
Pour l’obtention du diplôme d’Ingénieur

Mémoire de fin d’étude

Filière : Automatique
Spécialité : Automatique

Présenté par : AISSANI Omar

Thème

Soutenu publiquement, le 14/07/2021, devant le jury composé de :

M. CHERKI Brahim Professeur ESSA. Tlemcen Président
M. ARICHI Fayssal Maître de conférences B Directeur de mémoire
M. MOKHTARI Rida Maître de conférences A Co- Directeur de mémoire
M. ABDELLAOUI Ghouthi Maître de conférences B Examinateur 1
M. BENSALAH Choukri Maître de conférences B Examinateur 2

Année universitaire : 2020/2021

Modeling and Control of a 4 DOF Robot

Manipulator

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

 الجـمـهـوريـة الجـزائـريـة الديـمـقـراطـيــة الشـعـبـيــة

 وزارة التعليـم العالـي والبحـث العلمـي

قيــةفي العلوم التطبيالمـدرسـة العليـا

 -تلمسان-

MINISTRY OF HIGHER EDUCATION

AND SCIENTIFIC RESEARCH

HIGHER SCHOOL IN APPLIED SCIENCES

--T L E M C E N--

Acknowledgments

My sincere thanks go to Professor CHERKI Brahim for accepting to be the president of the ex-
aminers. I am genuinely impressed by his knowledge and humbleness. One must be lucky to be
one of his students. I would also like to thank Dr. ABDELLAOUI Ghouthi and Dr.BENSALAH
Choukri for the valuable inputs to be included in this thesis and generously spent precious time
in giving the suggestions and comments for this thesis.

I would like to thank my supervisors Dr.ARICHI Fayssal, as well as DR.MOKHTARI Rida, for
their patience, guidance and reviews.

Most importantly, I am grateful for my parents’s love and unconditional support. I have no
words to acknowledge the sacrifices you made, Thank God for giving me you.

My dear sisters Ouassila and Hidayet. You have always had a way of pulling me out of a mis-
erable mood and putting a smile on my face. I am so proud of you both. I wish you all the best.

i

Abstract

In this thesis we were interested in studying a 4 degrees of freedom robotic arm, that is SCARA,
which stands for Selective Compliance Articulated Robot Arm, We started by exploring the
forward and inverse kinematics models of a SCARA robot, we then computed its velocity kine-
matics, then we modeled some robot dynamics using Euler-Lagrange formalism. We analyzed
PID controllers and Computed Torque Controller for a single joint robot and finally we have
used SIMULINK Simscape Multibody Toolbox to simulate the robot.

Résumé

Dans ce mémoire, nous étions intéréssé par l’étude d’un bras manipulateur à 4 degré de liberté de
type SCARA. Nous avons étudié le modèle géométrique direct ainsi que le modèle géométrique
inverse. Nous avons aussi obtenu le modèle cinétique du robot. Et puis nous avons essayé
de modéliser quelques robots manipulateur en utilisant le formalism d’Euler-Lagrange. Nous
avons analysé le régulateur PID et la méthode du couple calculé qui est plus connue sous le nom
Anglais Computed Torque controller CTC. Finalement nous avons modélisé le robot SCARA
en utilisant le toolbox de SIMULINK, Simscape Multibody.

Key Words

SCARA, Robotic Manipulator, Computed Torque Control, CTC, PID, Simscape Multibody,
Jacobian, Forward Kinematics, Inverse Kinematics, Forward Dynamics, Inverse Dynamics

ii

Table of Contents

Acknowledgments i

1 Introduction 2
1.1 Etymology . 2
1.2 Robotic Manipulators . 2
1.3 Types of Robot Manipulators . 3
1.4 History of Robotic Arms in Manufacturing . 7

2 Kinematics 8
2.1 Forward Kinematics . 8

2.1.1 SCARA Manipulator . 8
Geometrical Approach . 8
Denavit-Hartenberg Convention . 9

2.2 Inverse Kinematics . 12
2.2.1 Two Links Planar Robot . 13
2.2.2 Three Links Planar Robot . 16

3 Velocity Kinematics 17
3.1 Geometrical Jacobian . 17
3.2 Analytical Jacobian . 19
3.3 Inverse Jacobian . 20

4 Dynamics 22
4.1 Lagrangian Formulation . 22
4.2 Single Joint Robot . 22
4.3 Two Links Planar Robot . 24
4.4 Three Links Robot . 28

5 Robot Control 30
5.1 Introduction . 30

5.1.1 Control Objectives . 30
5.2 Independent Joint Control . 30

5.2.1 PD Controller with g = 0 . 31
5.2.2 PD Controller with g 6= 0 . 33
5.2.3 PID Controller . 35

5.3 Computed Torque Control - CTC . 38

6 Simulation and Results 42

iii

List of Figures

1.1 Typical robot joint . 3
1.2 Example of Gantry Robot . 3
1.3 PRRR SCARA Robot . 4
1.4 RRPR SCARA Robot . 4
1.5 An Example of Articulated Robot . 5
1.6 Cylindrical Robot . 5
1.7 Delta Robot . 6
1.8 Stewart Platform . 6

2.1 Forward Kinematics Diagram . 8
2.2 Forward Kinematics Diagram . 9
2.3 Kinematic Diagram of a PRRR SCARA . 10
2.4 Kinematic Diagram of a PRRR SCARA . 11
2.5 Forward Kinematics Obtained Using MATLAB 13
2.6 Two links Planar Robot . 14
2.7 Triangle to Visualize the Cosine Rule . 14
2.8 Elbow up vs Elbow Down . 15

4.1 Single Joint Robot . 23
4.2 Implementation of Single Joint Robot in SIMULINK 25

5.1 Block Diagram of PID Controller . 31
5.2 SIMULINK Model . 32
5.3 PD Controller Implementation in SIMULINK 33
5.4 step response . 33
5.5 Position Error Due to the Gravity . 34
5.6 Step Response PD Controller with g 6= 0 . 34
5.7 PID Controller Implementation in SIMULINK 36
5.8 PID Controller Implementation in SIMULINK 37
5.9 PID Controller Implementation in SIMULINK 37
5.10 Block Diagram of Computed Torque Controller 38
5.11 Computed Torque Controller Implementation in SIMULINK 39
5.12 Control of a Single Joint Robot using CTC in SIMULINK 39
5.13 Trajectory Generator Output Signals . 40
5.14 The Response of CTC to a Varying Trajectory 40
5.15 The Response of CTC to a Varying Trajectory 41

6.1 The Simscape model of a PRRR SCARA Robot 42
6.2 The SIMULINK Model . 42
6.3 The Trajectory Generator Block . 43
6.4 PID Controllers . 43
6.5 The CAD file of SCARA Robot . 43

iv

6.6 Mechanics Explorer Showing the SCARA Robot 44
6.7 Position Tracking of Revolute Joints . 45
6.8 Position Tracking of Prismatic Joints . 45

1

Chapter 1

Introduction

It is just amazing how humans can do activities like moving around and manipulating objects,
cooking, practicing sports, driving a car, etc. Without any considerable efforts. Although
these tasks seem seamless to us and most of us take them for granted, they are in fact very
complicated problems. Let’s analyze what it takes to pour water in a cup. We should first
recognize the bottle. we should then know where it is in space. Then, we move our hands to
the position of the bottle, we try to grip it and lift it off. Move the bottle around whilst trying
to not spill the water. When reaching the cup we should reorient the bottle such that the water
can be poured, we should know when to stop or otherwise we will overflow the cup, and there
is more to it.
Robotics is the science that treats these kind of problems, some of them are: Kinematics and
dynamics, trajectory planning, path planning, vision and sensing, etc.

1.1 Etymology

The word robotics was derived from the word robot, which was introduced to the public by
Czech writer Karel Čapek in his play R.U.R. (Rossum’s Universal Robots), which was published
in 1920. The word robot comes from the Slavic word robota, which means slave/servant. The
play begins in a factory that makes artificial people called robots, creatures who can be mistaken
for humans

1.2 Robotic Manipulators

Robotic manipulators are a special kind of robots that specialize mainly in doing repeatable
tasks that involve manipulating object in 3D space, following precise paths, etc. It is defined
as a set of links connected to each other by a joint driven by a motor, at the end of this chain
there is an end effector e.g. vacuum gripper, spray paint, etc.
There exist different types of joints as depicted in 1.1, such as: revolute joints, prismatic joints,
universal joints, ball Joints, etc.
The two main joints used in robotics are:

• Revolute joint (R), it has only one degree of freedom, that is rotation around a axis

• Prismatic joint (P), characterized by one degree of freedom, that is sliding in the direction
of a given axes

2

Figure 1.1: Typical robot joint

1.3 Types of Robot Manipulators

There are different types of manipulators robots, each of them is suitable to do a particular
task, some of these robots are:
Gantry Robots
These robots have linear joints and are mounted overhead. They are also called Cartesian and
rectilinear robots. see figure 1.2

Figure 1.2: Example of Gantry Robot

SCARA Robots
SCARA stands for Selective Compliance Assembly Robot Arm, it was invented by Prof. Hiroshi
Makino of Yamanashi University, Japan, in 1972. It is one of the most used robots in industry
as they are suitable for pick and place applications. Figure 1.3 and 1.4 show two different

3

configuration of SCARA robots.

Figure 1.3: PRRR SCARA Robot

Figure 1.4: RRPR SCARA Robot

Articulated Robot
Articulated robots are the most used robotic arms, since they are versatile and can provide
decent speeds and a wide range of possible orientations. These robots are widely used in auto-
motive industry to paint vehicles, assembly, etc. Figure 1.5 shows an articulated robot.

4

Figure 1.5: An Example of Articulated Robot

Cylindrical robots
A cylindrical robot is shown in figure 1.6

Figure 1.6: Cylindrical Robot

Delta Robot

5

Delta robots 1.7 are one of the fastest robots since the motors are not located at each joint,
which makes the links lighter, hence it can reach fast speeds. These robots are used as pick
and place machines and as 3D printers.

Figure 1.7: Delta Robot

Stewart-Gough Platform
This robot is a parallel robot composed of 6 linear actuators. It is widely used as a flight
simulator. A Stewart-Gough Platform is depicted in figure 1.8

Figure 1.8: Stewart Platform

6

1.4 History of Robotic Arms in Manufacturing

It is widely understood that the first programmable robotic arm was designed by George Devol
in 1954. Collaborating with Joseph Engelberger, Devol established the first robot company,
Unimation in 1956, in the USA. Then in 1962 General Motors implemented the Unimate robotic
arm in its assembly line for the production of cars. A few years later, a mechanical engineer
at Stanford University, Victor Scheinman was developing a robotic arm that was one of the
first to be completely controlled by a computer in 1969. This industrial robot, known as the
Stanford Arm was the first six axes robotic arm and influenced a number of commercial
robots that followed. A Japanese company, Nachi, developed their first hydraulic industrial
robotic arm in 1969 and after this a German firm, Kuka, pioneered the first commercial six
axes robotic arm, called Famulus, in 1973. Predominantly, these robots were utilised for spot
welding tasks in manufacturing plants but as technology developed, the range of tasks that
robotic arms could perform also expanded. The advances in technology includes the increasing
variety in end-of-arm tooling that has become available. This means that Robotic arms can
perform a wide range of tasks beyond welding depending on the tools that are attached to the
end of their arms. Current innovations in end of arm tools include; 3D Printing tool heads,
heating devices to mould and bend materials, and suction devices to fold sheet metal.

7

Chapter 2

Kinematics

2.1 Forward Kinematics

Forward Kinematics also known as Direct Kinematics, refers to the use of the kinematics
equations of a robot to compute the position and orientation of the end-effector from specified
values for the joint parameters as shown in figure 2.1:

Figure 2.1: Forward Kinematics Diagram

2.1.1 SCARA Manipulator

We can compute the forward kinematics equation of a SCARA manipulator with two main
approaches, first approach is straight forward and purely geometrical while the second one is
systematic and makes use of the Denavit-Hartenberg convention.

Geometrical Approach

The SCARA Manipulators can be decomposed into two simpler parts, the Z translation and a
planar movement that contains the 3 revolute joints as depicted in figure 2.2

Using simple vector operations:

−→
OC =

−→
OA+

−→
AB +

−−→
BC (2.1)

8

Figure 2.2: Forward Kinematics Diagram

Writing the vectors as a function of θ1, θ2, θ3:(
x
y

)
=

(
l1 cos(θ1)
l1 sin(θ1)

)
+

(
l2 cos(θ1 + θ2)
l2 sin(θ1 + θ2)

)
+

(
l3 cos(θ1 + θ2 + θ3)
l3 sin(θ1 + θ2 + θ3)

)
(2.2)

We finally get: {
x = l1 cos(θ1) + l2 cos(θ1 + θ2) + l3 cos(θ1 + θ2 + θ3)

y = l1 sin(θ1) + l2 sin(θ1 + θ2) + l3 sin(θ1 + θ2 + θ3)
(2.3)

Since all the rotations are about z axis, we can sum all the angles to get the orientation of the
end-effector, like so:

ϕ = θ1 + θ2 + θ3 (2.4)

The z coordinates of end-effector is nothing but joint variable d4:

z = d4 (2.5)

Denavit-Hartenberg Convention

The kinematic diagram of a PRRR SCARA manipulator is shown in figure 2.3:
At first, we have to assign the frames according to the Denavit-Hartenberg Rules:

Rule 1: zn axis is the axis of rotation for a revolute joint and the axes of translation for
a prismatic joint.

Rule 2: xn axis must be perpendicular to both zn and zn−1 .

Rule 3: yn axis is determined from the xn axis and zn axis by using the right-hand rule.

Rule 4: xn must intersect with the zn−1 axis.

One possible solution to this problem is shown in figure 2.4
After Assigning the frames, we should get the Denavit-Hartenberg parameters, that are:

9

Figure 2.3: Kinematic Diagram of a PRRR SCARA

• θ is the rotation around zn−1 that is needed to get xn−1 to match xn.

• α is the rotation around xn that is required to get zn−1 to match zn.

• r is the distance between the frames n− 1 and n along xn.

• d is the distance between the frames n− 1 and n along zn−1.

The DH parameters of PRRR SCARA manipulator of figure 2.3 are shown in this table

We can now get the homogeneous transformation matrices using the formula shown bellow:

Hn−1
n =

cos(θn) − sin(θn) cos(αn) sin(θn) sin(αn) rn cos(θn)
sin(θn) cos(θn) cos(αn) − cos(θn) sin(αn) rn sin(θn)

0 sin(αn) cos(αn) dn
0 0 0 1

 (2.6)

10

Figure 2.4: Kinematic Diagram of a PRRR SCARA

The homogeneous matrix H0
1 is given by:

H0
1 =

1 0 0 0
0 1 0 0
0 0 1 d4

0 0 0 1

 (2.7)

It represents translational movement without rotations, that’s why the rotational part is an
identity matrix.
The homogeneous matrices H1

2 , H
2
3 and H3

4 are given by:

H1
2 =

cos(θ1) − sin(θ1) 0 l1 cos(θ1)
sin(θ1) cos(θ1) 0 l1 sin(θ1)

0 0 1 0
0 0 0 1

 (2.8)

H2
3 =

cos(θ2) − sin(θ2) 0 l2 cos(θ2)
sin(θ2) cos(θ2) 0 l2 sin(θ2)

0 0 1 0
0 0 0 1

 (2.9)

H3
4 =

cos(θ3) − sin(θ3) 0 l3 cos(θ3)
sin(θ3) cos(θ3) 0 l3 sin(θ3)

0 0 1 0
0 0 0 1

 (2.10)

As we can see, all these homogeneous transformation matrices have both translation movement
(along x and y) and rotation movement, all the rotation matrices are elementary rotation

11

matrices and since we have chosen to not change the orientation of DH frames, they are all
rotations around the z axis.
The homogeneous transformation that describes the position and orientation of the end-effector
with respect to the reference frame is obtained by post-multiplying the HT Matrices,

H0
4 = H0

1H
1
2H

2
3H

3
4 (2.11)

After computing this product and by using trigonometric identities to simplify the matrix, we
get:

H0
4 =

cos(θ123) − sin(θ123) 0 l1 cos(θ1) + l2 cos(θ12) + l3 cos(θ123)
sin(θ123) cos(θ123) 0 l1 sin(θ1) + l2 sin(θ12) + l3 sin(θ123)

0 0 1 d4

0 0 0 1

 (2.12)

The rotation matrix of the obtained homogeneous transformation is an elementary rotation
around z axis, the total angle ϕ is the sum of all joint rotations.
The Following MATLAB function computes the homogeneous transformation matrix based on
DH parameters:

1 function H = DH(Theta , Alpha , r, d)

2 % Homogeneous Transformation from DH Parameters

3 cT = cos(Theta);

4 sT = sin(Theta);

5 cA = cos(Alpha);

6 sA = sin(Alpha);

7
8 H = [cT -sT*cA sT*sA r*cT; sT cT*cA -cT*sA r*sT; 0 sA cA d; 0

0 0 1];

9 end

This MATLAB script computes the forward kinematics equations for a PRRR SCARA manip-
ulator using symbolic variables:

1 syms q1 q2 q3 q4 real; % Joint Variables

2 syms L1 L2 L3; % Link Lengths

3 assume ([L1 L2 L3] > 0);

4 assumeAlso ([L1 L2 L3], 'real');
5
6 H0_1 = HT(0, 0, 0, q4);

7 H1_2 = HT(q1, 0, L1 , 0);

8 H2_3 = HT(q2, 0, L2 , 0);

9 H3_4 = HT(q3, 0, L3 , 0);

10
11 H0_2 = simplify(H0_1 * H1_2);

12 H0_3 = simplify(H0_2 * H2_3);

13 H0_4 = simplify(H0_3 * H3_4)

The output of this script is shown in figure 2.5 and it corresponds to the results we have
obtained in 2.12.

2.2 Inverse Kinematics

Inverse Kinematics is the problem of getting the joint variables that takes the end-effector to the
desired position and orientation, i.e. getting qi such as q = f−1(p). There is no systematic way

12

Figure 2.5: Forward Kinematics Obtained Using MATLAB

of obtaining a solution to this problem, for simple robot configurations the inverse kinematics
can be determined by exploring the geometry of the robot, and using trigonometric identities.
However, for complex robots there are numerical algorithms that allow us to get the inverse
kinematics, such as, Newton-Raphson algorithm.
As opposed to forward kinematics, the computation of inverse kinematics is quite complex for
serial manipulators, for the following reasons:

• The inverse kinematics equations are in general highly nonlinear, and thus it is not always
possible to find an analytical solution.

• There might be multiple solutions, (we will see an example in the next section).

• Infinite solutions may exist, that is true for kinematically redundant manipulators.

• The solution obtained are non admissible, as a result of manipulator structure.

The solution for this problem is crucial. Because in order to program a robot to do a task in
operational space, we will provide only coordinates in Cartesian space, the arm however only
understands the joint variables. So the controller of the arm must contain an inverse kinematics
solver built-in to it.

2.2.1 Two Links Planar Robot

We will start by a relatively simple robot structure, solving this one will become handy and
useful to obtain the inverse kinematics of other robot manipulators structures.
The two links planar robot structure is shown in figure 2.6.
Using Pythagorean theorem we have:

r2 = x2 + y2 (2.13)

Recalling al-Kashi’s theorem also known as the cosine rule, in the triangle shown in figure 2.7

c2 = a2 + b2 − 2ab cos(γ) (2.14)

By using 2.14 we have:

r2 = l21 + l22 − 2l1l2 cos(α)

cos(α) =
l21 + l22 − r2

2l1l2

cos(α) =
l21 + l22 − x2 − y2

2l1l2

(2.15)

It’s easy to see that α = π − θ2, and since cos(π − x) = − cos(x) we get:

cos(θ2) =
x2 + y2 − l21 − l22

2l1l2
(2.16)

13

Figure 2.6: Two links Planar Robot

Figure 2.7: Triangle to Visualize the Cosine Rule

This result is particularly interesting, we know that the cosine is a pair function i.e. cos(x) =
cos(−x). in other words, if y = cos(x) then x = arccos(y) or x = − arccos(y). This means that
we have two possible solution for the inverse kinematics of this robot manipulator configuration.
The first solution is called elbow down pose, and the other solution is called elbow up pose, we
can see this geometrically as depicted in figure 2.8,
We will continue this analysis by choosing explicitly the elbow up pose, that is

θ2 = arccos

(
x2 + y2 − l21 − l22

2l1l2

)
(2.17)

We should now get the joint variable θ1. We notice that:

θ1 = γ − β (2.18)

The angle γ is a function of x and y,

γ = arctan2(y, x) (2.19)

In order to get θ1 we should first get the expression of β. From figure 2.8.A we have:

tan(β) =
l2 sin(θ2)

l1 + l2 cos(θ2)
(2.20)

14

Figure 2.8: Elbow up vs Elbow Down

Thus, the expression of the joint variable θ1 is

θ1 = arctan2(y, x)− arctan2(l2 sin(θ2), l1 + l2 cos(θ2)) (2.21)

We finally have: θ2 = arccos

(
x2 + y2 − l21 − l22

2l1l2

)
θ1 = arctan2(y, x)− arctan2(l2 sin(θ2), l1 + l2 cos(θ2))

(2.22)

Now we should study the second solution, Elbow Up pose, θ2 is then given by:

θ2 = − arccos

(
x2 + y2 − l21 − l22

2l1l2

)
(2.23)

We notice from figure 2.8.B that

θ1 = δ + β (2.24)

the equation (2.20) still holds, thus joint angle θ1 is,

θ1 = arctan2(y, x) + arctan2(l2 sin(θ2), l1 + l2 cos(θ2)) (2.25)

The inverse kinematics equation of this pose is:θ2 = − arccos

(
x2 + y2 − l21 − l22

2l1l2

)
θ1 = arctan2(y, x) + arctan2(l2 sin(θ2), l1 + l2 cos(θ2))

(2.26)

We notice that the first and second solutions are quite similar, we wish writing them in a single
more general form, by using the ±,∓ notation. basically when ± is + then, ∓ is − and vice
versa. So we can safely write:θ2 = ± arccos

(
x2 + y2 − l21 − l22

2l1l2

)
θ1 = arctan2(y, x)± arctan2(l2 sin(θ2), l1 + l2 cos(θ2))

(2.27)

15

2.2.2 Three Links Planar Robot

The joint angle θ3 can be expressed as a function of the orientation of the end-effector ϕ and
the joint angles θ1 and θ2:

ϕ = θ1 + θ2 + θ3 ⇐⇒ θ3 = ϕ− θ1 − θ2 (2.28)

Let x̄ and ȳ be : 〈
x̄ = x− l3 cos(ϕ)
ȳ = y − l3 sin(ϕ)

〉
(2.29)

This variable change reduces the problem into a smaller one, that is computing the inverse
kinematics of two link planar robot with x and y being x̄ and ȳ respectively.
The inverse kinematics of elbow down pose is given by

θ2 = arccos

(
x̄2 + ȳ2 − l21 − l22

2l1l2

)
(2.30)

θ1 = arctan2(ȳ, x̄)− arctan2 (l2 sin(θ2), l1 + l2 cos(θ2)) (2.31)

θ3 = ϕ− θ1 − θ2 (2.32)

The inverse kinematics of elbow up pose is,

θ2 = − arccos

(
x̄2 + ȳ2 − l21 − l22

2l1l2

)
(2.33)

θ1 = arctan2(ȳ, x̄) + arctan2 (l2 sin(θ2), l1 + l2 cos(θ2)) (2.34)

θ3 = ϕ− θ1 − θ2 (2.35)

We can write the solution in a compact form using ± and ∓ notations,
θ2 = ± arccos

(
x̄2+ȳ2−l21−l22

2l1l2

)
θ1 = arctan 2(ȳ, x̄)∓ arctan 2 (l2 sin(θ2), l1 + l2 cos(θ2))

θ3 = ϕ− θ1 − θ2

(2.36)

16

Chapter 3

Velocity Kinematics

Now that we know the position and orientation of the end effector, we should figure out a way
to get the operational velocities based on the joint velocities.

3.1 Geometrical Jacobian

The goal of differential kinematics is to find the relationship between the joint velocities and
the end-effector linear and angular velocities. In other words, it is desired to express the end-
effector linear velocity ṗ and angular velocity ω as a function of the joint velocities q̇ by means
of the following relations:

ṗ = Jp(q) q̇ (3.1)

ω = Jo(q) q̇ (3.2)

In compact form 3.1 and 3.2 can be written as:

ξ =

[
ṗ
ω

]
= J(q) q̇ (3.3)

The J matrix is called the geometric Jacobian it is a 6 by n matrix, where 6 is the number of
possible velocities (ẋ, ẏ, ż, ωx, ωy, ωz)

T and n is the number of joints in the robot.
The geometrical Jacobian computation depends on the joint type.
If the joint is prismatic we have:

Ji =

R0
i−1

0
0
1

0
0
1

 (3.4)

For a revolute joint, the Jacobian is computed as:

Ji =

R0
i−1

0
0
1

× (d0
n − d0

i−1

)
R0
i−1

0
0
1

 (3.5)

with d0
i being the translational part of the homogeneous matrix H0

i .

17

In order to get the geometrical Jacobian for SCARA robot, we need to compute the homoge-
neous matrices from frame 0 to frame i, i = 1, 4:

H0
0 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (3.6)

H0
1 =

1 0 0 0
0 1 0 0
0 0 1 d4

0 0 0 1

 (3.7)

H0
2 = H0

1H
1
2 =

cθ1 −sθ1 0 l1cθ1

sθ1 cθ1 0 l1sθ1

0 0 1 d4
0 0 0 1

 (3.8)

H0
3 = H0

2H
2
3 =

cθ12 −sθ12 0 l1cθ1 + l2cθ12

sθ12 cθ12 0 l1sθ1 + l2sθ12

0 0 1 d4
0 0 0 1

 (3.9)

Replacing each column of the Jacobian with its component would result in:

ξ =

ẋ
ẏ
ż
ωx
ωy
ωz

 =

R0

0

0
0
1

 R0
1

0
0
1

× (d0
4 − d0

1) R0
2

0
0
1

× (d0
4 − d0

2) R0
3

0
0
1

× (d0
4 − d0

3)

0
0
1

R0
1

0
0
1

 R0
2

0
0
1

 R0
3

0
0
1

ḋ4

θ̇1

θ̇2

θ̇3

(3.10)

Evaluating this matrix gives us the final expression of the geometrical Jacobian:

J =

0 −l1sθ1 − l2sθ12 − l3sθ123 l2sθ12 − l3sθ123 −l3sθ123

0 l1cθ1 + l2cθ12 + l3cθ123 l2cθ12 + l3cθ123 l3cθ123

1 0 0 0
0 0 0 0
0 0 0 0
0 1 1 1

 (3.11)

As we can see the dimension of this Jacobian is 4 × 6 matrix, that’s because we only have 4
joints, We notice that the 4th and 5th rows are null, and that’s evident as we have no control
over rotations around x and y axis. Since the Jacobian matrix is not square, it doesn’t admit
an inverse. for that we remove the 4th and 5th rows as they are useless to us anyways. Now
we get a square Jacobian matrix

J4×4 =

0 −l1sθ1 − l2sθ12 − l3sθ123 l2sθ12 − l3sθ123 −l3sθ123

0 l1cθ1 + l2cθ12 + l3cθ123 l2cθ12 + l3cθ123 l3cθ123

1 0 0 0
0 1 1 1

 (3.12)

From now on, whenever we write J , we refer to J4×4.
To ease the computation, we have created a MATLAB script, that can compute the geometrical
Jacobian of any given robot manipulator’s configuration.
Jacobian column MATLAB function:

18

1 function J = Ji(H0_i , H0_n , jointType)

2 % Get Jacobian Column i

3 d = H0_n (1:3, 4) - H0_i (1:3, 4); d_n^0 - d_i -1^0

4 Ri = H0_i (1:3, 1:3); R_i -1^0

5 R = Ri(:, 3);

6
7 if jointType == 'P' || jointType == 'p'
8 J = [R; [0; 0; 0]];

9 elseif jointType == 'R' || jointType == 'r'
10 J = [cross(R, d); R];

11 end

12 end

MATLAB script to get SCARA Jacobian

1 %% Compute Homogeneous Transformations

2 HomogeneousTransformations

3
4 %% Jacobian Columns

5 J1 = Ji(H0_0 , H0_4 , 'P');
6 J2 = Ji(H0_1 , H0_4 , 'R');
7 J3 = Ji(H0_2 , H0_4 , 'R');
8 J4 = Ji(H0_3 , H0_4 , 'R');
9 J_full = [J1 J2 J3 J4]; 6x4 Jacobian

10 J = [J_full (1:3, :); J_full(6, :)]; 4x4 Jacobian

11 invJ = simplify(inv(J)); J^-1

12
13 %% Symbolic Computation

14 syms dx dy dz wx wy wz real

15 syms dq1 dq2 dq3 dq4 real

16
17 xi_full = [dx; dy; dz; wx; wy; wz];

18 xi = [dx; dy; dz; wz];

19 dq = [dq4; dq1; dq2; dq3];

20
21 %% Jacobian

22 xi_full = J_full*dq;

23 xi = J*dq

24
25 %% Inverse Jacobian

26 dq = invJ*xi

3.2 Analytical Jacobian

There exist another type of Jacobian, that is the analytical Jacobian, it is computed via differ-
entiation of the direct kinematics function with respect to the joint variables.
The translational velocity of the end-effector is the time derivative of vector p, that is:

ṗ =
∂p

∂q
q̇ = Jp(q)q̇ (3.13)

19

The above sections have shown the way to compute the end-effector velocity in terms of the
velocity of the end-effector frame. The Jacobian is computed by following a geometric technique
in which the contributions of each joint velocity to the components of end-effector linear and
angular velocity are determined.

If the end-effector position and orientation are specified in terms of a minimal number of
parameters in the operational space, it is natural to ask whether it is possible to compute the
Jacobian via differentiation of the direct kinematics function with respect to the joint variables.
To this purpose, below an analytical technique is presented to compute the Jacobian, and the
existing relationship between the two Jacobians is found.

The translational velocity of the end-effector frame can be expressed as the time derivative of
vector p, representing the origin of the end-effector frame with respect to the base frame, i.e.

ṗ =
∂p

∂q
q̇ = Jp(q)q̇ (3.14)

For what concerns the rotational velocity of the end-effector frame, the minimal representation
of orientation in terms of three variables φ can be considered. Its time derivative φ̇ in general
differs from the angular velocity vector defined above. In any case, once the function φ(q) is
known, it is formally correct to consider the Jacobian obtained as:

φ̇ =
∂φ

∂q
q̇ = Jφ(q)q̇ (3.15)

Applying this to the PRRR SCARA robot would give

ẋ = −θ̇1 (l1sθ1 + l2sθ12 + l3sθ123)− θ̇2 (l2sθ12 + l3sθ123)− θ̇3 (l3sθ123)

ẏ = θ̇1 (l1cθ1 + l2cθ12 + l3cθ123) + θ̇2 (l2cθ12 + l3cθ123) + θ̇3 (l3cθ123)

ż = ḋ4

φ̇ = θ̇1 + θ̇2 + θ̇3

(3.16)

3.3 Inverse Jacobian

In the previous sections we wanted to get the end effector velocities as a function of joint
velocities, in this section we will be interested in getting the joint velocities that correspond to
the operational velocities. we can do so by pre-multiplying (3.3) by the inverse of the Jacobian
matrix

J−1ξ = J−1Jq̇ (3.17)

We then get,

q̇ = J−1ξ (3.18)

ḋ4

θ̇1

θ̇2

θ̇3

 = J−1

ẋ
ẏ
ż
ωz

 (3.19)

The computation of the inverse Jacobian matrix was done in MATLAB, using the previous

20

script, The expression of the inverse Jacobian matrix is given by:

J−1 =

0 0 1 0
cθ12

l1sθ2

sθ12

l1sθ2

0
l3sθ3

l1sθ2
−l2cθ12 − l1cθ1

l1l2sθ2

−l2sθ12 − l1sθ1

l1l2sθ2

0 −l3
l1sθ23 + l2sθ3

l1l2sθ2
cθ1

l2sθ2

sθ1

l2sθ2

0
l3sθ23 + l2sθ2

l2sθ2

(3.20)

Thus,

ḋ4

θ̇1

θ̇2

θ̇3

 =

0 0 1 0
cθ12

l1sθ2

sθ12

l1sθ2

0
l3sθ3

l1sθ2
−l2cθ12 − l1cθ1

l1l2sθ2

−l2sθ12 − l1sθ1

l1l2sθ2

0 −l3
l1sθ23 + l2sθ3

l1l2sθ2
cθ1

l2sθ2

sθ1

l2sθ2

0
l3sθ23 + l2sθ2

l2sθ2

ẋ
ẏ
ż
ωz

 (3.21)

21

Chapter 4

Dynamics

Before, we were only studying the kinematics of the robot, that is both operational and joint
positions and velocities without taking into account what have caused the movement. In this
chapter we will be interested in the dynamics of robot manipulators, i.e. the torques, forces,
accelerations, etc. This is a crucial part since we will be using the dynamics to control the arm,
since naturally it’s unstable.
There are different ways of obtaining the dynamics model, the two main ways are Lagrangian
dynamics and Newton-Euler formulation.
We will be using Lagrangian dynamics since it is conceptually elegant and quite effective for
robots with simple structures. But we will see after, that the calculation can quickly be cum-
bersome.

4.1 Lagrangian Formulation

The first step in the Lagrangian formulation of dynamics is to choose a set of independent
coordinates q ∈ Rn that fully describes the system’s configuration. The coordinates q are
called generalized coordinates. Once generalized coordinates have been chosen, these then
define the generalized forces T ∈ Rn. A Lagrangian function L(q, q̇) is then defined as the
overall system’s kinetic energy T (q, q̇) minus the potential energy U(q) .

L(q, q̇) = T (q, q̇)− U(q) (4.1)

The equations of motion are obtained using Euler-Lagrange equation:

d

dt

(
∂L
∂q̇

)
− ∂L
∂q

= T − ∂D
∂q̇

(4.2)

Where D is the Rayleigh dissipation function, it is defined as:

D =
n∑
i=1

1

2
βi θ̇i

2
(4.3)

4.2 Single Joint Robot

Consider a single joint robot shown in figure 4.1, where lg is the distance between the pivot
point and the center of mass (represented by the checkered circle), φ is the angle between the
link and the center of mass and finally θ is the joint position. This robot has a mass m and a
moment of inertia about the center of mass I.

22

Figure 4.1: Single Joint Robot

The position of center of mass of the link is given by:{
x = lg cos(θ + φ)

y = lg sin(θ + φ)
(4.4)

Differentiating the position with respect to time would result in the linear velocities, that is:{
ẋ = −lgθ̇ sin(θ + φ)

ẏ = lgθ̇ cos(θ + φ)
(4.5)

The Kinetic energy of the link is composed by the kinetic energy of translational movement
and the one of rotational movement, like so

T =
1

2
mv2 +

1

2
Iθ̇2 (4.6)

T =
1

2
m
(
ẋ2 + ẏ2

)
+

1

2
Iθ̇2 (4.7)

T =
1

2
m
(
l2g θ̇

2sin2(θ + φ) + l2g θ̇
2cos2(θ + φ)

)
+

1

2
Iθ̇2 (4.8)

We then get

T =
1

2
ml2g θ̇

2 +
1

2
Iθ̇2 (4.9)

T =
1

2
Mθ̇2 (4.10)

Where 〈
M = ml2g + I

〉
(4.11)

The potential energy of this link is,

U = mgy = mg lg sin(θ + φ) (4.12)

23

The Rayleigh dissipation function of this robot is the following:

D =
1

2
β θ̇2 (4.13)

We compute the Lagrangian to use it to get the equation of motion

L = T − U (4.14)

L =
1

2
Mθ̇2 −mglg sin(θ + φ) (4.15)

Using Euler-Lagrange equation we have

d

dt

(
∂L
∂θ̇

)
− ∂L
∂θ

= T − ∂D
∂θ̇

(4.16)

After computation we get the inverse dynamics equation

T = M θ̈ + β θ̇ +mg lg cos(θ + φ) (4.17)

With some algebraic manipulation we get the forward dynamics equation

θ̈ =
1

ml2g + Izz

(
T − β θ̇ −mg lg cos(θ + φ)

)
(4.18)

Another interesting representation is the state space form, that is{
ẋ = f(x) + g(x)u

y = h(x)
(4.19)

For that we set the following variables:〈 x1 = θ
x2 = ẋ1

u = T

〉
=⇒

〈 θ = x1

θ̇ = x2

θ̈ = ẋ2

〉
(4.20)

Finally, the state space model is given by:ẋ1 = x2

ẋ2 =
1

ml2g + Izz
(−mg lg cos(x1 + φ)− β x2 + u)

In order to simulate the dynamics of this robot we have created a SIMULINK model shown in
figure 4.2

4.3 Two Links Planar Robot

The position of the center of mass of links 1 and 2 are given by:{
x1 = lg1c(θ1 + φ1)

y1 = lg1s(θ1 + φ1)

{
x2 = l1c(θ1) + lg2c(θ1 + θ2 + φ2)

y2 = l1s(θ1) + lg2s(θ1 + θ2 + φ2)
(4.21)

24

Figure 4.2: Implementation of Single Joint Robot in SIMULINK

We get the velocities of link 1 and link 2 by deriving each position with respect to time{
ẋ1 = −lg1 θ̇1s(θ1 + φ1)

ẏ1 = lg1 θ̇1c(θ1 + φ1)

{
ẋ2 = −l1θ̇1s(θ1)− lg2(θ̇1 + θ̇2) s(θ1 + θ2 + φ2)

ẏ2 = l1θ̇1c(θ1) + lg2(θ̇1 + θ̇2) c(θ1 + θ2 + φ2)
(4.22)

We will need the square of velocities to compute the kinetic energy:

v2
1 = ẋ1

2 + ẏ1
2 = l2g1 θ̇1

2
(4.23)

v2
2 = ẋ2

2 + ẏ2
2 =

(
l21 + l2g2 + 2l1lg2c(θ2 + φ2)

)
θ̇1

2
+ l2g1 θ̇2

2
+ 2

(
l2g2 + l1lg2c(θ2 + φ2)

)
θ̇1θ̇2 (4.24)

We choose the joint coordinates θ1 and θ2 as the generalized coordinates. The generalized forces
T1 and T2 then correspond to joint torques.
Kinetic Energy
The kinetic energy of each link is the sum of the kinetic energy of translational kinetic energy
and rotational kinetic energy:

T1 =
1

2
m1v

2
1 +

1

2
I1θ̇1

2
(4.25)

T2 =
1

2
m2v

2
2 +

1

2
I2

(
θ̇1

2
+ θ̇1

2
)

(4.26)

T1 and T2 are then given by:

T1 =
1

2

(
ml2g1 + I1

)
θ̇1

2
(4.27)

T2 =
1

2

(
I2 +m2l

2
1 +m2l

2
g2

+ 2m2l1lg2c(θ2 + φ2)
)
θ̇1

2
+

1

2

(
I2 +m2l

2
g2

)
θ̇2

2
(4.28)

+
(
m2l

2
g2

+m2l1lg2c(θ2 + φ2)
)
θ̇1θ̇2

The total kinetic energy is the sum of the kinetic energies of each link:

T = T1 + T2 (4.29)

T =
1

2

(
I1 + I2 +m2l

2
1 +m1l

2
g1

+m2l
2
g2

+ 2m2l1lg2c(θ2 + φ2)
)
θ̇1

2
+

1

2

(
I2 +m2l

2
g2

)
θ̇2

2
+ (4.30)(

m2l
2
g2
m2l1lg2c(θ2 + φ2)

)
θ̇1θ̇2

25

Potential Energy
The potential Energies in the other hand is relatively straight forward to get:

U1 = m1gy1 = m1g lg1 sin(θ1 + φ1) (4.31)

U2 = m2gy2 = m2g (l1 sin(θ1) + lg2 sin(θ1 + θ2 + φ2)) (4.32)

Similarly to kinetic energy, the total potential energy is the sum of each link potential energy

U = U1 + U2 (4.33)

U = m1g lg1 sin(θ1 + φ1) +m2g (l1 sin(θ1) + lg2 sin(θ1 + θ2 + φ2)) (4.34)

This is the potential energy of a two links planar robot in a vertical plan, which is the general
form, since we can get the expression of potential energy of a two link planar robot in a
horizontal plan just by setting the gravity acceleration g to be null!
Rayleigh Dissipation Function
Here we assume to have only viscous friction at each joint the Rayleigh dissipation function is:

D =
2∑
i=1

1

2
βi θ̇i

2
(4.35)

D =
1

2

(
β1θ̇1

2
+ β2θ̇2

2
)

(4.36)

Where β1 and β2 are the friction coefficients of joint one and two respectively.
Lagrangian
The Lagrangian is given by:

L = T − U (4.37)

L =
1

2

(
I1 + I2 +m2l

2
1 +m1l

2
g1

+m2l
2
g2

+ 2m2l1lg2cos(θ2 + φ2)
)
θ̇1

2
+

1

2

(
I2 +m2l

2
g2

)
θ̇2

2

+
(
m2l

2
g2

+m2l1lg2cos(θ2 + φ2)
)
θ̇1θ̇2 −m1g lg1 sin(θ1 + φ1) (4.38)

−m2g (l1 sin(θ1) + lg2 sin(θ12 + φ2))

Euler-Lagrange
In order to get the equations of motion we should compute the Euler-Lagrange equation

d

dt

(
∂L
∂θ̇i

)
− ∂L
∂θi

= Ti −
∂D
∂θ̇i

; i = 1, 2 (4.39)

∂L
∂θ̇1

=
(
I1 + I2 +m2l

2
1 +m1l

2
g1

+m2l
2
g1

+ 2m2l1lg1c(θ2 + φ2)
)
θ̇1 +

(
m2l

2
g1

+m2l1lg2c(θ2 + φ2)
)
θ̇2

∂L
∂θ̇2

=
(
m2l

2
g2
l1lg2 cos (θ2 + φ2)

)
θ̇1 +

(
I2 + l2g2

)
θ̇2

(4.40)

d

dt

(
∂L
∂θ̇1

)
=

(
I1 + I2 +m2l

2
1 +m1l

2
g1

+m2l
2
g2

+ 2m2l1lg2 cos (θ2 + φ2)
)
θ̈1

+
(
m2l

2
g2

+m2l1lg2 cos (θ2 + φ2)
)
θ̈2

− (m2l1lg2 sin (θ2 + φ2)) θ̇2
2 − (2m2l1lg2 sin (θ2 + φ2)) θ̇1θ̇2

d

dt

(
∂L
∂θ̇2

)
=

(
m2l

2
g2

+m2l1lg2 cos (θ2 + φ2)
)
θ̈1 +

(
I2 +m2l

2
g2

)
θ̈2 − (l1lg2 sin (φ2 + θ2)) θ̇1θ̇2

(4.41)

26

∂D
∂θ̇1

= β1θ̇1

∂D
∂θ̇2

= β2θ̇2

(4.42)

Finally we get the inverse dynamics equations, that is the generalized torques:

T1 =
(
I1 + I2 +m2l

2
1 +m1l

2
g1

+m2l
2
g2

+ 2m2l1lg2 cos(θ2 + φ2)
)
θ̈1 +

(
m2l

2
g2

+ 2m2l1lg2 cos(θ2 + φ2)
)
θ̈2

− (m2l1lg2 sin(θ2 + φ2)) θ̇2
2 − (2m2l1lg2 cos(θ2 + φ2)) θ̇1θ̇2

+β1θ̇1 +m2g lg2 cos(θ12 + φ2) +m1g lg1 cos(θ1 + φ1) +m2g l1 cos(θ1)

T2 =
(
m2l

2
g2

+m2l1lg2 cos(θ2 + φ2)
)
θ̈1 +

(
I2 +m2l

2
g2

)
θ̈2 + (m2l1lg2 sin(θ2 + φ2)) θ̇1

2

+β2θ̇2 +m2glg2 cos(θ12 + φ2)

(4.43)

As we can see, it is quite complicated so we can do some assumptions to further simplify it,
we assume that the masses are concentrated in the end of the links, this is translated by the
following equalities:

I1 = I2 = 0 lg1 = l1 lg2 = l2 φ1 = φ2 = 0 (4.44)

Substituting (4.44) in (4.43) would give us a simpler model:
T1 = (m1l

2
1 +m2(l21 + l22 + 2l1l2 cos(θ2))) θ̈1 +m2 (l22 + l1l2 cos(θ2)) θ̈2 −m2l1l2 sin(θ2)

(
2 θ̇1θ̇2 + θ̇2

2
)

+m2g l2 cos(θ12) + (m1 +m2)gl1 cos(θ1)

T2 = m2 (l22 + l1l2 cos(θ2)) θ̈1 +m2l
2
2θ̈2 +m2g l2 cos(θ12) +m2l1l2θ̇1

2
sin(θ2)

(4.45)

The general form of inverse dynamics is given by:

T = M(θ)θ̈ + C(θ, θ̇) +G(θ) (4.46)

The mass matrix M[2×2](θ)

M(θ) =

[
m1l

2
1 +m2(l21 + l22 + 2l1l2 cos(θ2)) m2 (l22 + l1l2 cos(θ2))
m2 (l22 + l1l2 cos(θ2)) m2l

2
2

]
(4.47)

C(θ, θ̇): Velocity product term

C(θ, θ̇) =

[
−m2l1l2 sin(θ2)

(
2 θ̇1θ̇2 + θ̇2

2
)

m2l1l2θ̇1
2

sin(θ2)

]
(4.48)

G(θ): Gravity Term

G(θ) =

[
m2g l2 cos(θ1 + θ2) + (m1 +m2)gl1 cos(θ1)

m2g l2 cos(θ1 + θ2)

]
(4.49)

These reveal that the equations of motion are linear in θ̈, quadratic in θ̇, and trigonometric in
θ. This is true in general for serial chains containing revolute joints, not just for the 2R robot.
Forward Dynamics:

θ̈ = M−1 (θ)
(
T − C(θ, θ̇)−G(θ)

)
(4.50)

27

Since the mass matrix is symmetric positive-definite, we can compute its inverse.

M−1 (θ) =

1

m1l21 +m2 (l12 − l21cos2(θ2))

−l2 − l1 cos(θ2)

l21l2 (m1 +m2 −m2cos2(θ2))
−l2 − l1 cos(θ2)

l21l2 (m1 +m2 −m2cos2(θ2))

(m1 +m2)l21 +m2l
2
2 + 2m2l1l2 cos(θ2)

m2l21l
2
2 (m1 +m2 −m2cos2(θ2))

 (4.51)

After getting the inverse off mass matrix we can get the forward dynamics using the equation
(4.50)
The dynamics of a multi joint robot gets complicated more and more. it even gets impractical.
Fortunately we have other ways of simulating the dynamics of robots, one of them is using
Simscape Multibody toolbox in SIMULINK.

4.4 Three Links Robot

We will use the previous results obtained in the previous section to get the dynamics of the
three links planar robot.
in addition to the positions (x1, y1) and (x2, y2) we need the position of (x3, y3), that is:{

x3 = l1c(θ1) + l2c(θ12) + lg3c(θ123 + φ3)

y3 = l1s(θ1) + l2s(θ12) + lg3s(θ123 + φ3)
(4.52)

Compute the derivatives of x3 and y3 results in:ẋ3 = −l2s (θ12)
(
θ̇1 + θ̇2

)
− lg3s (θ123 + φ3)

(
θ̇1 + θ̇2 + θ̇3

)
− l1s (θ1) θ̇1

ẏ3 = l2c (θ12)
(
θ̇1 + θ̇2

)
+ lg3c (θ123 + φ3)

(
θ̇1 + θ̇2 + θ̇3

)
+ l1c (θ1) θ̇1

(4.53)

We first compute the kinetic energy of the third link, i.e.

T3 =
1

2
I3

(
θ̇1

2
+ θ̇3

2
+ θ̇3

2
)

+
1

2
m3

(
ẋ3

2 + ẏ3
2
)

(4.54)

Since we have already computed T1 and T2 in the previous section, we can use 4.30 to get the
total kinetic energy of the this robot ,

T = T1 + T2 + T3 (4.55)

In a similar fashion, we should only compute the potential energy of the third link and add it
up to the previously calculated ones.

U3 = m3gy3U = U1 + U2 + U3 (4.56)

After computing the Lagrangian and Euler-Lagrange we get the inverse dynamics of the three
links planar robot. recalling the matrix form of inverse dynamics.

T = M(θ)θ̈ + C(θ, θ̇) +G(θ) (4.57)

Since the equations are so long, we will adopt the following notations:

m12...n = ma +mb + · · ·+mn (4.58)

l12...n = la × lb × · · · × ln (4.59)

28

The mass matrix M(θ) is symmetric, we will only write the upper side:

M(θ) =

M11 M12 M13

∗ M22 M23

∗ ∗ M33

 (4.60)

such that,

M11 = m123l
2
1 +m23l

2
2 +m3l

2
3 + 2m3l13 cos(θ23) + 2m23l12 cos(θ2) + 2m3l23cos(θ3) (4.61)

M12 = m23l
2
2 +m3l

2
3 +m3l13 cos(θ23) +m23l12 cos(θ2) + 2m3l23 cos(θ3)

M13 = m3l
2
3 +m3l13 cos(θ23) +m3l23 cos(θ3)

M22 = m23l
2
2 +m3l

2
3 + 2m3l23 cos(θ3)

M23 = m3l
2
3 +m3l23 cos(θ3)

M33 = m3l
2
3

The Velocity product term C(θ, θ̇):

C(θ, θ̇) =

C1

C2

C3

 (4.62)

Such that,

C1 =−m23l12 sin(θ2)θ̇2
2 −m3l23 sin(θ3)θ̇3

2 − 2m23l12 sin(θ2)θ̇1θ̇2 − 2m3l23 sin(θ3)θ̇2θ̇3 (4.63)

− 2m3l23 sin(θ3)θ̇1θ̇3 − 2m3l13 sin(θ23)(θ̇2 + θ̇3)(θ̇1 + θ̇2 + θ̇3)

C2 =
(
m23l12 sin(θ2) +m3l13 sin(θ23)

)
θ̇1

2 −m3l23 sin(θ3)θ̇3
2 − 2m3l23 sin(θ3)θ̇3(θ̇1 + θ̇2) (4.64)

C3 =
(
m3l23 sin(θ3) +m3l13 sin(θ23)

)
θ̇1

2
+m3l23 sin(θ3)θ̇2

2
+ 2m3l23 sin(θ3)θ̇1θ̇2 (4.65)

(4.66)

The Gravity Term G(θ):

G(θ) =

m123g l1 cos(θ1) +m23g l2 cos(θ12) +m3g l3 cos(θ123)
m23g l2 cos(θ12) +m3g l3 cos(θ123)

m3g l3 cos(θ123)

 (4.67)

29

Chapter 5

Robot Control

5.1 Introduction

Most robots are driven by actuators that apply a force or torque to each joint. Hence, precisely
controlling a robot requires an understanding of the relationship between the joint forces and
torques and the motion of the robot; this is the domain of dynamics. Even for simple robots,
however, the dynamic equations are complex and dependent on a precise knowledge of the
mass and inertia of each link, which may not be readily available. Even if it were, the dynamic
equations would still not reflect physical phenomena such as friction, elasticity, backlash, and
hysteresis. Most practical control schemes compensate for these uncertainties by using feedback
control. After examining the performance limits of feedback control without a dynamic model
of the robot, we study motion control algorithms, such as computed torque control.

5.1.1 Control Objectives

• - Motion Control, the robot should move along a specific trajectory. examples of this are:
painting, spot welding, laser cutting, 3D Printing, etc. In these tasks, the trajectory is so
important.

• Force Control, the robot should apply a desired force to an object or environment. as
picking up an egg, if the force is the grab force is too powerful, it could break the egg, in
the other hand, if the grab force is too weak it might drop it off.

• Hybrid Motion-Force Control, as writing in a board, we need to control the trajectory of
end effector in the plan of the board, and the force into the board, it should be neither
too powerful to not break the board, nor too weak that it looses contact with the board
and then we won’t have the trace of the pen.

• Impedance Control, when the robot is used to render a virtual environment, the user
grabs the end effector and moves it around to explore the objects in a virtual world, this
control objective can be used to develop virtual reality games, movies or it can be used
to simulate hardware that is unavailable or expensive and requires special care.

5.2 Independent Joint Control

Independent Joint Control is the easiest controller since it assumes that there is no coupling
between the links, as if they were totally independent, and then it uses some kind of usual
feedback controllers (PID for instance) in each link to command the Joint positions. The block
diagram of a PID controller is shown in figure 5.1:

30

Figure 5.1: Block Diagram of PID Controller

Let’s consider the case of the simplest robot, the single joint robot. The results can easily be
generalized to N DOF robots.

5.2.1 PD Controller with g = 0

First, assume that the robot is an horizontal plan, this can easily be translated by putting
g = 0. Hence the dynamic model of such a robot becomes:

T = M θ̈ + β θ̇ (5.1)

Where M = ml2g + Izz.
We will be interested in Set Point Control which means that the desired joint position is
constant, as a result, we get:

θ̇d = 0

θ̈d = 0
(5.2)

We define the error variables to be: 〈θe = θd − θ
θ̇e = θ̇d − θ̇
θ̈e = θ̈d − θ̈

〉
(5.3)

We design a PD controller to this arm

T = Kpθe +Kdθ̇e (5.4)

If we equate 5.1 and 5.4
Kpθe +Kdθ̇e = Mθ̈ + βθ̇ (5.5)

Since θ̇d = 0 and θ̈d = 0:
θ̇e = −θ̇
θ̈e = −θ̈ (5.6)

We use this result in 5.5, we will then have:

Kpθe −Kdθ̇ = Mθ̈ + βθ̇ −Mθ̈ − (Kd + β)θ̇ +Kpθe = 0 (5.7)

31

Using 5.6, we get the following second order differential equation:

θ̈e +
(Kd + β)

M
θ̇e +

Kp

M
θe = 0 (5.8)

The canonical form of a second order differential equation is:

ÿ + 2 ξ ωnẏ + ω2
ny = 0 (5.9)

Where ξ is the damping ration and ωn is the natural frequency.

ξ =
β +Kd

2
√
KpM

ωn =
Kp

M
(5.10)

In order for the system to be stable Kp and Kd should satisfy the following conditions:

Kp > 0 Kd > −β (5.11)

Usually we set the gains such that we get an critically damped response, this is the case when
ξ = 1, hence

Kd = 2
√
kpM − β (5.12)

Although it seems that we have the freedom to choose Kp as large as we want, We should
not forget about the practical constraints, such as actuators maximum velocities, joints limits,
unmodeled dynamics, etc.

Simulation

These are the parameters of the link used in simulation:

m = 0.25 kg lg = 0.125 m I = 0.00135 kg.m2 φ = 0° g = 0 m/s2 β = 0.01 N.s/m
(5.13)

SIMULINK Model:

Figure 5.2: SIMULINK Model

The PD Controller is shown in figure 5.3:

We set the input to be a step function of 60° amplitude and we simulate the model with 2
different controller gains, the results are shown in figure:

As we can see, both controllers give a zero steady state error, but we prefer the one with no
overshoot since overshoot can cause damage to the robot, or may cause harm to the users.

32

Figure 5.3: PD Controller Implementation in SIMULINK

Figure 5.4: step response

5.2.2 PD Controller with g 6= 0

in the first section we have discussed the case of a single joint robot in a horizontal plan, we
now are interested in studying the effect of gravity on the arm, so we set g to be 9.81m.s2, the
dynamic model of such an arm is:

T = M θ̈ + β θ̇ +mg lg cos(θ + φ) (5.14)

Substituting the PD control law into the dynamics, we get

Kpθe −Kdθ̇ = Mθ̈ + βθ̇ +mglgcos(θ− φ)−Mθ̈− (Kd + β)θ̇ +Kpθe = mglgcos(θ− φ) (5.15)

This can be written as:

θ̈e +
Kd + β

M
θ̇e +

Kp

M
θe =

mglg
M

cos(θ − φ) (5.16)

33

In steady state, i.e when θ̈e = θ̇e = 0 we get:

θe =
mglg
Kp

cos(θ − φ) (5.17)

We notice that the steady state error is not null anymore when θd 6= ±90 +φ. We can decrease
this error by increasing the gain Kp but the error will never be zero. Hence, Proportional
Derivative controller should not be used if we need good precision (which is almost always the
case).

Figure 5.5: Position Error Due to the Gravity

Simulation In the same Simulink model we change the value of g and set it to be equal to
9.81 m/s2 and let everything else unchanged.
We get the following step response:

Figure 5.6: Step Response PD Controller with g 6= 0

It’s clear from figure 5.6 that the steady state error is not null.

34

5.2.3 PID Controller

In order to compensate this steady state error we consider adding the Integral action to our
controller. we end up having a PID controller,

T = Kpθe +Ki

∫
θedt+Kdθ̇e (5.18)

Equating the joint dynamics and the control torque would give us:

Kpθe +Ki

∫
θedt+Kdθ̇e = M θ̈ + β θ̇ −mg lg cos(θ + φ) (5.19)

Since cos(θ + φ) is constant in steady state, we can safely replace it with a constant, we set:

Tdist = mg lg cos(θ + φ) (5.20)

We then get:

Mθ̈e + (β +Kd)θ̇e +Kpθe +Ki

∫
θedt = Tdist (5.21)

Differentiating the two sides would results in a third order differential equation:

Mθe
(3) + (β +Kd)θe

(2) +Kpθe
(1) +Kiθe = 0 (5.22)

The characteristic equation of this differential equation is given by:

∆(s) = s3 +
β +Kd

M
s2 +

Kp

M
s+

Ki

M
= 0 (5.23)

Using Routh-Hurwitz Stability Criterion to get the constraints on Kp, Kd and Ki that assure
(at least) the stability of the system:

s3 1
Kp

M

s2 β +Kd

M

Ki

M

s1 Kpβ +KdKp −MKi

M(β +Kd)
0

s0 Ki

M
0

(5.24)

In order for this equation to be stable i.e. have all the roots in the right half plan, all the
elements of the first column in the table must have the same sign (positive in this case) and
none of them must be null, we get the the following constraints:

0 < Kp −β < Kd 0 < Ki < Kp(β+Kd)

M
(5.25)

As opposed to Kp and Kd, the integral gain Ki have both upper and lower bands. and it’s
written as a function of Kp and Kd. When tuning the PID gains, we should first set Kp and
Kd then compute Ki that assures stability
Now that we have the characteristic equation of the system, we can use pole placement to get
the appropriate PID gains.

∆(s) = (s− s1)(s− s2)(s− s3)
∆(s) = s3 − (s1 + s2 + s3)s2 + (s1s2 + s2s3 + s3s1)s− s1s2s3

(5.26)

35

Identifying 5.23 and 5.26 would give us the following equalities:
Kp = M(s1s2 + s2s3 + s3s1)

Ki = −Ms1s2s3

Kd = −M(s1 + s2 + s3)− β
(5.27)

• We set Ki = 0 and pick Kp and Kd to give a critical dumping response. Based on (5.12)

• Setting Ki = ε a small positive gain creates a 3rd pole s3 close to the origin.

• When we increase the gain Ki the first two poles move away from each other, and the
third pole approaches the first one.

• Increasing Ki sufficiently, the first and third poles will be collocated.

• Increasing Ki even more, would introduce imaginary parts to the first and third poles s.t.
s1 = s3, making the response oscillatory.

• When Kp(β+Kd)

M
< Ki The first and third poles will be located in the right half plan, which

makes the system instable.

- We set Ki = 0 and pick Kp and Kd to give a critical dumping response. Based on (5.12)
- Setting Ki = ε a small positive gain creates a 3rd pole s3 close to the origin. - When
we increase the gain Ki the first two poles move away from each other, and the third pole
approaches the first one. - Increasing Ki sufficiently, the first and third poles will be collocated.
- Increasing Ki even more, would introduce imaginary parts to the first and third poles s.t.
s1 = s3, making the response oscillatory. - When Kp(β+Kd)

M
< Ki The first and third poles will

be located in the right half plan, which makes the system instable.
This Analysis shows that Ki improves steady states error, but worsen transient response and
may even cause instabilities. That’s why we tend to choose Ki as small as possible. otherwise
we would use another control scheme that is *Computed Torque* which is introduced in the
next section.
Simulation
We Keep the same parameters that are used in the previous simulation, and we modify the
controller by adding an integrator, the newly created block is shown in this figure:

Figure 5.7: PID Controller Implementation in SIMULINK

We run the simulation with various PID gains, and examine their response in this plot:
It’s clear that the steady state error is null for both controllers and the response is underdamped.

36

Figure 5.8: PID Controller Implementation in SIMULINK

We see that the torques due to the proportional and derivative terms both go to zero, while
the integral term reaches a non zero steady state, that is the torque needed to resist the effect
of gravity, even when the error is null.

Figure 5.9: PID Controller Implementation in SIMULINK

37

5.3 Computed Torque Control - CTC

We have seen in Chapter 3 that the robot dynamics equations are coupled, time varying and
highly non linear systems. In the previous section we were applying linear controllers, They
gave good results to the set point control problem. This time we will be interested in studying
a non linear controller that is Computed Torque Control.
Computed Torque is a well known control scheme it uses the robot dynamics model in order
to control the robot. This controller is given by the equation:

T = M̃(θ)
(
θ̈d +Kvθ̇e +Kpθe

)
+ C̃(θ, θ̇) + G̃(θ) (5.28)

Where Kv and Kp are symmetric positive definite design matrices. M̃ , C̃, G̃ are the estimated
mass matrix, the velocity product term and the gravity term respectively. if the model is perfect
then M̃ = M , C̃ = C, G̃ = G.
Although 5.28 is so similar to a PD controller, the CTC is a non linear controller since the
position and velocity gains are not constant (i.e. time variant) and they depend explicitly
on the error θe, re-writing the equation 5.28 using the fact that θ = θd − θ would ease this
observation.

T = M̃(θd − θe)Kvθ̇e + M̃(θd − θe)Kpθe + M̃(θd − θe)θ̈d + C̃(θ, θ̇) + G̃(θ) (5.29)

The block diagram of a typical Computed Torque Controller is given in figure

Figure 5.10: Block Diagram of Computed Torque Controller

If we equate the controller torque, and the torque of the dynamic model and by supposing
M̃ = M , C̃ = C, G̃ = G. we get

M(θ)
(
θ̈d +Kvθ̇e +Kpθe

)
= M(θ)θ̈ (5.30)

We know that the mass matrix is positive definite, thus we can compute its inverse.
By Pre-multiplying the two sides of 5.30 we get,

θ̈e +Kvθ̇e +Kpθe = 0 (5.31)

The equation 5.31 is N Second-Order Linear Ordinary Differential Equations. We chose the
elements of Kv and Kp to give critical responses. that is ξ = 1.

Kv = 2
√
Kp (5.32)

38

Simulation
We have developed a computed torque controller for the single joint robot, it is shown in figure
5.11. We have set the gains Kp = 10 and Kv = 2

√
10.

Figure 5.11: Computed Torque Controller Implementation in SIMULINK

The overall SIMULINK model is depicted in figure 5.12

Figure 5.12: Control of a Single Joint Robot using CTC in SIMULINK

The signals provided by the trajectory generator block are shown in figure 5.13
We can see from 5.14 that this controller has a good tracking capability.
We now are interested in seeing the effect of having rough estimates of the dynamic model on
the trajectory tracking. We set the controllers parameters to be:

m = 1 kg lg = 0.1m I = 0.009 kg.m2 β = 0.1N.m/s (5.33)

After simulation, we can see from 5.15 that the reference tracking is not good anymore, this
shows how important is having good estimates of the robot. In short the computed torque
control is a powerful controller, although we should use it only f we dispose of a good dynamics
model. If not, other much simpler controllers can have a superior performance than the CTC.

39

Figure 5.13: Trajectory Generator Output Signals

Figure 5.14: The Response of CTC to a Varying Trajectory

40

Figure 5.15: The Response of CTC to a Varying Trajectory

41

Chapter 6

Simulation and Results

In order to simulate the dynamics of a PRRR SCARA robot we have created a SIMULINK
model shown in figure 6.1. This was done using Simscape Multibody toolbox. The model
contains one prismatic joint and 3 revolute joints, the links were modeled using a CAD software
called Autodesk Fusion 360, the CAD files are depicted in figure 6.5

Figure 6.1: The Simscape model of a PRRR SCARA Robot

The Complete Simulink model is shown in figure 6.2

Figure 6.2: The SIMULINK Model

The Trajectory generator shown in figure 6.3 is the block that generates joints trajectories out
of Cartesian trajectories, it does this using the inverse kinematics block.

42

Figure 6.3: The Trajectory Generator Block

The controller block is nothing but 4 simple PD controllers, as shown in figure 6.4. Tuning the
PD gains is a tedious task since the model is highly non linear and the dynamics are coupled,
we managed to find some gains that work by trial and error. the PID gains we have chosen are:

Kp1 = 100 Kd1 = 50
Kp2 = 50 Kd2 = 0.1
Kp3 = 0.5 Kd3 = 0.2
Kp4 = 0.05 Kd4 = 0.01

(6.1)

Figure 6.4: PID Controllers

Figure 6.5: The CAD file of SCARA Robot

After Simulation, the mechanics explorer gets opened allowing us to visualize the movement in
3D space, a frame of this is shown in figure 6.6

43

Figure 6.6: Mechanics Explorer Showing the SCARA Robot

The results are shown in figure 6.7 and 6.8
We notice that the PD controller is suitable to control the SCARA robot since it consist of a
set of links in horizontal plan. Although the movement is quite jerky.

44

Figure 6.7: Position Tracking of Revolute Joints

Figure 6.8: Position Tracking of Prismatic Joints

45

Conclusion

In this thesis we have modeled a SCARA robot using Simscape Multibody, that is a toolbox
in SIMULINK, because we have seen that the inverse dynamics models needed to simulate a
robot gets complicated when adding more degrees of freedom, We have used PD controllers to
control the arm and it turned out to be a good solution although the PID tuning process is not
as easy as it was when we had only one degree of freedom. Some future possible work would be
to try another controller scheme, like a fuzzy logic controller. Modeling the arm using the more
suitable formalism, that is Newton-Euler formalism since it is recursive and computationally
optimized.

46

Bibliography

[1] Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control.
Cambridge University Press, 2017.

[2] Sciavicco, Lorenzo, Siciliano, Bruno. Modelling and Control of Robot Manipulators

[3] Etienne Dombre and Wisama Khalil. Modeling, Performance Analysis and Control of Robot
Manipulators

[4] John J. Craig Introduction to Robotics Mechanics and Control

[5] Richard M. Murray, Zexiang Li, S. Shankar Sastry. A Mathematical Introduction to Robotic
Manipulation

[6] R. Kelly, V. Santibáñez and A. Loŕıa Control of Robot Manipulators in Joint Space

[7] Peter Corke Robotics, Vision and Control Fundamental Algorithms in MATLAB

47

	Acknowledgments
	Introduction
	Etymology
	Robotic Manipulators
	Types of Robot Manipulators
	History of Robotic Arms in Manufacturing

	Kinematics
	Forward Kinematics
	SCARA Manipulator
	Geometrical Approach
	Denavit-Hartenberg Convention

	Inverse Kinematics
	Two Links Planar Robot
	Three Links Planar Robot

	Velocity Kinematics
	Geometrical Jacobian
	Analytical Jacobian
	Inverse Jacobian

	Dynamics
	Lagrangian Formulation
	Single Joint Robot
	Two Links Planar Robot
	Three Links Robot

	Robot Control
	Introduction
	Control Objectives

	Independent Joint Control
	PD Controller with g=0
	PD Controller with g=0
	PID Controller

	Computed Torque Control - CTC

	Simulation and Results

