles all components necessary for autonomous flights at a
reasonable cost, many fully autonomous aerial vehicles, also called drones, are existing
today. These drones have been successfully used to respond to a wide variety of appli-
cations in several industries that requires robots to replace men in dangerous, boring or
onerous situations, such as surveillance, air robotics, search and rescue operations, tactical
reconnaissance, mapping and others.

Drones can be classified according to their sizes and also according to their aerody-
namic functions. On this last point, we are then talking about fixed-wing drones that
look like airplanes, providing high-speed travel voyage, and rotary wing drones or VTOLs
(Vertical Take-Off and Landing) that can provide hovering and low-speed travel voyage.

Among the multicopter typology -which can be classified as a VTOL-UAV-, the four
rotors, also called quadrotor, have been widely chosen by many researchers as a very
promising vehicle for indoor and outdoor navigation [3].

Moreover, the nature of these vehicles as an under-actuated systems makes them very
difficult to control and stabilize, furthermore if an unmodelled dynamic factors or/and
external disturbances are introduced to these systems, then it will lead them towards
instability.

To resolve the altitude and attitude issues, researchers have proposed a great deal
of control laws and algorithms, however, there are still some limitations facing these
solutions, like limited flight time, it can be limited by wind speed and gusts, and small
payload capacity.

The work organisation

This manuscript is broken down into five chapters, which are briefly introduced in the
following paragraph below

• First chapter: In this chapter the historical context around the development of
the first rotary-wing drones will be briefly discussed . QUAV configurations such as
the X-, X-Stretched-, plus-, Y4-, and V-tail- configurations will be mentioned. We

1



Introduction générale

will describe a number of sensor technologies that make up a QUAV. Then we will
show the current state of the art for control techniques for this sort of machine as
discovered in the literature.

• Second chapter: In this chapter we will present some generalities about quater-
nions, including some basic mathematical formulas, then define the quaternion as a
rotation operator, as well as the relationship between Euler angles and quaternions.
The results from this chapter are going to be used as tools in the following chapters.

• Third chapter: This chapter presents a quaternion model for the quadrotor
vehicle. The use of quaternions reduces undesirable system effects like gimbal-lock
and discontinuities, which are major concerns with older methods. In addition, an
ADRC control structure for a quadrotor will be proposed.

• Fourth chapter: In this chapter Wahba’s problem will be discussed, several
solutions have been proposed to this problem. As an example the solution proposed
by J. L. Farrell and J. C. Stuelpnagel, Davenport’s q methode and the Kalman
Filter will be cited.

• Fifth chapter: In this chapter we will test the ADRC law by using the Mat-
lab/SIMULINK, and once again in real world application, on the QUANSER 3DOF
Hover.

2
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Chapter 1. An overview of the aerial robotics systems

1.1 Introduction

The aerial robotics is a term often used to define a class of highly intelligent, small
machines, with a high level of mobility provided by flight. However, it is obvious that
the range of systems and activities covered by the label aerial robotics could be much
broader. In aerospace jargon, flying robots are usually referred to as unmanned aerial
vehicles (UAVs), among this vehicles we mention the rotary wing UAVs which are mainly
used for their ability of Vertical Take-off and Landing (VTOL), therefore they do not
need a take-off/landing runway. In between this “Rotorcraft” we cite the quadrotor UAVs
(QUAV).[4]

1.2 Definition

A quadrotor-type UAV is a helicopter with four rotors that propel it forward. Since
adjacent blades revolve in opposite directions, a tail rotor is not necessary to offset the
propellers’ angular momentum. As a dynamical system, changing the motor speed changes
the position, for that, the forward (backward) motion is maintained by decreasing (in-
creasing) the front (rear) rotor speed while concurrently increasing (decreasing) the rear
(front) rotor speed, will change the pitch angle. Changing the roll angle in the same way
allows for left and right motion. That system is under-actuated and dynamically unstable,
as stated in [3].

1.3 Some historical points

Leonardo Da Vinci invented the Helical Air Screw in 1490, which is widely regarded
as the first serious attempt to build a working helicopter (Figure 1.1). In 1863, Ponton
d’Amécourt was the first to use the term ”Helicopter” (derived from two old Greek words:
Helix and Pteron, screw and wing). He also described a coaxial helicopter and various
steering methods.

29 September 1907 was the day that the first quad-copter flew, the Bréguet-Richet
Gyroplane N°1 developed by Bréguet Aviation took-off vertically (0.6m), and because of
a non-advanced control mechanism four guys were used to keep the structure stable, so it
wasn’t a free flight [?] (Figure 1.2). Fifteen years after, two more projects were brought
to the world, the Jerome-de Bothezat Flying Octopus (Figure 1.2) built by George de
Bothezat for the United States Army Air Service and Œhmichen N°2 (Figure 1.2) by the
french Etienne Œhmichen in the same year.

After these projects there was a lull in interest in the quad-copters development, it
was until the mid-twentieth century that interest in this development resurfaced, thanks
to projects funded by the United States, hence the Curtiss X-19 made in 1963 by Curtiss-
Wright corporation, the Bell X-22A in 1966 by Bell Aircraft corporation and the fly
vehicles of the Moller company [5, 6] (Figure 1.2). We note that all these projects were
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Figure 1.1: Detail of Leonardo’s ”aerial screw”

dependent on a pilot, in other words, they were manned vehicles, and the only unmanned
quadrotor to leave ground effect was the Curtiss-Wright X-19. In the 1990s, the name
”UAV” (Unmanned Aerial Vehicle) became popular for describing robotic aircraft, replac-
ing the term ”RPAV” (Remotely Piloted Aerial Vehicle) [6], because a pilot is not required
on board. UAV systems have sparked attention since they allow the use of smaller air-
craft with reduced power requirements. We present bellow a table (Table :1.1)of research
laboratories and universities research and contributions:

University Project Year

Dragan flyer V Ti 1998

Stanford Mesicopter 2000

Uni. Pennsylvania E. Altuğ’s thesis 2000

Uni. Compiègne P. Castillo’s thesis 2003

ANU P. Pounds’s thesis 2002
Stanford Starmac I 2004
Stanford Starmac II 2011

EPFL S.Bouabdallah’s thesis 2007

MIT P. Tournier’s thesis 2007

CrazyFlie CrazyFlie 2011
Table 1.1: Research projects on quadrotors
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Gyroplane N°1 deBothezat Flying Octopus

Œhmichen N°2 Curtiss X-19

Bell X-22A

Figure 1.2: The QUAV ancestors

1.4 Configuration UAV types

1.4.1 X Configuration Quadcopter

By far the most common type of quadcopter drone design, because of its stability, the X
configuration is frequently used for aerial photography and videography. This multirotor
drone configuration is also popular among FPV1 racers and acrobatic stunt pilots, it is
also a very strong and stable design [2] (Figure 1.3).

1.4.2 X Stretched Configuration Quadcopter

The X stretched configuration a new version of the X configuration. This quadcopter
drone design is primarily used for FPV multirotor racing. The idea is that the rear
motors are moved further away from the front props, creating less turbulent air. The
elongated design also improves pitch axis stability [2](Figure 1.4).

1First Person View, or FPV, drone racing, is a sport where participants control ”drones”, equipped
with cameras while wearing head-mounted displays showing the live stream camera feed from the drones
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Figure 1.3: X Configuration Quadcopter shape [2]

Figure 1.4: X Stretched Configuration Quadcopter[2]

1.4.3 Quadcopter with plus (+) configuration

This quadcopter drone with the plus configuration that allows it to track its trajectories
very well when flying straight.Many people believe the propellers are in a better aerody-
namic position.The + configuration quadcopter is commonly used in acrobatic and FPV
stunt flying because it flies more like an airplane and is easier to control than the X
configuration quadcopter [2] (Figure 1.5).

1.4.4 Y4 configuration Quadcopter

This quadcopter drone appears like a tricopter, but it features a second brushless motor
placed upon a first one instead of a servo. The two rear motors’ speeds can be changed to
manage yaw control. Y4 multirotors have higher lifting power and are more robust than
tricopters [2] (Figure 1.6).
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Figure 1.5: Quadcopter with plus (+) configuration[2]

Figure 1.6: Y4 configuration Quadcopter[2]

1.4.5 V-tail or A-Tail configuration Quadcopter

It is a form of quadcopter drone having typical quadcopter arms on the front and angled
at a vertical angle on the back. A V-Tail, also known as an A-Tail, is similar to a Y4
but has far greater Yaw authority since it uses thrust to turn rather than counter engine
torque. Because it is less efficient than other quadcopter designs, this sort of multirotor
drone is not particularly widespread [2] (Figure 1.7).
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Figure 1.7: V-tail configuration Quadcopter [2]

Among all these configuration types, and in terms of stability, the x-configuration
quadrotor is considered to be the most stable [7, 8].

1.5 Sensors

1.5.1 IMU

An IMU (Inertial Measurement Unit) is a sensor capable of providing us with the orien-
tation (attitude) and the velocity and position vectors of a body through inertial sensors.
This unit is considered as one of the most important parts of an UAV system (QUAV
in our work), because of the necessity of its collected data in estimating the system’s
attitude and the performance of the control laws (Figure 1.8).

Figure 1.8: Inertial Measurement Unit of a 9 DOF
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The main sensors mounted on an IMU are :

Triaxial accelerometer : Accelerometers are instruments that measure acceleration,
or the rate at which an object’s velocity changes. A three-axis accelerometer monitors
three orthogonal axes’ linear accelerations. An accelerometer’s advantage is its ability to
reveal a large amount of data (acceleration, speed, displacement, force...).

Triaxial gyroscope : The gyroscope measures the angular speeds caused by the rota-
tion of the body-fixed frame around the inertial frame ( roll, pitch and yaw speeds ). The
combination of the three measures determines the vehicle’s attitude.

Magnetometer : A magnetometer, also known as a magnetic compass, is a sensor
that measures the direction and intensity of magnetic fields and more specifically Earth’s
magnetic field by indicating the magnetic north.

1.5.2 Geolocation system

A satellite navigation system, often known as a satnav system, is a system that employs
satellites to offer autonomous geospatial location. The system may be used to provide
position, navigation, or track the location of something that has a receiver attached to
it (satellite tracking). One of the many benefits of GPS is that it works in any weather,
anywhere in the globe, at any time.

1.5.3 A barometric altimeter

As we know atmospheric pressure changes with respect to height from the sea level. This
phenomenon is used in the barometer to determine height of Unmanned Aerial Vehicle. A
barometric altimeter is a sensor that measures the altitude difference between the sensor
level and the reference level. Its weakness is that climate change has a big impact on this
measure [9].

1.5.4 Obstacle Detection

It’s an active sensor for measuring the distance between an object and an obstacle, in
purpose to avoid collision. The Ultrasonic (Figure 1.9b) and Laser sensors (Figure 1.9a)
are the most used in the industry.
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(a) Laser sensor (b) Ultrasonic sensor

1.5.5 The vision sensor

The vision sensor is one of the information sources used to locate a vehicle in its envi-
ronment. Stereo vision is a vision technology that employs several cameras, often two
or three. The goal of this strategy is to blend several points of view. This enables the
information to be enriched by comparing it to a single point of view.

We note that all these sensors are MEMS (Microelectromechanical systems) technology
based, because of their lightweight and low cost.

1.6 Sensor fusion

Sensor fusion is a technique for combining signals from numerous sources. It enables the
extraction of information from several inputs and combining it into a single signal or
information. Sensors or other devices that allow perception or measurement of changing
environments are frequently used as information sources. Sensor fusion or data fusion
techniques are used to process information from many sensors. These algorithms are di-
vided into three categories. First, there is probabilistic fusion, followed by least-squares
fusion, and last, intelligent fusion. Bayesian reasoning, evidence theory, robust statis-
tics, and recursive operators are examples of probabilistic model approaches. Kalman
filtering, optimum theory, regularisation, and uncertainty ellipsoids are all least-squares
approaches. The intelligent fusion methods are fuzzy logic, neural networks and genetic
algorithms [10]. All this types can be exploited using one of the two following approach :

Centralized sensor fusion algorithms : this approach handles all measurements
through a single central filter. Because all measurements must be computed in this situa-
tion, the computing burden is substantial, needing high-performance hardware. Further-
more, ensuring the system’s resistance against sensor failure or temporary incorrect input
data is difficult. Despite these drawbacks, it has the benefit of providing the optimal
solution [11].

Distributed sensor fusion algorithms : this approach do not handle all measure-
ments in a single central filter, but rather fuse all data in the main filter after processing
each sensor’s data in a separate sub-filter. In other words, they estimate state variables
and covariance by running each data through a sub-filter. This estimate is sent to the
main filter, which then estimates the overall optimal state variables [11].
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Adding all this complex calculus to our system will yield many benefits, it can increase
the quality of the data and their reliability, it can help to estimate the unmeasured states
(it is important to recognise that unmeasured doesn’t mean unmeasurable), and finally,
it can increase the coverage area around our dynamic system.

We note that all the data are interpreted by the Micro Controller Unit (MCU).

1.7 Actuators and motor drivers

As with all dynamic systems, the QUAV needs actuators to produce action or motion.
Much research has used the DC motor as an actuator [12], and more specifically, brushless
DC motors (BLDC). High speed, acceleration, and efficiency are reasons for choosing the
latter motor type, but the main reason is that the BLDC motors (no brushes to wear)
have a longer lifetime compared with the brushed ones (brushes wear out). We add that
the drivers are fundamental to integrating the Micro Controller Unit (MCU) outputs to
the motors (connected to the propellers).

1.8 Models and control laws

To perform certain flight missions to a high quality, a control system must be designed and
an accurate model must be established [13].For that, the two widely used methodologies
for modeling robots ( the QUAV in our case) are the Euler-Lagrange formulation and
the Newton-Euler formulation. In the Euler-Lagrange approach, the entire physical
description of the manipulator is first included into the Lagrangian in terms of a set of
generalised coordinates and velocities, and then the Lagrangian equations of motion are
developed using a systematic technique. The Newton-Euler technique, on the other hand,
applies Newton’s law and Euler’s equation for linear and angular motion to individual
bodies [14].

Newton’s technique is of particular relevance to us in this research.

A rigid body’s rotating orientation (attitude) in three-dimensional Euclidean space is
defined by three parameters. There are several parametrization approaches for mathe-
matically representing the attitude transformation or rotation of a rigid body [15].

A direction cosine matrixis a transformation matrix that is made up of the direction
cosine values between the initial and target coordinate systems, however, DCM is limited
by the orthogonality requirement, which necessitates that all matrices have the same
dimension for matrix operations [15].

Secondly there’s the Euler angles, three sequential transformations about the body
fixed axis can be used to represent the orientation of a rigid body in relation to an inertial
coordinate system. The Euler angles are the three angles used in the successive transfor-
mation. Because they are reasonably simple to interpret, they are commonly employed
for graphical displays of spacecraft orientation. However, describing the attitude by this
method can lead to major problem : the singularity problem shown in the equation(1)
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linking the angular velocity vector w and the Euler angles proven by [16], (as we notice
when the pitch angle is near to 90° ( π/2) fraction 1/ cos θ is not defined), the physical
interpretation of the this singularity is the gimbal lock [15].

Gimbal lock happens when the axes of two of the three gimbals are pushed into a
parallel configuration, ”locking” the system into rotation in a degenerate two-dimensional
space, resulting in the loss of one degree of freedom in a three-dimensional, three-gimbal
mechanism. Consider a level-sensing platform on a plane heading north with three gimbal
axes that are all perpendicular to each other (i.e., roll, pitch and yaw angles each zero).
When the aircraft pitches up 90 degrees, the yaw axis gimbal on the aircraft and platform
becomes parallel to the roll axis gimbal, and yaw variations can no longer be compensated
for.[17]

Also, both the DCM and Euler angles are methods that consume a huge computation
by solving sine- cosine functions and using the Jacobian for system states.

ϕ̇

θ̇

ψ̇

 =
1

cos θ

cos θ sinϕ sin θ cosϕ sin θ
0 cosϕ cos θ − sinϕ cos θ
0 sinϕ cosϕ

Ω (1)

Problematic : how to get rid of those limitations (Singularities, the Gimble-Lock,
the orthogonality requirement and the heavy computation ) ?

Now we skip to the control laws and algorithms. As we mentioned before the QUAV
system is by nature unstable, so many research have been conducted in recent decades
on the control of rotary-wing flying machines. We present below some control strategies
used in the literature on rotary wing flying models.
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Model Proposed control law/
algorithm Limitations

Newton-Euler

Fuzzy variable
structure control with
sensor based Kalman
filter design.[18]

While tracking, some translational and
angular faults were discovered.
Furthermore, there is a lag in detecting
changes in physical characteristics.

Newton-Euler

Linear active disturbance
with particle swarm
optimization algorithm.
[19]

Overshoots have been reported, as well
as tracking inaccuracies in attitude
angle.

Newton-Euler
Geometric control design
with non- linear disturb-
ance observer. [20]

This work cannot observe and estimate
the non-smooth changes in unmodelled
dynamic factors and produces the
tracking errors.

Newton-Euler
Predictive optimal control
design with disturbance
observer.[21]

The tracking performance is robust,
but only when the payload varies.

Quaternion
-based

Backstepping control
design with nonlinear
reference model.[22]

For modest payload masses, there
is a tiny steady-state error.
This might lead to an increase in
steady-state error.

Newton-Euler

Dual loop integral sliding
mode control with linear
extended state observer
(LESO). [23]

The use of the hyperbolic function
and integral form of SMC results
in an unnecessary delay as well as
a Zeno effect.

Newton-Euler
H-infinity control with
robust compensator
design.[24]

This has a Zeno effect, as well as a
slight divergence off the trajectory.

Table 1.2: control strategies

1.9 Conclusion :

In this chapter, we briefly introduced the historical context associated with the emergence
of the first rotary-wing drones.Different QUAV configurations were mentioned such as X-
Configuration, X-Stretched Configuration, plus-configuration, Y4 configuration and the
V-tail configuration.We have described a number of sensor technologies that make up a
QUAV. Then, we have presented a state of the art concerning the control strategies found
in the literature for this type of machine.
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2.1 Introduction

2.1.1 The quaternion discovery

In 1843 the term quaternion was introduced by the Irish mathematician William Rowan
Hamilton as an extension of complex numbers.

One of Hamilton’s purposes for pursuing three-dimensional complex numbers was to
discover a description of rotation in space that correspond to the complex numbers, where
a multiplication corresponds to a rotation and scaling in the plane.

While walking by the Royal Canal in Dublin on a Monday in October 1843, Hamilton
realized that four numbers are needed to describe a rotation followed by a scaling which
is the solution for the problem of multiplication that he faced when he supposed that
an extended complex number is composed by only three components and written as :
q = s+ xi+ yj.

Hamilton found a closed multiplication for four-dimensional complex numbers of the
form ix + jy + kz, where i2 = j2 = k2 = ijk = −1 . So, he dubbed his four-dimensional
complex numbers quaternions. This event is marked by a plaque at the exact location
into the stone of the bridge [25].

2.1.2 Definition

Quaternions, which belong to the quaternion space H, are hyper complex numbers that
represent rotations in the 3D space, they are widely used instead of Euler angles because
of their simple implementation also they avoid the gimbal blocking problem contrary to
Euler angles.

A Quaternion is a 4x1 matrix which elements consists of a scalar part qs ∈ R and a
vector part q ∈ R3.[15]

q = qs + qxi+ qyj + qzk =

(
qs
q

)
=


qs
qx
qy
qz

 (2.1)

2.2 Quaternion Algebra

2.2.1 Equality and Addition

Two quaternions are equal if and only if they have exactly the same components [26], if
p = p0 + p1i+ p2j + p3k and q = q0 + q1i+ q2j + q3k then p = q if and only if :
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p0 = q0

p1 = q1

p2 = q2

p3 = q3

(2.2)

The sum of the two quaternions p and q is defined as follow :

p+ q = (p0 + q0) + (p1 + q1)i+ (p2 + q2)j + (p3 + q3)k (2.3)

2.2.2 Multiplication

The multiplication of two quaternions q and p is non commutative and performed by a
tensorial product named Kronecker product, denoted as ⊗, the outcome is presented in
the following equation [27]:

q ⊗ p =

(
p0q0 − p · q

q0p+ p0q + q × p

)
=


p0q0 − q1p1 − q2p2 − q3p3
q1p0 + q0p1 + q2p3 − q3p2
q2p0 + q0p2 + q3p1 − q1p3
q3p0 + q0p3 + q1p2 − q2p1

 (2.4)

q ⊗ p =


q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0



p0
p1
p2
p3

 = Q(q)p

q ⊗ p =


p0 −p1 −p2 −p3
p1 p0 −p3 p2
p2 p3 p0 −p1
p3 −p2 p1 p0



q0
q1
q2
q3

 = Q(p)q

(2.5)

We state the following properties of quaternion multiplication [25]:
Let p, q, r ∈ H then :

(p⊗ q)⊗ r = p⊗ (q ⊗ r)

r ⊗ (p+ q) = r ⊗ p+ r ⊗ q

(p+ q)⊗ r = p⊗ r + q ⊗ r

The identity quaternion ,denoted qI , which satisfy q⊗qI = qI⊗q = q, is qI =
[
1 0 0 0

]T
[28].
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2.2.3 The conjugate quaternion

The conjugate denoted q∗ is obtained by inversing the sign of the vector part [15].

q∗ =


qs
−qx
−qy
−qz

 (2.6)

From the definition we can deduce [29]:

(q∗)∗ = q (2.7)

q + q∗ =
[
2q0 0 0 0

]T (2.8)

q∗ ⊗ q = q ⊗ q∗ (2.9)

Given two quaternions q and p :

(p⊗ q)∗ = q∗ ⊗ p∗ (2.10)

2.2.4 Norm

The quaternion norm ||q|| ∈ R is defined in the same way as complex numbers and it’s
given by equation:

||q|| =
√
q ⊗ q∗ =

√
q2s + q2x + q2y + q2z (2.11)

The norm of the product of two quaternions p and q is the product of the individual
norms, for we have [29]:

|pq|2 = (pq)(pq)∗

= pqq∗p∗

= p|q|2p∗

= pp∗|q|2

= |p|2|q|2

(2.12)

A Quaternion with the norm |q| = 1 is called unit quaternion. All quaternions for attitude
representation are unit quaternions [15].

2.2.5 Quaternion’s inverse

To obtain the inverse of a quaternion its conjugate is normalized.

q−1 =
q∗

|q|
(2.13)
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The invers is equal to the conjugate for unit quaternions.

2.2.6 Quaternion Differentiation

Let q(t) be a unit quaternion function, and w(t) a quaternion associated to the angular
velocity of the same sequence of rotation denoted by q, the derivative of q is given by [29]:

q̇ =
1

2
q ⊗ w (2.14)

Proof. At t+∆t, the rotation is described by q(t+∆t). This is after some extra rotation
during ∆t performed on the frame that has already undergone a rotation described by
q(t). This extra rotation is about the instantaneous axis ŵ = w/∥w∥ through the angle
∆ = ∥w∥∆t. It can be described by a quaternion [29]:

∆q = cos ∆θ
2

+ ŵ sin ∆θ

2

= cos ∥w∥∆t
2

+ ŵ sin ∥w∥∆t
2

(2.15)

So the rotation at t+∆t can be described by the quaternion sequence q(t), ∆q

⇒ q(t+∆t) = q(t)⊗∆q (2.16)

After setting this equations we are now ready to obtain the derivative q̇(t). First let
us obtain the difference ( by (2.15) and (2.16) ):

q(t+∆t) =

(
cos ∥w∥∆t

2
+ ŵ sin ∥w∥∆t

2
)

)
q(t)− q(t)

= −2 sin2 ∥w∥∆t
4

q(t) + ŵ sin ∥w∥∆t
2

q(t)

(2.17)

The first term in the last equation above is of higher order than ∆t, thus its ratio to
∆t goes to zero as the latter does. Hence

q̇(t) = lim
∆t→0

q(t+∆t)− q(t)

∆t

= ŵ lim
∆t→0

sin ∥w∥∆t/2
∆t

q(t)

= ŵ
d

dt
sin ∥w∥t

2

∣∣∣∣∣
t=0

q(t)

= ŵ
∥w∥
2
q(t)

=
1

2
q(t)⊗ w(t)

(2.18)
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The solution of this differential equation which represents the trajectory evolution of
a rigid body in the three dimensional space is presented as [28] :

q(t) = q(t0)e
∫

1
2
w(t)dt (2.19)

To calculate e
∫

1
2
w(t)dt we use the third order Taylor series expansion, we note δ =

∫
1
2
w(t)dt

eδ = 1 + δ +
1

2
δ2 +

1

6
δ3 =


1− 1

2
δ2

δ1 − 1
6
δ1|δ|2

δ2 − 1
6
δ2|δ|2

δ3 − 1
6
δ3|δ|2

 (2.20)

2.3 Quaternion Rotation Operator

As seen before a unit quaternion can describe a rotation or a sequence of rotations of a
rigid body by a single rotation around a fixed axis, and it is defined in the form:

q =


qs
qx
qy
qz

 =

[
cos θ

2

e⃗ · sin θ
2

]
(2.21)

Where e⃗ is the normalized rotational axis and θ the angle of rotation.

Multiplying two or more rotation quaternions produces another rotation quaternion
that represents the total rotation. The three quaternion product can be used to rotate a
3D vector from one reference frame to another, but first vectors must be transformed in
quaternions with a scalar part equal to zero [30].[

0

v′

]
= L(q, v) = q ⊗

[
0

v

]
⊗ q∗

where v, v′ ∈ R3 and ||q|| = 1.
The operator L(q, v) is linear as it does not change the magnitude of v.

Figure 2.1: Quaternion operation on vectors
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Note:

Every rotation can be expressed by two quaternions q and q− where

q− =


−q0
−q1
−q2
−q3

 =

[
cos 2π−θ

2

−e⃗ · sin 2π−θ
2

]
=

[
cos (π − θ

2
)

−e⃗ · sin (π − θ
2
)

]
(2.22)

This becomes clear, if we imagine q− as a rotation with angle of 2π−θ and −e⃗ the opposit
axis to q [15].

2.4 Rotation matrix by quaternion

The rotation matrix can be used to identify the orientation of any coordinate system in
the three dimensional space.It provides the transformation from the inertial frame to the
body fixed frame. The rotation matrix is obtained by transforming each axis from the
inertial frame to the body-fixed frame, this result matrix is attained by multiplying the
unit-vector which represent each axis by the quaternion vector that describe the rotation
between the two frames.

Rx(q) = q ⊗


0

1

0

0

⊗ q∗ =

q20 + q21 − q22 − q23
2(q1q2 + q0q3)

2(q1q3 − q0q2)



Ry(q) = q ⊗


0

0

1

0

⊗ q∗ =

 2(q1q2 − q0q3)

q20 − q21 + q22 − q23
2(q3q2 + q0q1)



Rz(q) = q ⊗


0

0

0

1

⊗ q∗ =

 2(q1q3 + q0q2)

2(q3q2 − q0q1)

q20 − q21 − q22 + q23


Rotation matrice expressed in quaternion is given as follow :

R(q) =
[
Rx(q) Ry(q) Rz(q)

]
(2.23)

2.5 Quaternion to Euler Angle conversion

Because of their apparent physical explanation, Euler Angles are still widely used, they
can be defined in many ways depending on the order of rotation.
Let assume that the sequence of rotation is given as XY Z where the first rotation about
X axis is represented by the angle ϕ, then about Y axis by θ and finally about Z axis by
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ψ. [16]

Figure 2.2: XYZ rotation sequence

Then the rotation matrix converting a vector from final frame (x, y, z) to original
frame (X,Y, Z) is given by :

XY
Z

 = RϕRθRψ

xy
z


=

1 0 0

0 cosϕ − sinϕ
0 sinϕ cosϕ

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

cosψ − sinψ 0

sinψ cosψ 0

0 0 1

xy
z


=

 cos θ cosψ − cos θ sinψ sin θ
cosϕ sinψ + sinϕ sin θ cosψ cosϕ cosψ − sinϕ sin θ sinψ − sinϕ cos θ
sinϕ sinψ − cosϕ sin θ cosψ sinϕ cosψ + cosϕ sin θ sinψ cosϕ cos θ

xy
z


(2.24)

comparing element by element the two rotation matrices, the one expressed in quater-
nion and the second one expressed with the Euler angle we can find Euler angles from
the quaternion[16]:

ϕ = tan−1 (
−2(q2q3 − q0q1)

q20 − q21 − q22 + q23
) (2.25)

θ = sin−1 (2(q0q2 + q1q3)) (2.26)

ψ = tan−1 (
−2(q1q2 − q0q3)

q20 + q21 − q22 − q23
) (2.27)

We can solve the preceding system of equations to get quaternion in terms of Euler
angles, but it is tedious to solve. Instead, we can directly construct quaternion from the
knowledge of Euler sequence. For the above sequence, we first represent the quaternions
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for the three rotations as:

qϕ =


cos (ϕ

2
)

sin (ϕ
2
)

0

0

 , qθ =


cos ( θ
2
)

0

sin ( θ
2
)

0

 , qψ =


cos (ψ

2
)

0

0

sin (ψ
2
)


Compounding the rotation as before, i.e.,post-multiplying the local rotations, we get :

q = qϕ ⊗ qθ ⊗ qψ


q0
q1
q2
q3

 =


cos (ϕ/2) cos (θ/2) cos (ψ/2)− sin (ϕ/2) sin (θ/2) sin (ψ/2)

cos (ϕ/2) sin (θ/2) sin (ψ/2) + sin (ϕ/2) cos (θ/2) cos (ψ/2)
cos (ϕ/2) cos (ψ/2) sin (θ/2)− sin (ϕ/2) cos (θ/2) sin (ψ/2)

cos (ϕ/2) cos (θ/2) sin (ψ/2) + cos (ψ/2) sin (θ/2) sin (ϕ/2)

 (2.28)

The above expression can be verified with the NASA documentation [31].

2.6 Conclusion

In this chapter we have presented some generalities about quaternions where we have given
some basic mathematical formulas, then we have defined the quaternion as an operator
for rotation also the relation between Euler angles and quaternions, the results found in
this chapter will be used as tools for the following chapters.
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3.1 Introduction

This section is devoted to modeling and control design for the quadricopter. The modeling
is very important because it enables to describe the behavior of the helicopter and how
it moves according to its inputs. The dynamic model of a quadrotor is built with the
Newton-Euler formalism, it permits to predict the positions and velocities reached by
the helicopter by studying only the four rotors speed. Modeling is important, but at the
same time is not an easy task owing to the complexity of aerodynamic phenomena and
the sensitivity of UAVs to external disturbances. The dynamic models are far from being
exact, leading to difficult problems in the control of the UAV’s.
To tackle these problems we have chosen the active disturbance rejection control (ADRC)
which can handle the two main problems in the quadrotor dynamic description that are
external disturbance and model uncertainty.

3.2 Basic concepts

Here we are interested in the cross configuration, it has six degrees of freedom, three for
the translation, and three for the rotation movement. This structure is robust owing to
its thines and lightness, and the way the four motors are connected [32].

Figure 3.1: quadrotor structure

Aerodynamic characterization of rotary wings: Each rotor possess of a number of
propellers. The propeller is the most influential element most influential element in the
dynamics of rotating wings. Each propeller is related to the motor through the reduction
gears. All the propellers axes of rotation are fixed and parallel. Furthermore, they have
fixed-pitch blades and their air flows points downwards (to get an upward lift). When the
blade is perfectly horizontal (zero incident), the pressure difference between the upstream
and downstream of the profile is zero. The increase in the angle of incidence of the airfoil
leads to an increase in the overall pressure and consequently the lift that is created also
increases. When the profile incidence reaches a certain value, called the stall incidence,
the depression field on the upper surface suddenly decreases and the bypass becomes
turbulent. These different configurations are illustrated by the figure bellow.
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Figure 3.2: Influence of the angle of incidence of the blades on the lift

3.2.1 quadrotor motion

Forward/backward left/right motions are achieved just by pitching or rolling in the de-
sired direction, so to control the motion of a quadcopter it suffices to control the roll,
pitch and yaw motion, these three movements are obtained through a differential control
strategy of the thrust generated by each rotor, In order to avoid the yaw drift due to the
reactive torques the front and the rear propellers rotate counter-clockwise, while the left
and the right ones turn clockwise [33].

Figure 3.3: quadrotor configuration

Hovering

In hover flight, the four propellers rotate at the same speed, a speed that guarantees the
creation of thrust that counterbalance the acceleration due to gravity.

Roll

to achieve this motion left propeller speed must be increased (or decreased) and the right
one decreased (or increased), this difference between the propellers speed creates a torque
with respect to xb axis which makes the quadrotor turn. The roll motion leads to a
translation motion along yb axis.
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Figure 3.4: Roll mouvement

Pitch

similarly to the roll, to achieve pitch motion rear propeller speed must be increased (or
decreased) and the front one decreased (or increased), this difference between the pro-
pellers speed creates a torque with respect to yb axis which makes the quadrotor turn.
The pitch motion leads to a translation motion along xb axis (forward/backward).

Figure 3.5: Pitch mouvement
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Yaw

In order to have a rotation around the zb axis, we increase the speed of the two propellers
that turn in the direction that we want make the quadrotor turn (clockwise or counter-
clockwise), while decreasing the speed of the other two that turn in the opposite direction.

Figure 3.6: Yaw mouvement

3.3 Quadrotor model

Awnsering the problematic mentioned in the first chapter, a quaternion mathematics
approach is used to build our system’s model. Using this approach will results also, in
turning the algebraic structure easier.

For modeling the attitude of the quadrotor the structure has been considered to be
rigid and symmetrical, the centre of gravity and the body fixed frame origin coincide,
the propellers are stiff, and only the differential forces caused by the propellers have an
influence on rotation.

It is known in the literature the orientation of two reference frames may be described
as a single rotation θ, along a unitary axis e⃗ ∈ R3, such rotation is encoded by a unit
quaternion and can be described as

q =

(
q0
q̄

)
=

(
cos θ/2
e⃗ · sin θ/2

)
(3.1)

Remark. As it’s certified that ( q0, q̄ ) and ( −q0,−q̄ ) refer to the same physical point.
Therefore, q0 is chosen to be always positive ( 0 ≤ q0 ≤ 1 ).

In the following, qji signifies the quaternion holding the rotation (θ, e⃗) that makes the
reference frame i coinciding with the frame j when applied to it.

In order to study the movement of a quadcopter two frames have to be defined:
• the inertial frame (I-frame) E:(Oe;xe, ye, ze) which can be treated as an inertial
reference where xe points to the north, ye points to the East and ze points upwards.
• the body-fixed frame (B-frame) B:(Ob;xb, yb, zb) which is fixed to the quadrotor body,
with origin Ob placed in its centre of gravity (CoG), by convention xb is the longitudinal
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axis pointing towards the front of the vehicle, yb defines the lateral axis and points to
the right of the vehicle and zb defines the vertical axis of the vehicle and points upwards.
Because the body-fixed frame translates and rotates with quadrotor, its position and
attitude relative to the Earth-fixed frame determines the flight position and attitude of
the quadrotor [34], both frames are depicted in figure 3.7

Figure 3.7: frames used to describe the movement of the drone

3.3.1 Kinematic Model :

The quadrotor kinematics can be described with the quaternion q̇BI , (3.2) that represent
the rotation from the inertial frame I to the body-fixed frame B :

q̇BI =
1

2
qBI ⊗ wb (3.2)

where wb = (0,Ωb)
T ∈ R4 is a quaternion associated to the body angular velocity Ωb.

The quaternion product ⊗ can be expressed in the following matrix form :

q ⊗ wb =

(
−q̄−T

q0 · I3∗3 + S(q̄)

)
Ω (3.3)

Where S(.) is the skew-symetric operator :

S(q̄) =

 0 −q3 q2
q3 0 −q1
−q2 q1 0

 (3.4)

3.3.2 Dynamic Model :

Newton’s second law can describe the QUAV rotational dynamics, which is given in its
simplest form by [35]

Ω̇ = I−1
cm · τ(t) (3.5)
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Where Ω ∈ R3 is the angular velocity, τ ∈ R3 is the total torque acting on the vehicle
and Icm is the inertia matrix, which is considered to be diagonal.

The applied forces on the QUAV

The weight of the quadrotor Known as :

P = mg (3.6)

Where m is the total mass of the QUAV and g is the acceleration’s gravity .

the lift force Lift is the component of a force that is exerted on an object by a fluid
flowing around it. It is perpendicular to the oncoming flow direction. Lift conventionally
acts in an upward direction in order to counter the force of gravity, but it can act in
any direction at right angles to the flow. It is described by the sum of the thrust forces
generated by each rotor :

Fl = b(w2
r1
+ w2

r2
+ w2

r3
+ w2

r4
) (3.7)

Where b is the lift coefficient, it depends on the shape and number of the blades and
the density of the air. For that we use the rotation matrix R :

Fl = b(w2
r1
+ w2

r2
+ w2

r3
+ w2

r4
)R (3.8)

The drag force The drag force is a force that acts in the opposite direction of the
relative motion of any object moving in relation to a fluid. This force mainly depends on
velocity. It’s expressed by :

Fd = Kd · v (3.9)

Where Kd is a constant matrix called aerodynamic translation coefficient, and v is the
QUAV velocity.

Other forces called disturbance forces, can affects our system :

The Coriolis force : It is an inertial force acting perpendicularly on the direction of
motion of a moving body in a uniform rotating reference frame.

Ground effect : This effect is the consequence of the interaction between the earth
and the air flow circulating through the blades. The ground effect increases as the drone
gets closer to the ground.

According to Newton’s second law :

d(m · v)
dt

= ΣFoutside
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and (3.6), (3.6), (3.6) we get :

m · v̇ = P + Fl + Fd + Fdist (3.10)

The applied torques on the QUAV

The thrust torque The combined impact of the gear ratio with our propeller converts
the torque provided by the engine into thrust. It is expressed by a relation between the
lift force Fl, and l the distance from the propeller’s center to the gravity center of the
QUAV.

Rotation around the x-axis: It is due to the difference in thrust forces between
rotors r2 and rotor r4. This moment is given by the following relation:

Mx = l(Fr4 − Fr2) = lb(w2
r4
− w2

r2
) (3.11)

Rotation around the y-axis: It is due to the difference in thrust forces between
rotors r1 and rotor r3. This moment is given by the following relation:

My = l(Fr1 − Fr3) = lb(w2
r1
− w2

r3
) (3.12)

The drag torque The combined impact of the gear ratio with our propeller converts
the torque provided by the engine into thrust.It is expressed by a relation between the lift
force Fl, and l the distance from the propeller’s center to the gravity center of the QUAV.

Rotation around the z-axis: It is due to the drag torques created by each propeller.
This moment is given by the following relation :

Mz = d(w2
r1
− w2

r2
− w2

r3
+ w2

r4
) (3.13)

where d is the drag coefficient, it depends on the construction of the propellers.

Torque resulting from aerodynamic frictions: it is the moment resulting from
aerodynamic friction, it is determined by :

Maero = KaeroΩ
2 (3.14)

where Kaero is the coefficient of aerodynamic friction and Ω is the angular velocity of the
QUAV.

The gyroscopic torque The simultaneous rotation around two perpendicular axes
generates a third rotation around the axis perpendicular to the previous two. This is
a disturbance moment that induces unwanted rotations of the machine. Our system
contains two types of gyroscopic torques :
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Gyroscopic torque of the propellers :

Mgh = Σ4
i=1Ω ∧ Ir

 0

0

(−1)i+1wri

 (3.15)

where Ir is the rotors inertia matix

Gyroscopic torque due to the QUAV motion :

Mgm = Ω ∧ IcmΩ (3.16)

According to Newton’s second law :

d(IcmΩ)

dt
= ΣMoutside = τ(t)

we get :
τ =Mx +My +Mz −Mgm −Mgh −Maero (3.17)

Translational motion equations

Transnational motion can be described by the following equations :{
ṙ = v

m · v̇ = P + Fl + Fd + Fdist
(3.18)

Reformulating the forces equations, for the adaptation with our system :
The weight force :

P =

 0

0

mg

 (3.19)

The lift force :

Fl = R ·

 0

0

Σ4
i=1Fi

 (3.20)

with Fi = bwri

The drag force :

Fd =

−Kdx 0 0

0 −Kdy 0

0 0 −Kdz

 ṙ (3.21)

Replacing those equations in the system 3.18 we get :
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m

ẌŸ
Z̈

 = R(q)

 0

0

Σ4
i=1Fi

−

Kdx

Kdy

Kdz

ẊẎ
Ż

+

 0

0

mg

 (3.22)

with R(q) is the rotation matrix :

R(q) =
[
Rx(q) Ry(q) Rz(q)

]
=

q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q3q2 − q0q1)

2(q1q3 − q0q2) 2(q3q2 + q0q1) q20 − q21 − q22 + q23


After that we obtain the differential equations that define the translational motion :


mẍ = 2(q1q3 + q0q2)(Σ

4
i=1Fi)−Kdxẋ

mÿ = 2(q3q2 − q0q1)(Σ
4
i=1Fi)−Kdy ẏ

mz̈ = q20 − q21 − q22 + q23(Σ
4
i=1Fi)−Kdz ż

(3.23)

Rotational motion equations

Rotational motion can be described by the following equations :

IcmΩ̇ = Ω ∧ IcmΩ +Mxyz −Maero −Mgh (3.24)

Reformulating the torques equations, for the adaptation with our system :
Thrust and drag torque:

Mxyz =

 l(Fr4 − Fr2)

l(Fr1 − Fr3)

d(w2
r1
− w2

r2
− w2

r3
+ w2

r4
)

 (3.25)

Gyroscopic torque:

Mgh =

Irwrθ̇

Irwrϕ̇

0

 (3.26)

with wr = wr1 − wr2 − wr3 + wr4

Torque resulting from aerodynamic frictions:

Mgh =

Krxϕ̇
2

Kry θ̇
2

Krz ψ̇
2

 (3.27)

Replacing those equations in the system 3.24 we get :
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Ix 0 0

0 Iy 0

0 0 Iz

ϕ̈θ̈
ψ̈

 =

ϕ̇θ̇
ψ̇

∧
Ix 0 0

0 Iy 0

0 0 Iz

ϕ̇θ̇
ψ̇

−
Krxϕ̇

2

Kry θ̇
2

Krz ψ̇
2

−
Irwrθ̇Irwrϕ̇

0

+
 lb(w2

r4
− w2

r2
)

lb(w2
r1
− w2

r3
)

d(w2
r1
− w2

r2
− w2

r3
+ w2

r4
)


This equation leads us to differential equations that define the rotational motion :

Ixϕ̈ = θ̇ψ̇(Iz − Iy)−Krxϕ̇
2 − Irwrθ̇ + lb(w2

r4
− w2

r2
)

Iyθ̈ = ϕ̇ψ̇(Iz − Ix)−Kry θ̇
2 − Irwrϕ̇+ lb(w2

r1
− w2

r3
)

Izψ̈ = ϕ̇θ̇(Iy − Ix)−Krz ψ̇
2 + d(w2

r1
− w2

r2
− w2

r3
+ w2

r4
)

(3.28)

According to the equations that define the translation and rotation of the system, we
can describe the dynamics of the QUAV as follows :

ϕ̈ = θ̇ψ̇ (Iz−Iy)
Ix

− Krx

Ix
ϕ̇2 − Irwr

Ix
θ̇ + l

Ix
u2

θ̈ = ϕ̇ψ̇ (Iz−Ix)
Iy

− Kry

Iy
θ̇2 − Irwr

Iy
ϕ̇+ l

Iy
u3

ψ̈ = ϕ̇θ̇ (Iy−Ix)
Iz

− Krz

Iz
ψ̇2 + 1

Iz
u4

ẍ = 1
m
uxu1 − Kdx

m
ẋ

ÿ = 1
m
uyu1 −

Kdy

m
ẏ

z̈ = 1
m
uzu1 − Kdz

m
ż

with
ux = 2(q1q3 + q0q2)

uy = 2(q3q2 − q0q1)

uz = q20 − q21 − q22 + q23

We define the command vector U :

U =
[
u1 u2 u3 u4

]
where

u1 = b(w2
r1
+ w2

r2
+ w2

r3
+ w2

r4
)

u2 = b(w2
r4
− w2

r2
)

u3 = b(w2
r1
− w3

r2
)

u4 = d(wr1 − wr2 − wr3 + wr4)
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We can rewrite those equations in a matrix form :
u1
u2
u3
u4

 =


b b b b

0 −b 0 0

b 0 −b 0

d −d −d d



w2
r1

w2
r2

w2
r3

w2
r4

 (3.29)

3.3.3 State space representation

We take the following vector as a state vector :

ξ =

[
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
x11 x12

]
=

[
ϕ ϕ̇ θ θ̇ ψ ψ̇ x ẋ y ẏ

z ż

]

That leads us to the following state space representation :

f(ξ, U) = ξ̇

and :

f(ξ, U) =



x2
a1x4x6 + a2wrx4 + b1u2 − c1x

2
2

x4
a3x2x6 + a4wrx2 + b2u3 − c2x

2
4

x2
a5x2x4 + b3u4 − c3x

2
6

x8
1
m
uxu1 − c4x8

x10
1
m
uyu1 − c5x10

x12
1
m
uzu1 − c6x12


with

a1 =
(Iz−Iy)
Ix

; a2 = (Ir)
Ix

;a3 = (Iz−Ix)
Iy

;a4 = (Ir)
Iy

;a5 = (Iy−Ix)
Iz

b1 =
l
Ix

; b2 = l
Iy

; b3 = 1
Iz

c1 =
Krx

Ix
; c2 =

Kry

Iy
; c3 = Krz

Iz
; c4 = Kdx

m
; c5 =

Kdy

m
; c6 = Kdz

m
;
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3.4 Proposed control scheme

To control the quadrotor attitude a control scheme consists of a cascade connection be-
tween two loops is proposed, where the outer loop also known as kinematic loop which
takes as input the output of the dynamic loop and ensure the trajectory tracking where the
vehicle orientation converge to the desire orientation, and generates a reference angular
velocity that must be tracked by the dynamic loop which in its turn fulfils this task due
to the controller used which is the active disturbance rejection control. The two control
loops are depicted in figure(3.8) and developed next.

Figure 3.8: proposed control scheme

The dynamic loop must be faster (with a larger bandwidth) than the kinematic loop
in order to make the connection possible between the two loops. The control parameters
for that purpose must then be chosen.

3.4.1 Kinematics loop

The outer loop comprises essentially two elements that are the kinematic model which
provides the quaternion qBI noted qb, representing the orientation of the vehicle, based on
the angular velocity Ωb coming from the dynamic loop and satisfying:

q̇BI = q̇b =
1

2
qb ⊗ wb (3.30)

where wb = (0; Ωb)
T .

The second part of the outer loop is the kinematic control that guarantees the trajectory
tracking. This outer loop is presented in the following scheme.
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Figure 3.9: Kinematic loop scheme

Problem

Given a reference frame, B, in an arbitrary initial orientation, which can be rotated with
an angular velocity Ωb satisfying (3.30), and the desired orientation of the vehicle is given
by a feasible trajectory qDI (noted qd) of a virtual desired reference frame D, which also
must satisfy:

q̇DI = q̇d =
1

2
qd ⊗ wd (3.31)

where wd = (0,Ωd)
T , and Ωd is the angular velocity of the desired reference frame.

find a control law Ωb(qb, qd,Ωd) such that the error between qd and qb noted qe is driven
to qe = (1, 0, 0, 0).
qe known also as qBD is defined as the relative orientation error between B and D, and can
be obtained as:

qBD = (qDI )
∗ ⊗ qBI =

(
qe,0
q̄e

)
(3.32)

Differentiating (3.32) leads to:
q̇BD =

1

2
qBD ⊗ w̃ (3.33)

with w̃ = (0, Ω̃) = wb − (qBD)
∗ ⊗ wd ⊗ qBD

As a solution for the problem above and to ensure a trajectory tracking where qb
converge to qd i.e. qe tends to

[
1 0 0 0

]T a non-linear quaternion-based control law is
designed. It takes qd, wd, qb as inputs, and generates a reference angular velocity, Ωr, for
the dynamic control system.this angular velocity is the one that make the vehicle behave
as we want him to do.

The pure attitude kinematic control problem neglects the system dynamics, it is as-
sumed that Ωb tracks Ωr instantly (Ωb = Ωr).
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Knowing qb ,qd and ωd (or q̇d ), the kinematic control low is given as [36] :

w′
d = (qe)

∗ ⊗ wd ⊗ qe = (0,Ω′
d)
T

Ωb = −Kkq̄e + Ω′
d

(3.34)

w′
d is obtained from the differentiation of equation (3.32) and represents the transfor-

mation of the vector w⃗d from the reference frame D to the body fixed frame B.
Using the controller presented in (3.34), the attitude error qe converge exponentially to

(1, 0, 0, 0)

Proof. [36]
As wb = (0,Ωb)

T and w′
d = (qe)

∗ ⊗ wd ⊗ qe = (0,Ω′
d)
T , then wb − w′

d = (0,Ωb − Ω′
d)
T =

(0, Ω̃)T .

Therefore Ω̃ = Ωb − Ω′
d. In order to demonstrate that qe converges to

[
1 0 0 0

]T
the following Lyapunov candidate function is considered :

V = (1− qe,0)
2 + (q̄e)

T q̄e ≥ 0 (3.35)

Where V = 0 if, and only if, qe,0 = 1 and q̄e = 0. With the quaternion product matrix
representation(3.4), and model (3.33) its time derivative takes the form:

V̇ = (1− qe,0)(q̄e)
T Ω̃ + (q̄e)

T (qe,0I3 + S(q̄e))Ω̃

V̇ = (q̄e)
T Ω̃

Taking Ω̃ = −Kkq̄e :

V̇ = −Kk(q̄e)
T q̄e ≤ 0 (3.36)

So under Ω̃ = −Kkq̄e ⇔ ωb = −Kkq̄e + Ω′
d, it can be concluded that the system is

asymptotically stable. Now, lets prove the exponential convergence. Since 0 ≤ qe,0 ≤ 1

and ||q|| = 1, V and V̇ can be expressed as :

V = 2(1− qe,0) ≤ 2 (3.37)

V̇ = −Kk(1− q2e,0) (3.38)

With equation (3.37),(3.38) the Lyapunov function can be written in the form :

V̇ = −KkV +Kk
V 2

4
= −KkV + g(V )

g(V ) is upper bounded by (Kk/2)V in the region V ≤ 2, so:

V̇ = −KkV + g(V ) ≤ −KkV +
−Kk

2
V ≤ −Kk

2
V
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Therefore
V (t) ≤ V (0) · e−(

−Kk
2

)t (3.39)

and the exponential convergence is proved.

3.4.2 Dynamic loop

The inner loop controller has been proposed to keep track of the target angular velocity
wr delivered by the outer loop, where it takes as input the reference angular velocity wr
also the measured wb and generates the command u (torques), as illustrated in the figure
(3.10), that force the dynamic model to follow the reference velocity which will lead to
track the desired trajectory, but the dynamics of UAV is very complex and presents non
linearities and uncertainties in its model also external disturbances which can come into
play, to deal with these problems and difficulties several control laws have been adopted,
However, by examining the current solutions for quadrotor control, the following limi-
tations can be identified. PID controllers’ tolerance to model uncertainty and unknown
disturbances are frequently limited. In addition, the LQR and MPC approaches are po-
tential choices, but their effectiveness is greatly dependent on the correctness of the plant
model. Furthermore, robust control such as sliding-mode control and backstepping pro-
vide a solution for reducing the effect of external disturbances, but their complex nature
makes them difficult to put into reality.
The indicated control methods for quadrotors may not demonstrate a suitable level of
resilience and adaptability in circumstances of highly nonlinear and uncertain quadrotor
models, strong couplings, and influence of variable disturbances. As a result, a robust
control method based on active disturbance rejection control (ADRC) can be employed
to handle the difficult challenge of quadrotor control. [34]

Figure 3.10: Dynamic loop scheme

In what follows the Active Disturbance rejection control is explained in depth.

Active Disturbance Rejection Control

ADRC was established by J. Han in 1998 for the aim of enriching the essence of PID
control and sheds its limitations. The concept behind ADRC is to estimate in real time the
total disturbance, which lumps parameter uncertainty, nonlinear dynamics, and external
disturbances, using a dedicated observer [extended state observer (ESO)] then mitigates
this total disturbance in the feedback control inputs. without the needs for a rigorous
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mathematical model the control paradigm is shifted from model-centric to control-centric.

Roughly speaking, the ADRC is composed of three parts. The first part is the tracking
differentiator (TD) which extracts the derivative of reference signal, note that in the PID
controller used in most of industrial control systems, the derivative action “D” is seldom
used because of it’s sensitive to high frequency noise. In ADRC, TD serves not only as the
derivative extractor, but also as a transient profile that the output of plant can reasonably
follow to avoid setpoint jump in PID. The second part, the most important part, is the
extended state observer (ESO). As a generalization of the classical state observer in control
theory, the ESO provides estimates of both state and total disturbance in terms of output.
The last part of ADRC is the TD and ESO based output feedback control which achieve
output tracking, which specializes to system stabilization when the reference signal is zero
[37].

Tracking differentiator

First Let’s start with introducing the TD.
Let f : Rn → R be a locally Lipschitz continuous function, with f(0) = 0 . Suppose that
the zero-equilibrium state of the following reference-free system is globally asymptotically
stable: 

ẋ1(t) = x2(t)

ẋ2(t) = x3(t)
...

ẋn(t) = f(x1(t), x2(t), . . . , xn(t))

(3.40)

For any given initial value. If the reference signal v(t) is differentiable and satisfies

supt∈[0,∞)|v(n+1)(t)| <∞, then tracking differentiator is designed as follow [37]:
ż1R(t) = z2R(t)

ż2R(t) = z3R(t)
...

żnR(t) = Rnf(z1R(t)− v(t), z2R(t)
R

, . . . , znR(t)

R(n−1) )

(3.41)

TD converges in the sense that for every a > 0, limR→∞ |z1R − v(t)| = 0 uniformly on
[a,∞). This result was first proved in [38].

in control practice, The setpoint v(t) is frequently presented as a step function, which
is inappropriate for most dynamics systems because it asks the output, and therefore the
control signal, to make an abrupt jump [39]. Tracking differentiator comes as a solution
to this problem where the output track z1R(t) instead of v(t). Other variables produced
from TD (3.41) are considered as the derivatives of v(t) : ZiR(t) ≈ v(i−1)(t) in the sense
of generalized derivative.
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Extended State Observer

An ESO is an observer that can estimate the system’s uncertainties as well as its states,
allowing disturbance rejection or compensation. The ESO considers all system elements,
including parameter uncertainty, nonlinear dynamics, and external disturbances, as the
total disturbance and treat it as an extended state; this is why it is named extended state
observer. Its advantage consists in the independence of the system’s mathematical model,
and the good performance and simplicity of the implantation.[40] The idea of ESO can

be demonstrated in the following single-input and single-output system:{
ẋ(n)(t) = f(x(n−1)(t), x(n−2)(t), . . . , x(t), d(t), t) + bu(t)

y = x(t)
(3.42)

where n is the order of the plant, y is the output, u is the input, b is a constant, d(t) is
the external disturbance, f(·) is an unknown function which can be viewed as the total
uncertainties or disturbances of the system, both internal and external. Introduce h = df

dt
,

if the function f is nonsmooth, h denotes the generalized derivative of f(·).
The extended form of the system (3.42), where the uncertainty f as an extended state
and noted as Xn+1, is given as:

ẋ1(t) = x2(t)
...

ẋn−1(t) = xn(t)

ẋn(t) = xn+1(t) + bu(t)

ẋn+1(t) = h

(3.43)

The ESO that estimate both the states and total disturbance (the extended state) is
defined as follow [41]:

ż1(t) = z2(t)− β1fal(e1, α1, δ)
...

żn−1(t) = zn(t)− βn−1fal(e1, αn−1, δ)

żn(t) = zn+1(t)− βnfal(e1, αn, δ) + bu

żn+1(t) = −βn+1fal(e1, αn+1, δ)

(3.44)

Where e1 = z1 − x1 the observer error and βi (i = 1, . . . , n+ 1) the gain observer.
The function fal is defined as follow:

fal(e, α, δ) =

{
|e|αsign(e), |e| > δ

e/δ1−α, otherwise
(3.45)

Where 0 ≤ α ≤ 1 and δ > 0

ESO (3.44) is designed to have the property zi(t) → xi(t) (i = 1, . . . , n + 1), it should
be noted that when αi = 1 (i = 1, . . . , n + 1) , (3.44) take the form of the classical
Luenberger Observer. On the other hand when αi = 0 (3.44) is consistent with the
sliding mode observer.
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The linear form of ESO which is the linear extended state observer (LESO) is given as :

ż1(t) = z2(t)− β1e1
...

żn−1(t) = zn(t)− βn−1e1
żn(t) = zn+1(t)− βne1 + bu

żn+1(t) = −βn+1e1

(3.46)

In [41] it was proved that if f is differentiable with respect to t and h = ḟ is bounded,
then the LESO can estimate f(t) with bounded error.
Since y = x1 is available, only the estimation of xi, i ≥ 2 are needed. Hence, we will use
the reduced-order ESO [42] :

ż2 =

{
−β1z2 − β2

1x1 − β1bu(t), if n = 1,

−β1z2 + z3 + (β2 − β2
1)x1, if n > 1

ż3(t) = −β2z2 + z4 + (β2 − β1β3)x1
...

żn(t) = −βn−1z2 + zn+1 + (βn − β1βn−1)x1 + bu(t)

żn+1(t) = −βnz2 − β1βnx1
x̂i = zi + βi−1x1, i = 2, . . . , n+ 1

(3.47)

The characteristic polynomial of (3.47) is given as :

sn + β1s
n + . . .+ βn = sn +

n∑
i=1

βis
n−i (3.48)

Proof. To prove the precedent result we assume that n > 1 in (3.47), taking the first line
ż2 = −β1z2 + z3 + (β2 − β2

1)x1,

differentiating ż2 leads to:

z
(2)
2 = −β1ż2 + ż3 + (β2 − β2

1)ẋ1

z
(2)
2 = −β1ż2 + ż3 + f(ẋ1)

Replacing ż3 with its expression from (3.47) gives :

z
(2)
2 = −β1ż2 − β2z2 + z4 + f(ẍ1, ẋ1)

Differentiation ż2 for the second time and replacing ż4 with its expression from (3.47):

z
(3)
2 = −β1z(2)2 − β2ż2 − β3z2 + z5 + f(x

(3)
1 , ẍ1, ẋ1)

Repeating the same procedure n times,i.e differentiates ż2 i times and in each time we
derive ż2 we replace żi+1 by its expression, we obtain :

z
(n)
2 = −β1z(n−1)

2 − β2z
(n−2)
2 − . . .− βnz2 + f(x1, ẋ1, . . . , x

(n)) (3.49)
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By doing the Laplace transform of the equation (3.49) we get:

snz2 = −β1sn−1z2 − β2s
n−2z2 − . . .− βnz2 + f(x1)

z2(s
n + β1s

n−1 + β2s
n−2 + . . .+ βn) = f(x1)

x1 is an input to the observer, then

z

f(x1)
=

1

sn + β1sn−1 + β2sn−2 + . . .+ βn
(3.50)

.

The parameters βi are chosen in such way as sn + β1s
n + . . .+ βn = (s+ w0)

n, where
w0 denotes the bandwidth of the LRESO (3.47).
Note that the inputs to ESO are the system output y and the control signal u, and
the output of the ESO provides the important information f(t) representing the total
disturbance.

output feedback control

The third and the last link of ADRC is to design an extended state observer-based output
feedback control:

U(t) = −B−1(x̂n+1 + U0(t, x̂1, . . . , x̂n)) (3.51)

It is seen that the term x̂n+1 in controller (3.51) is used to cancel the total disturbance,
and U0(t, x̂1, . . . , x̂n) is the control law which can achieve the satisfactory performance for
the canonical system (3.43) [43].

LADRC applied on quadrotor control

Even though the dynamics of uav is completely described in (3.24), it should be noted
that none of its terms is accurately known. for example, the dependence of matrix Maero

on aerodynamic coefficients that are very difficult to model, the external disturbance p(t)
. Even the Coriolis term is uncertain because it depends on the inertia matrix which is
uncertain too. In the light of the arguments raised above, it is important to use a control
that does not depend on the model and that takes into account its uncertainties and
unmodeled dynamics, and for this we have chosen the Linear active disturbance rejection
control. From (3.24) the quadrotor dynamic model can be written in general form as:

Ω̇b = d(t) + f(Ω, t) +Bu(t) (3.52)

where d(t) = −I−1
cmp(t), B = −I−1

cmM and f contains the rest of nonlinear and unknown
dynamics.
In purpose of tracking the reference signal Ωr(t) and for control design we define the error
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model x1 as x1 = Ωb–Ωr. Differentiating x1 leads to:

ẋ1 = Ω̇b–Ω̇r = f(Ω, t) +Bu(t) + d(t)− Ω̇r (3.53)

Ω̇r is considered as an unknown disturbance and thus d̃(t) = d(t)− Ω̇r. (3.53) becomes :

ẋ1 = f(Ω, t) +Bu(t) + d(t) + d̃(t) (3.54)

The model (3.54), which retains the information of the certainly known dynamics, will be
used for control design purposes.
First we begin by establishing the extend state observer, Let us define B̄ = diag(b̄1; b̄2; b̄3)

as an estimation of B. Since B;B̄ are diagonal, the system (3.54) can be seen as three
second-order subsystems. The attitude model is rewritten as:

Ω̇bx = b2U2 + f1(Ω, t) + d̃x
Ω̇by = b3U3 + f2(Ω, t) + d̃y
Ω̇bz = b4U4 + f3(Ω, t) + d̃z

(3.55)

Therefore, the design of the LADRC can be reduced to a single axis, the results being
equal for the other two. For the axis i = x; y; z and including the unknown disturbances
as an extended state x2,i, the model (3.54) becomes:

ẋ1,i = x2,i + b̄iui
ẋ2,i = hi(Ωb,i, ui, t)

ym,i = x1,i = Ωb,i − Ωr,i

(3.56)

Where x1,i ∈ R, x2,i = fi(Ωb,i, t) + d̃i(t) + (bi− b̄i)u ∈ R and hi(Ωb,i, ui, t) the time deriva-
tive of f .
As the angular velocity Ωb is measured and the reference velocity Ωr is known, x1,i is avail-
able and only the estimation of x2,i is needed. So the following linear reduced extended
state observer will be used:{

ż2,i = −βz2,i − β2x1 − βb̄iui(t)

x̂2,i = z2,i + βx1,i
(3.57)

Since n=1 and as it has mentioned above in (3.48), the characteristic polynomial of (3.57)
is (s+β) being β > 0 the bandwidth of the RLESO. The initial condition must be chosen
to force x̂2,i(0) = 0, so z2,i(0) = −βx1,i(0).

As the total disturbance has been estimated in (3.57), we move to the third element
in ADRC which is the output feedback control, it is designed in such way that the total
disturbance is canceled and the error model x1,i converges exponentially to zero. For that
aim ui is given as :

ui =
−kdx1,i − x̂2,i

b̄i
(3.58)

where kd > 0 is the feedback control gain.
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If we replace (3.58) in (3.56) we get :

ẋ1,i = −kdx1,i =⇒ x1,i = x1,i(0)e
−kdt (3.59)

From (3.59) when t is sufficiently big x1,i tends to zero, as x1 = Ωb–Ωr , x1,i → 0 =⇒
Ωb → Ωr. Then using the active disturbance rejection control the convergence of the
system dynamics to the desired dynamics is ensured and model uncertainty and external
perturbations are rejected.
We give the ADRC scheme bellow ( figure 3.11):

Figure 3.11: Block diagram of the LADRC structure

To avoid overshoot in system response and the setpoint jump i.e to ask a system to
do a sudden jump and rather than tracking differentiator (TD) we use a low pass filter
given by the following transfer function :

F (s) =
10

s+ 10
(3.60)

Instead of tracking a step the system will track the output of the low pass filter y(t)
calculated as:

F (s) =
Y (s)

U(s)
=

10

s+ 10
=⇒ Y (s) =

10U(s)

s+ 10
.

where U is a step with amplitude A , U(s) = A
s
.

Y (s) =
10A

s(s+ 10)
=
A

s
− A

s+ 10

y(t) = A− Ae−10t = A(1− e−10t)

The term e−10t prevents the output from doing a sudden jump from 0 to A and it tends
to 0 making the output y(t) = A.

3.5 Conclusion :

A quaternion model for the quadrotor vehicle is presented in this chapter. The usage of
quaternions eliminates undesired effects on the system such as the gimbal-lock or discon-
tinuities, which are common problems using traditional approaches.In addition, ADRC
control structure has been proposed for a quadrotor.The key contribution is a cascade
control with an external loop managing the quaternion-based quadrotor kinematics. The
internal loop, constructed utilising ADRC principles, takes into account the quadrotor’s
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uncertain dynamic model and rejects external disturbances. Overall, it enables quadrotor
flight control without singularities.
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4.1 Introduction

Numerous spacecraft missions need the capacity to estimate the spacecraft’s attitude, and
many methods for estimating attitude based on sensor data exist. Sensor data from a
magnetometer, a sun sensor, a star camera, a horizon-crossing indication, and a three-
axis rate gyro, for example, can be employed (As we mentioned in the first chapter). To
process the data, many algorithms may be utilised. All three-axis attitude estimation
issues are nonlinear by definition. There are several strategies for dealing with generic
nonlinear estimates as well as the specific non-linearities connected with attitude estima-
tion. However, there is no one algorithm that is guaranteed to find the globally optimal
attitude estimate for all possible nonlinear attitude determination problems. There is a
special attitude determination problem for which a globally optimal nonlinear solution
exists: Wahba’s problem [44].

Instead of filtering approaches that use knowledge about spacecraft dynamics, this
study will look at algorithms for predicting spacecraft attitude using vector measurements
acquired at a single moment, sometimes known as ”single-frame” or ”point” methods.
Almost all single-frame algorithms are based on a problem that Grace Wahba proposed
in 1965 [45, 46].

4.2 Wahba’s problem

The Wahba problem, seeks the proper orthogonal matrix (attitude matrix ) A with de-
terminant +1 which minimizes the loss function [47] :

L(A) =
1

2

∑
i

ai
∣∣bi − Ari

∣∣2 (4.1)

where bi is a set of unit vectors measured in a spacecraft’s body frame; ri are the
corresponding unit vectors in a reference frame, and ai are non-negative weights. In order
to relate Wahba’s problem to Maximum Likelihood Estimation, the weights are selected
to be inverse variances, ai = σ−1

i . This departs from Wahba’s and many other authors’
assumptions, which assumed the weights are normalised to unity. According to [46], the
loss function can be written as :

L(A) = λ0 − tr(ABT ) (4.2)

with λ0 ≡
∑
i

ai

and B ≡
∑
i

aibir
T
i

Consequently, L(A) is minimized when the trace, tr(ABT ), is maximized. This is similar
to the orthogonal Procrustes problem, which is to identify the orthogonal matrix A that
is closest to B in the Frobenius norm [46].
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∥M∥2F ≡
∑
ij

M2
ij = tr(MMT ) (4.3)

Now

∥A−B∥2F = ∥A∥2F + ∥B∥2F − 2tr(ABT ) = 3 + ∥B∥2F − 2tr(ABT ) (4.4)

The choice of the A’s determinant equal to +1 has lead Wahba’ problem to be equiv-
alent to the orthogonal Procrustes problem.

We present below some Wahba’s problem solutions.

4.3 Wahba’s problem solutions

Attitude determination methods are roughly divided into two categories: static and dy-
namic. Static methods are time independent, all measurements (e.g. sun vector, magnetic
field vector, etc.) are made simultaneously or close enough in time that spacecraft mo-
tion between observations can be ignored or easily compensated. This is a deterministic
method that does not require information about past states. The problem then is to
resolve the geometry of these measurements in the body frame and compare them with
the corresponding known descriptions in the inertial frame.[48]
Dynamic attitude determination methods not only consider motion and are therefore
time-dependent, but also they do not treat the measurement as a deterministic process,
but as a process in the presence of random noise, which requires statistical methods. Fil-
tering techniques such as the Kalman filter are used to organize information from past
and actual measurements, knowledge of spacecraft motion, and possible errors in the sys-
tem dynamics model. Due to the statistical nature of these methods, the results are best
called attitude ”estimates” rather than ”determinations”. [48]

4.3.1 Static Attitude Determination Methods

First Solution of Wahba’s Problem

J. L. Farrell and J. C. Stuelpnagel presented the first solutions of Wahba’s problem.
Farrell and Stuelpnagel noted that any real square matrix, including B, has the polar
decomposition

B = WR (4.5)

R is symmetric and positive semidefinite, while W is orthogonal. R may then be
diagonalized by

R = V DV T (4.6)

where V is orthogonal and D is diagonal with elements arranged in decreasing order. The
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optimal attitude estimate is then given by

Aopt = WV diag
[
1 1 detW

]
V T (4.7)

In most cases, det W is positive and Aopt = W , but this is not guaranteed. For that
R. H. Wessner proposed the alternative solution

Aopt = (BT )−1(BTB)1/2 = B(BTB)−1/2 (4.8)

This equation requires the B matrix to be non-singuliar, this implies that at least three
vectors must be observed,however it is commonly known that determining the attitude
requires only two vectors.

Davenport’s q Method [46]

Davenport gaves the first practical solution to Wahba’s problem of determining spacecraft
attitude. He used a unit quaternion to parameterize the attitude matrix.(as mentioned
in 2)
As

A(q) = (q2s − ∥q̄2∥)I3×3 + 2q̄q̄T − 2qsS(q̄) (4.9)

Since A(q) is a homogeneous quadratic function of q, we can write

tr(ABT ) = qTKq (4.10)

Where K is the symmetric traceless matrix

K =

(
S − Itr(B) z

zT tr(B)

)
(4.11)

with

S ≡ B +BT and z ≡

B23 −B32

B31 −B13

B12 −B21

 =
∑
i

aibi × ri

The quaternion maximising right side of equation (4.10) represents the optimal atti-
tude. The optimal quaternion is equal to the normalised eigenvector of K with the largest
eigenvalue, i.e. the solution of

Kqopt ≡ λmaxqopt (4.12)

With equations (4.2) and (4.10), we get the optimized loss function

L(A) = λ0 − λmax (4.13)
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The eigenvalues of the K matrix, λmax ≡ λ1 ≤ λ2 ≤ λ3 ≤ λ4 ≡ λmin, are related to
the singular values by [46]

λ1 = s1 + s2 + s3, λ2 = s1 − s2 − s3,

λ3 = −s1 + s2 − s3, λ4 = −s1 − s2 + s3

Because K is traceless, the eigenvalues sum to zero. If the two largest eigenvalues of
K are equal, or S2 + S3 = 0, there is no unique solution. This does not indicate a failure
of the q method; rather, it indicates that the data are insufficient to establish the attitude
uniquely.
The disadvantage of this method is the necessity of calculating the eigenvectors and
eigenvalues of a four by four matrix, which may be demanding in terms of computational
resources [48].

4.3.2 Dynamic attitude estimation methods

Kalman Filter (KF)

The Kalman Filter (KF) is an iterative algorithm that distinguishes between noise and
useful information. KF can be used to obtain better estimates from noisy measurements.
For this, the algorithm needs additional information, some from knowledge about the
process, for example in the form of equations of motion, and some from other observa-
tions/measurements.
One major assumption in KF is that process and measurement uncertainties are white
noises, i.e., Gaussian distributions with known covariances and mean values equal to zero.
Another important assumption is that the process, transition, or system dynamic model
is linear and takes the form [48] :

xk+1 = ηkxk + µk (4.14)

Where xk is the state vector; ηk is the linear transition matrix and µk is the noise vector
that represents the uncertainty in the transition model, it has a zero mean value and Qk

as covariance matrix.

E[µk] = 0; E[µkµTi ] =
{
Qk, i = k

0, i ̸= k

The measurement or observation model is considered to be linear as well, and it may be
described as follows:

zk+1 = Hkxk + nuk (4.15)

Where zk is the observation (measurement) vector, Hk is a linear observation matrix
that shows the relation between the state vector and the observation performed. µk is
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the noise vector that represents the uncertainty in the measurement model, it has a zero
mean value and Rk as covariance matrix.

E[νk] = 0; E[νkνTi ] =
{
Rk, i = k

0, i ̸= k

Covariances Qk and Rk are assumed to be known and noises µk and νk are independent
in relation to each other.
The outcome of the KF algorithm is an estimate of the state vector x̂k for each time step
k and its pertaining probability distribution expressed in terms of the estimate covariance
matrix Pk.
The estimate covariance matrix, also known as the estimate error covariance matrix P ,
indicates how reliable the estimate is. It can be described as :

erk = xk − x̂k
Pk = E[erke

T
rk
]

Where erk is the estimate error.

The Kalman filter has two stages: the propagation or prediction stage, which employs
process equations to anticipate the state for the next time step, and the update stage,
which trims the estimates using measurement data. The order of these two steps is arbi-
trary because this is an iterative process. Only the information from the previous time
step is required because it is a recursive procedure.
The iterations of the Kalman loop are shown below, along with their corresponding equa-
tions.

0. Best initial estimate:

x̂−0 ; P−
0

1. Compute the Kalman gain:

Kk = P−
0 H

T
k (HkP

−
0 H

T
k +Rk)

−1

2. Update estimate with the measurement zk :

x̂0 = x̂−0 +Kk(zk −Hkx̂
−
0 )

3. Update the error covariance estimate:

Pk = (I −KkHk)P
−
k

4. Project ahead the estimate :

x̂−k+1 = ηkx̂k

5. Project ahead the error covariance:
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P−
k+1 = ηkPkη

T
k +Qk

6. Return to step 1

4.4 Conclusion

In this chapter the cruciality of the attitude estimation in the control loop was pre-
sented. This attitude estimation was expressed in a mathematical way under the name of
Wahba’s problem, by Grace Wahba in 1965. This problem has many solutions over the
years. In this study,J. L. Farrell and J. C. Stuelpnagel solution was presented, how-
ever this solution has a major drawback, which is singularities. For that Davenport’s q
methode has been introduced. both of these two solutions are called Static Attitude
Determination Methods. On the other hand, the Kalman Filter, which is a Static
Attitude Determination Method has been presented. This latter method is known
as one the most utilised algorithms in attitude estimation.
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5.1 Quanser 3 DOF Hover [1]

the quanser 3 DOF is a simulation platform which allows to test the commands developed
to pilot a quadrotor and to visualize the performances of this command used, before
applying it on a real QUAV.
The 3 DOF Hover consists of a planar round frame with four propellers. The frame is
mounted on a three degrees of freedom pivot joint that enables the body to rotate about
the roll, pitch and yaw axes. The propellers are driven by four DC motors that are
mounted at the vertices of the frame. The propellers generate a lift force that can be used
to directly control the pitch and roll angles. Two of the propellers are counter-rotating,
so that the total torque in the system is balanced when the thrust of the four propellers
is approximately equal.

Figure 5.1: 3 DOF Hover

5.1.1 3 DOF Hover model

The 3 DOF Hover modeling conventions used are:

• The 3 DOF Hover is horizontal (i.e., parallel with the ground) when the pitch and
roll angles are zero, θp = 0 and θr = 0.

• Yaw angle increases positively, θ̇y(t) > 0 when the body rotates in the counter-
clockwise (CCW) direction.

• Pitch angle increases positively, θ̇p > 0 when rotated CCW.

• roll angle increases positively, θ̇r > 0 when rotated CCW.

A positive thrust force is generated when a positive voltage is delivered to any motor,
which causes the matching propeller assembly to rise. The thrust force generated by
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the front, back, right, and left motors are denoted by Ff , Fb, Fr, and Fl, respectively.
The front and back motors’ thrust forces mostly control motions around the pitch axis,
while the right and left motors mainly move the hover around its roll axis. Notice that
the pitch angle increases when the thrust force from the front motor is larger than back
motor Ff > Fb. The roll angle increases when the thrust force from the right motor is
larger than the left motor, Fr > Fl.
The dynamics for each axis can be described by the general equation:

Jiθ̈i = L∆F (5.1)

where θi (i=roll, pitch, yaw ) is the angle of the pivot, L is the distance between the
propeller motor and the pivot on the axis, J is the moment of inertia about the axis, and
∆F is the differential thrust-force.
The 3 DOF Hover model is given as follow :

Jrθ̈r = LKf (Vr−Vl)
Jpθ̈p = LKf (Vf−Vb)
Jyθ̈y = Kt(Vr + Vl)−Kt(Vf + Vb)

(5.2)

Where Vf , Vb, Vr, Vl are the front, back, right, left motor voltage respectively and Kf is
the thrust-force constant, Kt is the thurst-torque constant.
The state-space representation is given by :{

ẋ = Ax+Bu

y = Cx+Du
(5.3)

we define the state vector : xT =
[
θr θp θy θ̇r θ̇p θ̇y

]
.

and the control vector : uT =
[
Vf Vb Vr Vl

]
.

Using the equations of motion given (5.4), the corresponding 3 DOF Hover state-space
matrices are:

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



B =



0 0 0 0

0 0 0 0

0 0 0 0

0 0
LKf

Jr
−LKf

Jr
LKf

Jp
−LKf

Jp
0 0

−Kt

Jy
−Kt

Jy
Kt

Jy
Kt

Jy



C =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0
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D =

0 0 0 0

0 0 0 0

0 0 0 0


in our case we control the drone attitude by controlling the three angular velocities[
θ̇r θ̇p θ̇y

]
. so we will use only the last three rows of the matrix A and B, the state-space

representation become : ẋ = B′V where V T =
[
Vf Vb Vr Vl

]
and

B′ =

 0 0
LKf

Jr
−LKf

Jr
LKf

Jp
−LKf

Jp
0 0

−Kt

Jy
−Kt

Jy
Kt

Jy
Kt

Jy


The control proposed in the previous section gives as command the three torques u1, u2,
u3 which have a proportional relation with the voltages Vf , Vb, Vr, Vl.

u1 = LKf (Vr−Vl)
u2 = LKf (Vf−Vb)
u3 = Kt(Vr + Vl)−Kt(Vf + Vb)

(5.4)

u1u2
u3

 = B′


Vf
Vb
Vr
Vl


To obtain the voltage V from the torques u we must invers the matrix B’, as B’ is not a
square matrix its pseudo inverse will be calculated :

V = (B′)+u

5.2 Simulation

To test the effectiveness of the proposed control scheme, a series of simulations were
performed on the Quanser 3DOF Hover model given previously. The simulation was done
using Matlab/Simulink.
The system parameters and initial conditions are detailed in the table below:

Name parameter Value Units
Moment of Inertia about x axis Jr 0.0552 kg.m2

Moment of Inertia about y axis Jp 0.0552 kg.m2

Moment of Inertia about z axis Jy 0.1104 kg.m2

Propeller Force-Thrust Constant Kf 0.1188 N/V
Propeller Torque-Thrust Constant Kt 0.0036 N.m/V
Mass m 2.85 Kg
Gravitational Constant g 9.81 m/s2

Table 5.1: System parameters
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Initial condition:

Initial condition Value
qb0 1
qb1 ,qb2 ,qb3 0
wbx, wby, wbz 0

Table 5.2: Initial conditions

The global schema of the simulation is presented in the following figure :

Figure 5.2: global schema representing system and controllers

The controllers and observer parameters are given in the following table :

Parameter Value
Kd 100
Kk 1
β 1

Table 5.3: Controllers and observer parameters

Kd is chosen larger than Kk to make the connection between the two loops dynamic
and kinematic possible, the dynamic loop must be faster than the kinematic. Also the
observer gain is chosen with a small value because for biggest values the observer become
too sensitive so the smallest perturbation destabilizes the system.

5.2.1 Hovering simulation

To simulate the hovering, the angular velocity of the desired reference frame is given as
ωd =

(
0 0 0

)T and qd =
(
1 0 0 0

)T which corresponds to a rotational desire angle

θd = 0 (knowing that qd =
[
cos(θd/2)

e⃗ · sin(θd/2)

]
).
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A perturbation is applied on the x axis (roll) at time t=1s and t=3.5s and given in the
following form :

Figure 5.3: perturbation

The simulation results are given as follow :

Figure 5.4: quaternions representing the system attitude
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Figure 5.5: The system angular velocity

Figure 5.6: The observer output (disturbance estimation)
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Figure 5.7: torques u generated by the controller

Figure 5.8: voltage delivered to the 4 motors
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5.2.2 interpretation

We can note that the system remains stable in spite of the presence of perturbation thing
that is reflected in the figure 5.4 where the attitude measured is almost the same as
the desired one qb ≈ qd =

[
1 0 0 0

]
, the stability of the system is ensured due to

the good estimation of the observer, where we can see in the figure 5.6 that the shape
of the disturbance is almost the same as the observer has given. The disturbances are
compensated in the output feedback control (figure 5.7).
In the figure 5.8 we can see that only the right and left motors that are operated and that
two motors are the responsible of the roll stabilisation.

5.3 Application on the Quanser 3 DOF Hover

In this section the ADRC law is applied on the Quanser 3 DOF Hover to test its real
world robustness. ( It’s should be mentioned that the attitude estimation is made by
using the Euler angles)

5.3.1 Hovering

To test the stability on the hovering position in the presence of real disturbances , the
angular velocity of the desired reference frame is given as ωd =

(
0 0 0

)T .

Figure 5.9: quaternions representing the system attitude
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Figure 5.10: The system angular velocity

Figure 5.11: The observer output (disturbance estimation)
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Figure 5.12: torques U generated by the controller

Figure 5.13: Voltage delivered to the 4 motors

5.3.2 interpretation

In figures (5.9, 5.10) we see that our system is identical with the desired trajectory (ωd =(
0 0 0

)T ), until a disturbance is included (real disturbance made by hand) and what we
notice is that the system returns to the desired path immediately, that what demonstrate
the robustness of not only the control law that rejects the disturbances, but also the high
performance of the observer error estimation.
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5.3.3 Rotation around the z axis (YAW)(Without pertubation)

To test the ability of the control law to make the system track a desire trajectory we
chose the rotation around the z axis, the angular velocity of the desired reference frame
is given as ωd =

(
0 0 0.1

)T and the desire attitude is given by the quaternion qd =[
cos(θd/2) 0 0 sin(θd/2)

]T where θd is the desire rotational angle.

Figure 5.14: quaternions representing the system attitude

Figure 5.15: The system angular velocity
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Figure 5.17: torques U generated by the controller

Figure 5.16: The observer output (disturbance estimation)
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Figure 5.18: Voltage delivered to the 4 motors

5.3.4 interpretation

We note that the system track the desired trajectory where we can see in figure 5.14 the
measured attitude quaternion qb is almost the same as the desired one, by analyzing qb
we mark that the rotational axe is e⃗ =

[
0 0 1

]T
(qb =

[
cos(θ/2) e⃗ · sin(θ/2)

]T
), also

the desire angular velocity is respected where we can see in figure 5.15 that wb = wd =[
0 0 0.1

]T . in figure (5.16) we see that even with the absence of the disturbances the
observer is still showing an estimate of errors and that due to the existence of an offset
in the QUANSER’s controller, and modeling errors.

5.4 Quaternion attitude estimation

As it’s mentioned in the previous section, the attitude estimation requires sensors data (
a.k.a Sensor fusion ), for that we are using an IMU-6050 micro-chip.

Figure 5.19: IMU-6050 chip

The IMU-6050 is integrated 6-axis MotionTracking device that combines a 3-axis gy-
roscope, 3-axis accelerometer, and a Digital Motion Processor.
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This device needs a control unit to work on, in our case an arduino Nano3 is used.

Figure 5.20: Arduino Nano3 chip

5.4.1 MALAB implementation

To run our experience, we are using MATLAB Arduino package, and Sensor Fusion
and Tracking Toolbox. Sensor fusion algorithms used in this experience use North-East-
Down(NED) as an Inertial frame coordinate system. In the NED reference frame, the
X-axis points north, the Y-axis points east, and the Z-axis points down.
Since our IMU doesn’t include a magnetometer, we are using the imufilter and comple-
mentaryFilter System objects; those system objects fuse accelerometer and gyroscope
data.
The imufilter uses an internal error-state Kalman filter and the complementaryFilter
uses a complementary filter. The filters are capable of removing the gyroscope’s bias
noise, which drifts over time.

68



Chapter 5. Simulations Results

Listing 5.1: Estimating Orientation code
1 a = arduino('COM7', 'Nano3', 'Libraries', 'I2C');
2 fs = 100; % Sample Rate in Hz
3 imu = mpu6050(a,'SampleRate',fs,'OutputFormat','matrix');
4
5 GyroscopeNoiseMPU9250 = 3.0462e-06; % GyroscopeNoise (variance)

in units of rad/s
6 AccelerometerNoiseMPU9250 = 0.0061; % AccelerometerNoise (

variance) in units of m/s^2
7 viewer = HelperOrientationViewer('Title',{'IMU Filter'});
8 FUSE = imufilter('SampleRate',imu.SampleRate , 'GyroscopeNoise',

GyroscopeNoiseMPU9250 ,'AccelerometerNoise',
AccelerometerNoiseMPU9250);

9 stopTimer =100;
10
11 tic;
12 while(toc < stopTimer)
13 [accel ,gyro] = imu.read;
14 rotators = FUSE(accel ,gyro);
15 for j = numel(rotators)
16 viewer(rotators(j));
17 end
18 end

Figure 5.21: A snapshot from the Orientation Viewer
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The FUSE = imufilter returns fusion of accelerometer and gyroscope data to estimate
device orientation. This data is represented in quaternion, therefore we can use them in
our control loop by placing the IMU in the center of the Quanser Hover.

Figure 5.22: Quaternion-based attitude representation

In the figure (5.22), we see a table of quaternions that represents the IMU attitude,
we notice that there’s an update of this estimation ( we can see only the attitude of the
last ten samples)

5.5 Conclusion

In this chapter, the ADRC law has been tested in two different ways. By simulation where
we used Matlab/SIMULINK, this control law has proved its robustness by rejecting all
the introduced disturbances, estimated by ESO observer. In the real world we applied it
on the QUANSER 3DOF Hover, and the results were approximately identical with the
simulation ones ( approximately because there was permanent disturbances which is an
offset ).
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Overall conclusion

The main objective of this work was to develop a quadrotor attitude control while
taking into account the external disturbance and model errors and uncertainties, also two
principal axes were treated, which are the attitude estimation, in particular the solution of
Whaba’s problem, and the use of quaternions as a solution to the gimbal lock singularity.

To understand the behaviour of the quadcopter and the physical laws that govern such
systems, a dynamic model was introduced based on the Newton-Euler formalism. Thus, it
is almost impossible to build a complete mathematical model of an aerial vehicle, capturing
all the aerodynamic effects, Therfore to achieve desired trajectories and suitable positions
it becomes necessary to synthesize a controller that does not depend on the QUAV model,
for that purpose we have chosen the active disturbance rejection control, based on this
command the unmodelled dynamics and external disturbance will be treated as total
disturbance that is estimated using a dedicated observer ESO and compensated in the
feedback output allowing to acquire satisfactory performances in terms of stabilization
and trajectory tracking.

The quadrotor kinematics is modilized by the quaternion, thing that enables to avoid
the famous problem of Euler angle that is the gimble lock singularity where the system
loses a degree of freedom, using the quaternion as a rotation operator all possible positions
can be reached.

In case of real flight, there is no sensor that can measure the position of quadrotor
in space so the problem of attitude estimation is introduced under the name of Wahba
problem and solved by many methods, we set Davenport’s q method and Kalman filter,
as two solution of that problem. These two methods use what is called sensor fusion
technique, which is about fusing two, or more, sensors’ data to estimate the attitude.

Finally these theoritical results were tested in simulation using Matlab/SIMULINK,
where we witnessed the robustness of the ADRC Law; next we applied this control law
on the QUANSER 3DOF Hover where we saw performance of this law in real world
application.

Prospects

As all work is called to be improved and enriched, ours is no exception. Prospects of
evolution can be envisaged in the following ways :

• Using the IMU ( with the Kalman filter algorithm) to get the estimation of the
QUANSER’s attitude.
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• Exploitation of the data gathered from the IMU, in the control loop.

• In our work we set the setpoint as an angular velocity, another work can set it as a
desired position.
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