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INTRODUCTION

The development of SLAM-based robot control system as the integrated approach, which
connects the localization, mapping and motion control fields, is presented in this thesis. A lot
of robotic research goes into SLAM to develop robust systems for self-driving cars, last-mile
delivery robots, security robots, warehouse management, disaster-relief robots and exploration
robots. Mobile robots can be wheeled-based, biologically-inspired bipeds and quadrupeds,
drones and hybrid soft robotics. These mobile robots however, need extensive hardware, on-
board sensing, compute power, and accessories to support SLAM. All robot drive types includ-
ing holonomic, Ackerman or different drive are suitable for SLAM, and ideally the powered
wheel motors have encoder-based feedback. On-board sensing is used to measure the robot’s
pose as well as interpret the environment and objects within, to create a detailed map. Sen-
sors are responsible to implement closed-loop feedback for control. Nevertheless, poor quality,
noisy measurements and inaccurate robot models exacerbate the stochasticity in SLAM. Thus,
the mobile robot sensor suite ideally has redundant sensors for each type of measurement also
known as Sensor Fusion.

SLAM paradigms and Bayesian recursive state and map estimation techniques that in-
clude Kalman, and Particle filtering were studied in a detailed way in the SLAM chapter. The
solutions considered in this thesis will include the Kalman Filter, which is the backbone of
most SLAM research today, as well as the Extended Kalman Filter used for nonlinear systems
and environments. Next, we will consider the Particle Filter, which utilizes a non-parametric
approach to estimate the robot pose and landmarks location. And finally, we will consider
FastSLAM which utilizes the Kalman Filter for estimating the landmarks location and incor-
porates particle for the pose estimation. These particular algorithms are chosen because they
build off one another. The popular and powerful Kalman Filter will be used as a stepping stone
on the way to the more state-of-the-art FastSLAM algorithm. This pattern of building up to
more complicated algorithms is the main cause for the exponential development of SLAM-based
control.

Therefore, the thesis research can be covered by the following chapters:

• Chapter 1: presents the research state-of-the-art and motivation, which contains a brief

v



LIST OF FIGURES

explanation of the state of modern mobile robotics along with taxonomy of the SLAM
problem, and finally some of the recent applications of the SLAM problem in the field of
robotics.

• Chapter 2: covers a brief mathematical description of the SLAM problem as a probabilis-
tic approach with originates from the Bayes rule and Markov assumption. The Bayesian
recursive estimation definition and the Bayes Filter implementations, like Kalman Filer,
Extended Kalman Filter and a non-parametric approaches like Particle Filter and Fast-
SLAM.

• Chapter 3: consists of a probabilistic formulation of the state transition probability
density and the measurement density a mobile wheelded robot with non-holonomic con-
straints.

• Chapter 4: The simulation results of the described SLAM problem algorithms for the
robot pose estimation and map featuring problem applied to the 2D wheelded robot.

vi



CHAPTER

1

STATE OF THE ART

1.1 Introduction

The field of robotics has gone through a series of paradigms for software design. The first
major paradigm emerged in the mid-1970s, and is known as the ”model-based paradigm”. The
model-based paradigm began with a number of studies showing the hardness of controlling a
high DoF robotics manipulator in continuous space. A first singly exponential general motion
planning algorithm by Canny, [3] and Latombe’s [1] seminal introductory text into the field
of model-based motion planning. This early work largely ignored the problem of uncertainty
even though it extensively began using randomization as a technique for solving hard motion
planning problems [11]. Instead, the assumption was that a full and accurate model of the
robot and the environment be given, and the robot be deterministic. The model had to be
sufficiently accurate that the residual uncertainty was managed by a low-level motion controller.
Most motion planning techniques simply produced a single reference trajectory for the control
of the manipulator, although ideas such as Potential Fields [12] and Navigation Functions [18]
provided mechanisms for reacting to the unforeseen as long as it could be sensed. Applications of
these early techniques, if any, were confined to environments where every little bit of uncertainty
could be engineered away, or sensed with sufficient accuracy. [22]

The historical roots of SLAM can be traced back to Gauss [6], who is largely credited for
inventing the least mean squares method. for calculating planetary orbits. In the Twentieth
Century, a number of fields outside robotics have studied the making of environment models
from a moving sensor platform, most notably in Photogrammetry and Computer Vision. SLAM
builds on this work, often extending the basic paradigms into more scalable algorithms. [24]
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1.2. MOTIVATION

1.2 Motivation

Many things have changed since the time when, in the early 1920s, Karl Čapek first
called a mechanical creature a Robot. The word Robot originates from a Czech word which
means ’Work’. These machines, which are ”mechanically perfect” and have ”an enormously
developed intelligence”.In a very short time, they became an inspiration and one of the main
research fields in mechanical and artificial intelligence sciences [20]. During many decades,
they consequently went from science-fiction through the first laboratory prototype, to efficient
”workers” in probably all engineering fields, especially industrial ones. Novel technologies and
a rapid scientific progress resulted in the big robotics ”revolution” at the turn of XX and XXI
centuries, which introduced robots for social life of many countries. One of the most rapidly
developing fields in robotics science in mobile robots, which are constructed to perform different
tasks, such as inspection or servicing. Currently, modern mobile robots can perform the tasks
of unknown space explorers, ordinary home cleaners, medical servants in hospitals or even pets
for children. And they are no longer as exotic or expensive as they were before. [20]

The general SLAM problem has been the subject of substantial research since the incep-
tion of robotics research community and indeed before this in areas such as Manned Vehicle
Navigation systems and geophysical surveying. A number of approaches have been proposed to
address both the SLAM problem and also more simplified navigation problems where additional
map or vehicle location information is made available. Broadly, these approaches adopt one of
three main philosophies. The most popular of these is the estimation-theoretic or Kalman Filter
based approach. The popularity of this approach is due to two main factors. Firstly, it directly
provides both a recursive solution to the navigation problem and means of computing consistent
estimates for the uncertainty in vehicle and map landmark locations on the basis of statistical
models for vehicle motion and relative landmark observations. Secondly, a substantial corpus
of method and experience has been developed in aerospace, maritime and other navigation
applications, from which the autonomous vehicle community can draw. A second philosophy
is to eschew the need for absolute position estimates and for precise measures of uncertainty
and instead to employ more qualitative knowledge of the relative location of landmarks and
vehicle to build maps and guide motion [5]. This general philosophy has been developed by a
number of different groups in a number of different ways: The qualitative approach to navi-
gation and the general SLAM problem [[2], [14], [15]] has many potential advantages over the
estimation-theoretic methodology in terms of limiting the need for accurate models and the
resulting computational requirements and in its significant ”anthropomorphic appeal”. The
third very broad philosophy, does away with the rigorous Kalman Filter or statistical formal-
ism while retaining an essentially numerical or computational approach to the navigation and
SLAM problem. Such approaches include the use of iconic landmark matching [26] global map
registration [4] bounded regions [9], and other measures to describe uncertainty. Notable are
the work by Thrun and Yamauchi [22], [25] use a Bayesian approach to map building that does
not assume Gaussian probability distributions as required by the Kalman Filter. This tech-
niques while very effective for localization with respect to maps, does not lend itself to provide
an incremental solution to SLAM where a map is gradually build as information is received
from sensors. Yamauchi [25] use a evidence grid approach that requires that the environment
is decomposed to a number of cells.

An estimation-theoretic or Kalman Filter based approach to the SLAM problem is adopted
later in the next chapter. A major advantage to this approach is that it is possible to develop
a complete proof of the various proprieties of the SLAM problem and to study systematically
the evolution of the map and the uncertainty in the map and the vehicle location [21]. A proof
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1.3. TAXONOMY OF THE SLAM PROBLEM

of existence and convergence for a solution of the SLAM problem within a formal estimation-
theoretic framework work also encompasses the widest possible range of navigation problems
and implies that solutions to the problem using other approaches are possible. [5]

Figure 1.1: The fields of mobile robotics connected by the integrated approach

1.3 Taxonomy of the SLAM problem

SLAM problems are recognized along a number of different dimensions. Most important
research papers identify the problem type by making the underlying assumptions explicit. The
most common distinctions encountered in the literature are as follows: [20]

• Volumetric versus Feature-based. In volumetric SLAM, the map is sampled at a
resolution high enough to allow for photo-realistic reconstruction of the environment.
The map m in volumetric SLAM is usually quite high-dimensional, with the result that
the computation can be quite involved. Feature-based SLAM extracts sparse features
from the sensor stream. The map is then only comprised of features. Feature-based
SLAM techniques tend to be more efficient, but their results may be inferior to volumetric
SLAM due to the fact that the extraction of features discards information in the sensor
measurements.

• Topological versus Metric. Some mapping techniques recover only a qualitative de-
scription of the environment, which characterizes the relation of basic locations. Such
methods are known as topological. A topological map might be defined over a set of dis-
tinct places and a set of qualitative relations between theses places (e.g place A is adjacent
to place B). Metric SLAM methods provide metric information between the relation of
such places. In recent years, topological methods have fallen out of fashion, despite ample
evidence that humans often use topological information for navigation.

3



1.4. SLAM APPLICATION

• Known versus Unknown correspondence. The correspondence problem is the prob-
lem of relating the identity of sensed things to other sensed things. The problem if
estimating the correspondence is known as data association problem and it is one of the
most difficult problems in SLAM.

• Static versus Dynamic. Static SLAM algorithms assume that the environment does
not change over time. Dynamic methods allow for changes in the environment. The vast
literature on SLAM assumes static environments. Dynamic effects are often treated just
as measurements outliers. Methods that reason about motion in the environment are
more involved, but they tend to be more robust in most applications.

• Small versus Large uncertainty. SLAM problems are distinguished by the degree
of location uncertainty that they can handle. The most simple SLAM algorithms allow
only for small errors in the location estimate. They are good for situations in which a
robot goes down a path that does not intersect itself, and then returns along the same
path. In many environments it is possible to reach the same location from multiple
directions. Here the robot may accrue a large amount of uncertainty. This problem is
known as the loop closing problem. When closing a loop, the uncertainty may be
large. The ability to close loops is a key characteristic of modern-day SLAM algorithms.
The uncertainty can be reduced if the robot can sens information about its position in
some absolute coordinate frame, e.g through the use of satellite -based global positioning
receiver (GPS).

• Active versus Passive. In passive SLAM algorithms, some other entity controls the
robot, and the SLAM algorithm is purely observing. The vast majority of algorithms
are of this type, they give the robot designer the freedom to implement arbitrary motion
controllers, and pursue arbitrary motion objectives. In active SLAM, the robot actively
explores its environment in the pursuit of an accurate map. Active SLAM methods tend
to yield more accurate maps in less time, but they constrain the robot motion. There
exist hybrid techniques in which the SLAM algorithm controls only the pointing direction
of the robot’s sensors, but not the motion direction.

• Single-robot versus Multi-robot. Most SLAM problems are defined for a single-robot
platform, although recently the problem of multi-robot exploration has gained in pop-
ularity. Multi-robot SLAM problems are also distinguished by the type communication
allowed between the different robots. In some, the robots can communicate with no la-
tency and infinite bandwidth. More realistic are setups in which only nearby robots can
communicate, and the communication is subject to latency and bandwidth limitations.

As this taxonomy suggests, there exists a flurry of SLAM algorithms. Most modern-day confer-
ences dedicate multiple session to SLAM. We will manly focus on most simple and basic SLAM
setups. In particular we assume a static environment with a single robot.

1.4 SLAM Application

SLAM is an essential capability for mobile robots travelling in unknown environments
where globally accurate position data is not available. In particular, mobile robots have shown
significant promise for remote exploration, going places that are too distant [7], too dangerous
[23], or simply too costly to allow human access. If robots are to operate autonomously in
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1.4. SLAM APPLICATION

(a) Other planets (Persever-
ance)

(b) Undersea LarvalBot (c) Underground (ARIDuA)

Figure 1.2: Different type of robots using SLAM used for different environments

extreme environments undersea, underground, and on the surfaces of other planets, they must
be capable of building maps and navigating reliably according to these maps. Even in benign
environments, such as the interiors of buildings, accurate, prior maps are often difficult to
acquire. The capability to map an unknown environment allow a robot to be deployed with
minimal infrastructure. This is especially important if the environment changes over time. [20]

The maps produced by SLAM algorithms typically serve as the basis for motion planning
and exploration. However, the maps often have value in their own right. In July of 2002,
nine miners in the Quecreek Mine in Sommerset Pennsylvania were trapped underground for
three and a half days after accidentally drilling into a nearby abandoned mine. A subsequent
investigation attributed the cause of the accident to inaccurate maps [10]. Since the accident,
mobile robots and SLAM have been investigated as possible technologies for acquiring accurate
maps of abandoned mines. One such robot, show in the figure 1.2c below, is capable of building
3D reconstructions of the interior of abandoned mines using SLAM technology [23]
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CHAPTER

2

SIMULTANEOUS LOCALIZATION AND
MAPPING

2.1 Introduction

Simultaneous Localization and Mapping (SLAM) has been an immensely well know, and
expensively investigated topic among the mobile robotics community for more than two decades.
The accomplishments of this field is tightly bound to the fact that solving the SLAM problem,
that is locating a moving robot in an unknown environment and incrementally build a consistent
map of this environment while simultaneously determining its location within this generated
map at anytime. SLAM has increasingly various applications ranging from spacial exploration
to autonomous driving.

SLAM problem has been one of the eminent achievement of the robotics community over
the past years. It has been formulated and solved as a theoretical problem in various forms,
and it has also been carried out in different areas from raging from indoor robots, to outdoor,
underwater and airborne systems. From a conceptual and theoretical point of view, SLAM
can now be considered a solved problem. However, scalability and flexibility in SLAM should
be asserted more often, they are difficult to perform in large-scale experiments even with in-
expensive robots. Flexibility should be achieved within reasonable constraints, for example, a
method that works indoor but not outdoor is not flexible, but a method that requires a chains
to be added to the robot wheels to allow them to operate in the snow could still be considered
flexible. In a general manner, localizing a vehicle whether in a global or a local frame, is a
fundamental usefulness to perform some other insight or planification tasks. Anticipating the
evolution of other obstacles on the map, and choosing what maneuver is the most suitable,
requires knowing precisely where the vehicle is located and how it will evolve in the coming
seconds. The SLAM Framework offers a response to this problematic while as yet being suf-
ficiently general to permit the utilization of any sensor or estimation technique that suits the
prerequisite of estimating both the localization of the vehicle and the map at the same time.

6



2.2. SLAM: PROBLEM DEFINITION

The map is of prime interest when autonomous driving is considered as a whole as it offers the
first level of perception needed in order to make appropriate decisions.

2.2 SLAM: Problem Definition

2.2.1 Mathematical Basis

The SLAM problem is typically formalized in a probabilistic terminology. The goal is to be
able to estimate at the same time the state of the moving robot and the map being built. The
robot state can be characterized depending on the application: 2D position and orientation,
6D position, speed, acceleration... etc. We denote xk the vehicle position estimate at the
time k, and m the map of the environment. To estimate these variables, it is possible to take
advantage of what we call control inputs uk and which represent an estimation of the motion
between k− 1 and k. They usually come from wheel encoders or any sensor able to give a first
idea of the displacement. For noise-free motion, uk would be sufficient to recover the past xk
from the initial location x0. However odometry measurements are noisy and path integration
techniques inevitably diverge from reality, hence error in the robot’s path correlates errors in
the map. The particularity of SLAM approaches is to take into consideration measurements
coming from sensor readings denoted by zk to help build and improve the map and indirectly,
estimate the vehicle position. The map m is typically assumed to be time-invariant, and the
environment may comprised of landmarks, objects, and surfaces and their locations is described
by the estimated map m.

Figure 2.1: Graphical model of the SLAM problem

Figure 2.1 illustrates the various variables involved in the SLAM problem. It shows the
sequence of locations and sensor measurements, and the causal relationship between them.

2.2.2 SLAM Posterior

As discussed earlier, the robot’s position will be denoted as xk. For a robot operating in
a planar environment, this position consists of the robot’s x-y position in the plane and its

7



2.2. SLAM: PROBLEM DEFINITION

heading direction. The sequence of locations, or path in given as:

x = {x0, x1, x2, ..., xk} (2.1)

Where k is either finite (terminal time) or infinite, and x0 the initial location is know as
opposed to other locations that cannot be sensed. We shall further assume that the robot’s
environment can be modeled as a set of N immobile, point landmarks, which represent the
position of features extracted from sensor data, such as laser scanners and cameras. While
moving through the environment, the robot extract relative information about its motion using
sensors such as encoders attached to the robot’s wheels, inertial measurement units , or simply
observing the control commands executed by the robot. The set of all controls executed is
written as:

u = {u0, u1, u2, ..., uk} (2.2)

The robot measurements highlight the nearby observed landmarks and obstacles, then
establishes information between features in the map m and its locations xk. We will assume
that the robot takes exactly one measurement as each point in time, the set of all measurements
is:

z = {z0, z1, z2, ..., zk} (2.3)

The primary SLAM goal now is to recover the best estimate of the world m and the robot
pose xk, given the set of noisy odometry data (observation) zk and controls uk. We distinguish
two main forms of the SLAM problem which are both of equal practical importance. One is
know as the full-SLAM problem: it involves estimating the posterior over the entire robot
path together with the world’s map:

p(x1:k,m|z1:k, u1:k) (2.4)

Written this way, the full SLAM problem is the problem of calculating the joint posterior
over xk and m from the available data. Notice that the variables right of the conditioning bar
are all directly observable to the robot, whereas those on the left are the ones that we wanted.
As we shall see, algorithms for the offline SLAM problem are often batch, that is, they process
all data at the same time. [20] The second, equally important SLAM problem is the online
SLAM problem, it is defined via:

p(xk,m|z1:k, u1:k) (2.5)

Online SLAM seeks to recover the present robot location, instead of the entire path.
Algorithms that address the line problem are usually incremental and can process one date
item at a time. In the engineering literature, such algorithms are called filters. [20]

The essential SLAM problem is illustrated in the figure 2.2 below. A simultaneous estimate
of both the robot and landmark locations. The true locations are never known or measured
directly, observations are made between true robot and landmark locations.

To solve the SLAM problem, the robot should be enriched with two more models: a
mathematical model that relates the odometry measurements u to the robot’s locations at any
two successive time steps xk−1 and xk, and a model that relates the observations captured
by sensors and the robot location xk. It is common to think of those mathematical models as
probability distributions: p(xk|xk−1, uk) characterizes the probability distribution of the robot’s
location xk assuming that he started at a known location xk−1 and measured the odometry data

8



2.2. SLAM: PROBLEM DEFINITION

Figure 2.2: SLAM problem

uk. Likewise, p(zk|xk,m) is the probability for measuring zk if the measurement is taking at
a known location xk in a known environment m. Of course, in the SLAM problem, either
the robot location and the environment are unknown, so we need a way to recover probability
distributions over latent variables from the measured data.

Bayes Filter Derivation

The Bayes Filter derivation from the SLAM posterior is straightforward, using the Bayes
theorem into equation 2.4, the recursive posterior estimation looks like follows:

p(x1:k,m|z1:k, u1:k) = η p(zk|xk,m, z1:k−1, u1:k) p(xk,m|z1:k−1, u1:k) (2.6)

The denominator from Bayes theorem is a normalizing constant η. Note that zk is a solely a
function of the robot’s pose xk and the map m. Applying Markov assumption to 2.6 that states
that xk is a result of all history information from 0 to k that we can encode. Simplifying the
probability of observation at time k gives us:

p(x1:k,m|z1:k, u1:k) = η p(zk|xk,m) p(xk,m|z1:k−1, u1:k) (2.7)

The rightmost term of the above equation can further be simplified using the same Markov
assumption as before and the Theorem of Total Probability at time k − 1:

= η p(zk|xk,m)
∑

xk−1∈X

p(xk,m|xk−1, z1:k−1, u1:k)p(xk−1,m|z1:k−1, u1:k) (2.8)

Note that the robot’s pose xk is a function of xk−1 and uk, we can think of it as the control
command needed to get the robot from xk−1 to xk or the robot motion model, this simplifies
further the first term inside the previous summation:

= η p(zk|xk,m)
∑

xk−1∈X

p(xk|xk−1, uk)p(xk−1,m|z1:k−1, u1:k) (2.9)

9
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We can drop uk from the rightmost term in summation because it provides no information
about the robot’s latest pose xk or the map m without the latest observation zk. The result is a
recursive formula 2.10 for computing the SLAM posterior at time k given the SLAM posterior
at time k − 1:

= η p(zk|xk,m)
∑

xk−1∈X

p(xk|xk−1, uk)p(xk−1,m|z1:k−1, u1:k−1) (2.10)

The definition of recursive state and map estimation by the previous equation (2.10)
is called Full-SLAM or a smoothing problem. The estimation here is going through a full
way with recuperating every conceivable poses, observations and controls for every time step.
The recursive formula also depend explicitly on two probability functions, the motion model
p(xk|xk−1, uk), and the observation model p(zk|xk,m).

This approach is much more efficient when very accurate full path is searched and task has
enough computing resources and time for calculations. During previous years many researchers
is SLAM community were focusing on robust optimization of smoothing, and its variant incre-
mental smoothing (p(xk,m|z1:k, u1:k)), optimization mostly based on the least mean square
problem solutions. [13]

The figure [2.3] below illustrates the graphical Bayesian Network of the full-SLAM problem:

(a) (b)

Figure 2.3: Graphical representation by Bayesian network of online-SLAM

Filtering is a most utilized SLAM approach, especially since it permits to have the recent
information in a quick time without the need for heavy computing resources. This estimation
is beneficial for short-term usage and sufficient for path planning or mapping systems that is
being applied in autonomous vehicles application usage. [16] In SLAM researcher community,
the three main paradigms are existing independently. There are particle filters, Kalman filters
and graph-based or topological SLAM. We will look at the essential and regular executions of
each SLAM paradigms in the next part of this chapter. [16]

10



2.3. GAUSSIAN FILTERS

2.3 Gaussian Filters

Historically, Gaussian filters are the earliest implementations of the recursive Bayes filter
for continuous spaces. They are wildly used in various domains including navigation and
guidance for spacecrafts to signal processing and economics despite a number if shortcomings.

Gaussian filters are based on the basic idea that beliefs are represented by multivariate
normal distributions.

p(x) = det(2πΣ)−
1
2 exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
(2.11)

The probability distribution over the variable x is characterized by two parameters: the
mean µ and the covariance Σ. Such parameterization is called the moments parameterization
because the mean and covariance are the first and second moments of probability distribution.
The mean µ is a column vector with the same dimension as x, and the covariance is a symmetric
positive-semidefinite matrix with the same dimensionality as the state vector x but squared.
Thus, the number of elements in the covariance matrix depends quadratically on the number
of elements in the state vector.

The commitment to represent the posterior by a Gaussian has important ramifications.
Most importantly, Gaussian are unimodal, they posses a single maximum. Such a posterior is
characteristic of many tracking problems in robotics, in which the posterior is focused around
the true state with a small margin of uncertainty. Gaussian posteriors are a poor match for
many global estimation problems in which many distinct hypotheses exist, each of which forms
its own mode in the posterior. [22]

2.3.1 Linear Kalman Filter

One of the most studied techniques for implementing recursive Bayes filters is the linear
Kalman filer or KF. The Kalman filter is an algorithm that uses a series of measurements
observed over time, containing statistical noise for filtering and prediction in Linear Systems
defined by the recurrence relation with Gaussian noises added, where Ak is the state matrix,
Bk, the input matrix, Ck the output matrix, εk and δk are random Gaussian vectors that model
the uncertainty introduced by the state transition and the measurement noise respectively, with
zero mean and covariance Rk and Qk respectively:{

xk+1 = Akxk +Bkuk + εk

zk = Ckxk + δk
(2.12)

The Kalman filter uses the moment parameterization to represent beliefs. At time k,
the belief is represented by the mean µk and the covariance Σk. In addition to the Markov
assumption of the Bayes filer, posteriors are Gaussian if the system in question has a linear
state transition probability p(xk+1|uk, xk), the measurement probability p(zk|xk) is also linear
and finally, the initial belief p(x0) must be normally distributed with a mean µ0 and covariance
Σ0

The state transition probability, the measurement probability and the initial belief are ob-
tained by plugging the equation [2.12] into the definition of the multivariate normal distribution

11
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[2.11]:

bel(xk+1) = det(2πRk)
− 1

2 exp

{
−1

2
(xk+1 − Akxk −Bkuk)

TR−1k (xk+1 − Akxk −Bkuk)

}
(2.13)

bel(zk) = det(2πQk)
− 1

2 exp

{
−1

2
(zk − Ckxk)TQ−1k (zk − Ckxk)

}
(2.14)

bel(x0) = det(2πΣ0)
− 1

2 exp

{
−1

2
(x0 − µ0)

TΣ−10 (x0 − µ0)

}
(2.15)

These assumptions are sufficient to ensure that the posterior bel(xk+1) is always Gaussian at
anytime.

The Kalman Filter Algorithm

As described earlier, the Kalman filter represent the belief bel(xk) at time k. The input
of the filter is the belief at time k − 1, represented by the µk−1 and Σk−1. To update these
parameters, The Kalman filter requires the control uk and the measurement zk. The output
is the belief at time k represented by the mean µk and the covariance Σk. The algorithm is
presented below:

Algorithm 1 Kalman Filter

Inputs: µk−1, Σk−1, uk, zk
Prediction

µk = Akµk−1 +Bkuk
Σk = AkΣk−1A

T
k +Rk

Kalman Gain
Kk = ΣkC

T
k (CkΣkC

T
k +Qk)

−1

Correction
µk = µk +Kk(zk − Ctµk)
Σk = (I −KkCk)Σk

return µk, Σk

The predicted µk and Σk are calculated representing the belief bel(xk) one time step later,
but before incorporating the measurement zk. This belief is obtained by incorporating the
control uk The mean is updated using the deterministic version of the state function described
by the equation [2.12], with the state xk−1 substituted by the mean µk−1. The update of
the covariance considers the fact that states depend on previous states through the linear
state matrix Ak. This matrix is multiplied twice into the covariance, since the covariance is a
quadratic matrix. [22]

The predicted belief bel(xk) is subsequently transformed into the desired belief bel(xk)
by incorporating the measurement zk. The variable Kk is called the Kalman gain used to
specify the degree to which the measurements is incorporated into the new state estimate. The
correction is then made to the mean by adjusting it in proportion to the Kalman gain and
the deviation of the actual measurement zk and the measurement predicted according to the
probability from the second equation [2.12]. Finally the new covariance of the posterior belief
is calculated, adjusting for the information gain resulting from the measurement. [22]

The figure 2.4 illustrates the Kalman filter algorithm for a basic localization scenario.
Suppose that the robot moves along the horizontal axis in each diagram. Let the prior over the

12
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robot location be given by the normal distribution shown in figure 2.4a The robot queries its
sensors on its location (e.g., a GPS system), and those return a measurement that is centered at
the peak of the bold Gaussian in Figure 2.4b. This bold Gaussian illustrates this measurement:
Its peak is the value predicted by the sensors, and its width (variance) corresponds to the
uncertainty in the measurement. Combining the prior with the measurement, via lines 4 through
6 of the Kalman filter algorithm presented above, yields the bold Gaussian in Figure 2.4c.
This belief’s mean lies between the two original means, and its uncertainty radius is smaller
than both contributing Gaussians. The fact that the residual uncertainty is smaller than
the contributing Gaussians may appear counter-intuitive, but it is a general characteristic of
information integration in Kalman filters.

Next, assume the robot moves towards the right. Its uncertainty grows due to the fact
that the state transition is stochastic. Lines 2 and 3 of the Kalman filter provide us with the
Gaussian shown in bold in Figure 2.4d. This Gaussian is shifted by the amount the robot moved,
and it is also wider for the reasons just explained. The robot receives a second measurement
illustrated by the bold Gaussian in Figure 2.4e which leads to the posterior shown in bold in
Figure 2.4f.

As this example illustrates, the Kalman filter alternates a measurement update step (lines
5-7), in which sensor data is integrated into the present belief, with a prediction step (or control
update step), which modifies the belief in accordance to an action. The update step decreases
and the prediction step increases uncertainty in the robot’s belief. [22]

2.3.2 Extended Kalman Filter

The suppositions that observations are linear functions of the state and that the state
equation is a linear recurrent formula with respect to the previous state are pivotal for the
correctness of the Kalman Filter. The observation that any linear transformation of a Gaussian
random variable results in another Gaussian random variable played an important role in the
derivation of the Kalman Filter algorithm. The Kalman filter’s efficiency is then because the
parameters of the resulting Gaussian can be computed in closed form.

In many robotic problems, the state transitions and measurements are nonlinear, which
makes plain Kalman Filters inapplicable. For this, the Extended Kalman Filter (EKF) relaxes
on the assumption that the state transition probability and the measurements probabilities are
governed by nonlinear functions g and h respectively:

{
xk = g(xk−1, uk) + εk

zk = h(xk) + δk
(2.16)

The function g replaces the state matrix Ak and the input matrix Bk for the linear state
transition, and the function h replaces the output matrix Ck of the measurement as described
by the equation [2.12]. This nonlinear model generalizes the Linear Gaussian model underlying
Kalman filters. Note that, with arbitrary function g and h, the beliefs bel(xk) = p(xk|uk, xk−1)
and bel(zk) = p(zk|xk) are no longer Gaussian. Therefore, performing belief update exactly is
impossible and the Bayes filter does not possess a closed-form solution.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.4: Illustration of Kalman filters
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The Extended Kalman Filter calculates a Gaussian approximation to the true belief, it
represents the true belief bel(xk) at time k by a mean µk and covariance Σk. Thus, the Extended
Kalman filter inherits from the Kalman filter the basic belief representation, but it differs in
that this belief is only approximate, not exact as was the case in Kalman filters. The goal is thus
shifted from computing the exact posterior to efficiently estimating its mean and covariance.
However, since these statistics cannot be computed in closed form, the Extended Kalman filer
has to resort to an additional approximation.

The key idea underlying the Extended Kalman filter approximation is called linearization.
linearization approximates the nonlinear function g by a linear function that is tangent to g
at the mean of the Gaussian, and projecting the Gaussian through this linear approximation
results in a Gaussian density. The major advantage of the linearization, however lies in its
efficiency, approximating the nonlinear state transition and measurement probabilities by linear
approximations help retain the Gaussian nature of the posterior belief, Thus, the mechanics
of the Extended Kalman filter belief propagation are equivalent to those of the linear Kalman
filer.

Extended Kalman filter utilizes a linearization method called first order Taylor Expan-
sion. Taylor expansion constructs a linear approximation to the function g by its value at the
mean of the posterior µk−1, then, a linear extrapolation is achieved by adding an additional
term proportional to the gradient of g and µk−1 and uk:

g(xk−1, uk) ≈ g(µk−1, uk) +
∂g(xk−1, uk)

∂xk−1
(xk−1 − µk−1) (2.17)

≈ g(µk−1, uk) +Gk(xk−1 − µk−1) (2.18)

The matrix Gk is called the Jacobian matrix and its value depends on uk and µk−1, hence it
differs for different points in time.

Written as Gaussian, the state transition probability is approximated as follows:

p(xk|xk−1,uk)

≈ det(2πRk)
− 1

2 exp{−1

2
[xk − g(µk−1, uk)−Gk(xk−1 − µk−1)]T

R−1k [xk − g(µk−1, uk)−Gk(xk−1 − µk−1)]}

(2.19)

For the measurement fucntion h, Extended Kalman filter implent the exact same lin-
earization. However, the Taylor expansion is developed around µk. The linear measurement
approximate is obtained as follows:

h(xk) ≈ h(µk) +
∂h(xk)

∂xk
(xk − µk) (2.20)

≈ h(µk) +Hk(xk − µk) (2.21)

Written as Gaussian, we have:

p(zk|xk) ≈ det(2πQk)
− 1

2 exp{−1

2
[zk − h(µk)−Hk(xk − µk)]T

Q−1k [zk − h(µk)−Hk(xk − µk)]}
(2.22)
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Extended Kalman Filter Algorithm

The Extended Kalman Filter algorithm is similar to the linear Kalman Filter except using
the nonlinear state transition and measurement for the prediction. Moreover, Extended Kalman
Filter uses Jacobians Gk and Hk instead of the corresponding linear system matrices Ak, Bk

and Ck in Kalman filter. The Extended Kalman filter algorithm is presented below:

Algorithm 2 Extended Kalman Filter

Inputs: µk−1, Σk−1, uk, zk
Prediction

µk = g(µk−1, uk)
Σk = GkΣk−1G

T
k +Rk

Kalman Gain
Kk = ΣkH

T
k (HkΣkH

T
k +Qk)

−1

Correction
µk = µk +Kk(zk − h(µk))
Σk = (I −KkHk)Σk

return µk, Σk

The Extended Kalman filter has gotten just about the most popular tool for state estima-
tion in robotics. Its strength lies in its simplicity and its computational efficiency that comes
mainly from representing beliefs by a multivariate Gaussian distributions. A Gaussian is a
unimodal distribution which can be though of as a single guess annotated with an uncertainty
ellipse. Extended Kalman filters have been applied with great success to many state estimation
problems. However, an important limitation of the Extended Kalman filter arises from the
fact that it approximates state transitions and measurements using linear Taylor Expansions.
The goodness of the linear approximation applied to Extended Kalman filters depends on the
degree of uncertainty and the degree of the local non-linearity of the functions that are being
approximated.

2.3.3 Extended Kalman Filter SLAM

The SLAM filtering solution, which is based on the Extended Kalman filter application is
the first successfully implemented and most often used Online SLAM algorithm. As described
earlier, the Extended Kalman filter is similar to the linear Kalman filter with the exception
that the Extended Kalman filter uses a Gaussian approximate to the nonlinear state transition
and measurement probabilities characterized by the mean µk and the covariance Σk. The
amount if uncertainty in the posterior estimation must be relatively small, since otherwise the
linearization in Extended Kalman filter tens to introduce intolerable errors.

In the Extended Kalman filter algorithm, the prediction consist of calculating the Jacobian
matrices Gk and Hk of the state transition and measurement g and h respectively. Therefore
the prediction step will have the following form:

bel(xk) =

{
µk = g(µk−1, uk)

Σk = GkΣk−1G
T
k +Rk

(2.23)

The update step uses the nonlinear observation function h alongside its Jacobian Hk. The
Kalman gain is then calculated as:
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Kk = ΣkH
T
k (HkΣkH

T
k +Qk)

−1 (2.24)

Then, the posterior might be written in the following way:

bel(xk) =

{
µk = µk +Kk(zk − h(µk))

Σk = (I −KkHk)Σk

(2.25)

Maps in EKF SLAM are feature-based, they consist of point landmarks. For computational
reasons, the number of point landmarks is usually smaller than 1000. Further the Extended
Kalman filter approach tends to work well in less ambiguous the landmarks are. For this reason,
EKF SLAM requires significant engineering of feature detectors, sometimes using artificial
beacons as features. [22]

Since SLAM process estimates the map alongside the pose, in EKF SLAM as the estimated
value the state vector is used. Its two dimensional structure consisting of the pose xk, the
landmarks mNx and mNy and signature sN . For robots that move in a plane, the mean vector
µk is of dimension 3N + 3, where N is the number of landmarks. Three dimensions are require
to represent the pose of the robot, and two dimensions are required to specify the position of
each landmark. Likewise, the covariance matrix is of size 3N + 3 by 3N + 3. Thus, the number
of parameters needed to describe the EKF posterior is quadratic in the number of landmarks
in the map:

Yk =
[
xk m

]T
=
[
x y θ m1,x m1,y s1 ... mN,x mN,y sN

]T
(2.26)

Thus the SLAM posterior has to be described as:

p(Yk|z1:k, u1:k) (2.27)

As stated in the previous paragraph, the mean and the covariance of the state vector will take
the forms:

µk =

[
xk
m

]
(2.28)

and

Σk =

[
ΣXkXk ΣXkm

ΣmXk Σmm

]
=


ΣXkXk ΣXkm1 . . . ΣXkmN

Σm1Xk Σm1m1 . . . Σm1mN
...

...
. . .

...
ΣmNXk ΣmNm1 . . . ΣmNmN

 (2.29)

At the initial state in the EKF-SLAM for the case with know-correspondence is taken to
be the origin of the coordinate system. This definition is somewhat arbitrary, in that it can
be replaced by any coordinate. None of the landmark locations are known initially. The mean
and the covariance matrices will be filled by zero. Then, the computing is going through three
steps similar to regular Kalman Filter: The current state estimate by control information, the
estimated state update from observed landmarks, the new landmarks, add to the current state.
It is repeating in a loop with returning µk and Σk for each time step calculation.

The figure [2.5] illustrates the EKF SLAM algorithm for an artificial example. The robot
navigates from a start pose that serves as the origin of its coordinate system. As it moves,
its own pose uncertainty increases, as indicated by uncertainty ellipses of growing diameter.
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(a) (b)

(c) (d)

Figure 2.5: EKF applied to the online SLAM problem
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It also senses nearby landmarks and maps them with an uncertainty that combines the fixed
measurement uncertainty with the increasing pose uncertainty. As a result, the uncertainty in
the landmark locations grows overtime. In fact, it parallels that of the pose uncertainty at the
time a landmark is observed. The interesting transition happens in figure 2.5d: here the robot
observes the landmark it saw in the very beginning of mapping, and whose location is relatively
well known. Through this observation, the robot’s pose error is reduced, as indicated by the
very small error ellipse for the final robot pose. This observation also reduces the uncertainty
for other landmarks in the map. [22]

2.4 Particle Filter

The Particle Filter is another alternative nonparametric implementation of the Bayes Filter
[2.10]. It is mainly used for Online-SLAM problem approach. The key idea with Particle Filter
is, instead of representing the posterior belief bel(xk) by a parametric form which would have
been the Gaussian density of normal distribution, Particle Filter however approximate the same
distribution by a set of random state samples called Particles hence the name Particle Filter
(see figure [2.6]). This nonparametric approximation can represent a much broader space of
the distributions than Gaussian normal density distribution. Another advantage of the sample
based representation is the ability to model nonlinear transformations of random variables.

Figure 2.6: Particle samples for estimating multi-modal target distribution

The samples of a posterior distribution are denoted χk = {x[1]k , x
[2]
k , ..., x

[M ]
k }. Each particle

x
[m]
k with 1 ≤ m ≤M is an instantiation of the state at time k. In another words, a particle is

a hypothesis as to what the true world state may be at time k. Here M denotes the number of
particles in the particle set χk. In practice, the number of particles M is big (e.g, M ≥ 1000).
Ideally, the likelihood for a state hypothesis xk to be included in the particle set χk shall be
proportional to its Bayes Filter posterior belief bel(xk). Therefore, the denser the subregion of
the state space is populated by samples, the more likely it is that the true state falls into this
region:

x
[M ]
k ∼ p(xk|z1:k, u1:k) (2.30)
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Just like all other Bayes Filters discussed earlier in this chapter, the Particle Filter algo-
rithm approximate the belief bel(xk) recursively from the belief bel(xk−1) one time step earlier.
Since beliefs are represented by sets of particles, this means that the Particle Filter construct
the particle set χk recursively from the set χk−1 [22]. The most basic variant of the Particle
Filter algorithm is presented below:

Algorithm 3 Particle Filter Algorithm

particle set initialization
Inputs: χk−1, uk, zk
Instantiation
for m = 1 to M do

sample x
[M ]
k ∼ p(xk|x[M ]

k−1, uk)

w
[M ]
k = p(zk|x[M ]

k )

χk = χk + 〈x[M ]
k , w

[M ]
k 〉

end for
Importance Sampling
for m = 1 to M do

draw i with probability ∝ w
[i]
k

add x
[i]
k to χk

end for
return χk

The algorithm first construct the set of particles which likelihood is proportional to its
Bayes Filter posterior belief bel(xk). Each particle or hypothetical state x

[m]
k for time step k

based the previous state x
[m]
k−1 and the control uk is indexed by m indicating that it is generated

from the m-th particle in χk−1. Moreover, for every particle x
[m]
k , the algorithm calculates

the so-called the importance factor w
[m]
k . Importance factor or weight is used to incorporate

the measurement zk into the particle set. The importance, thus is the probability of the
measurement zk under the particle x

[m]
k given by w

[m]
k = p(zk|x[m]

k ). The set of weighted particles
represents in approximation the Bayes Filter posterior bel(xk). Then the algorithm constructs
a temporary particle set χ that represented the belief bel(xk). It does this by systematically

processing each particle x
[m]
k−1 in the input particle set χk−1.

In the importance sampling step, the algorithm draws replacement M particles from the
temporary set bel(xk). The probability of drawing each particle is given by its importance
weight. Resampling transforms a particle set of M particles into another particle set of the
same size. By incorporating the importance wright into the resampling process, the distribution
of the particles change. Whereas before the resampling step, they were distributed according to
the bel(xk), after the resampling they are distributed approximately according to the posterior

bel(xk) = ηp(zk|x[m]
k )bel(xk). In fact, the resulting sample set usually possesses many duplicates,

since particles are drawn with replacement. More important are the particles not contained in
χk: Those tend to be the particles with lower importance weights. [22].

Such a Particle Filter algorithm would still approximate the posterior, but many of its
particles would end up in regions of low posterior probability. As a result, it would require many
more particles: how many depends on the shape of the posterior. The importance resampling
step is a probabilistic implementation of the Darwinian idea. It refocuses the particle set to
regions in state space with high posterior probability. By doing so, it focuses the computational
resources of the filter algorithm to regions in the state space where they matter the most.
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2.5 FastSLAM

As we have saw in the previous section, Particle Filter uses a set of particles also known
as hypothesis to estimate the posterior belief bel(xk) rather than using a parametric Gaussian
normal density distribution. Such representation has the advantage to describe a much broader
space of the distribution than Gaussian density distribution, and it can also model nonlinear
transformations of random variables. In research community, many attempts were made to
test whether Particle Filters are applicable to the SLAM problem. Unfortunately, they are the
subject to the curse of dimensionality and any implementation of the Particle Filters to the
SLAM problem is doomed to fail, due to the large number of variables involved in describing
the map.

An important characteristic of the full-SLAM problem with known correspondences is
that any two disjoint set of features in the map are conditionally independence, given the robot
pose. This structural characteristic will make it possible to apply a version of Particle Filters
to represent the posterior over some variables, along with Gaussians or some other parametric
probability distribution functions to represent all other variables.

FastSLAM takes advantage of this fundamental characteristic and uses Particle Filter for
estimating the robot path. For each of these particles, the individual map errors are condition-
ally independent. Hence the mapping problem can be factored into many separate problems,
one of each feature in the map. FastSLAM estimates these map feature locations by Extended
Kalman Filter. This is fundamentally different from SLAM algorithms discussed earlier, which
all use a single Gaussian to estimate the location of all features jointly.

p(Yk|z1:k, u1:k) = p(x1:k,m1:M |z1:k, u1:k) (2.31)

= p(x1:k|z1:k, u1:k)p(m1:M |z1:k, u1:k) (2.32)

= p(x1:k|z1:k, u1:k)︸ ︷︷ ︸
Particle Filter

M∏
i=1

p(mi|z1:k, u1:k)︸ ︷︷ ︸
EKF

(2.33)

with:
Yk =

[
xk m

]T
(2.34)

The key advantage of FastSLAM over other SLAM algorithms arises from the fact that
Particle Filter can cope with nonlinear robot motion models, whereas previous techniques
approximate such models via linear functions using the Taylor Expansion. Moreover, FastSLAM
solves both the full-SLAM and the Online SLAM problem. It was conceived to calculate the
full path posterior: only the full path renders feature locations conditionally independent.
However, because Particle Filter estimates one pose at a time, FastSLAM is indeed an online
SLAM. Hence it solves the online SLAM problem as well and it is the only algorithm that fits
both categories.

The Basic Algorithm

Particles in the basic FastSLAM algorithm are of the form shown in the Table 2.1 below.
Each particle contains an estimated robot pose, denoted x

[i]
k and a set of Kalman filters with

mean µ
[i]
j,k and covariance Σj, k[i], one for each feature mj in the map. Here i is the index of the

particle (1 ≤ i ≤M).
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Robot path feature 1 feature 2 ... feature N

Particle i = 1 x
[1]
1:k = {(x y θ)T}[1]1:k µ

[1]
1 ,Σ

[1]
1 µ

[1]
2 ,Σ

[1]
2 ... µ

[1]
N ,Σ

[1]
N

Particle i = 2 x
[2]
1:k = {(x y θ)T}[2]1:k µ

[2]
1 ,Σ

[2]
1 µ

[2]
2 ,Σ

[2]
2 ... µ

[2]
N ,Σ

[2]
N

...
...

...
...

...
...

Particle i = M x
[M ]
1:k = {(x y θ)T}[M ]

1:k µ
[M ]
1 ,Σ

[M ]
1 µ

[M ]
2 ,Σ

[M ]
2 ... µ

[M ]
N ,Σ

[M ]
N

Table 2.1: Particles in FastSLAM are composed of a path estimate and a set of estimators of
individual feature locations with associated covariances.

(a) (b)

Figure 2.7: Mismatch between proposal and posterior distributions

The Particles in FastSLAM are used to compute the posterior over robot paths denoted
by p(x1:k|z1:k, u1:k). For each feature in the map, FastSLAM uses a separate estimator over
its location p(mi|x1:k, z1:k) one for each feature i = 1, ..., N . Thus, in total there are N + 1
posteriors in FastSLAM. The feature estimators are conditioned on the robot path, which
means we will have a separate copy of each feature estimator, one for each particle. With M
particles, the number of filters will actually be 1 + MN . The product of these probabilities
represents the desired posterior in a factored way. This factored representation is exact, not
just an approximation. It is a generic characteristic of the SLAM problem. [22]

As noted, FastSLAM estimates the path posterior using a Particle Filter and the map
feature locations are estimated using Extended Kalman filters. Because of our factorization,
FastSLAM can maintain a separate Extended Kalman Filter for each feature which makes the
update more efficient than in Extended Kalman Filter SLAM (EKF SLAM). Each individual
Extended Kalman Filter is conditioned on a robot path. Hence, each particle possesses its own
set of EKFs. In total there are NM EKFs, one for each feature in the map and one for each
particle in the Particle Filter.

In the case of known data association, particles in FastSLAM are denoted:

Y
[i]
k = 〈x[i]k , µ

[i]
1,k,Σ

[i]
1,k, ..., µ

[i]
N,k,Σ

[i]
N,k〉 (2.35)

All these quantities are from the i-th particle Y
[i]
k , of which there are a total of M in the

FastSLAM posterior.

Calculating the posterior at time step k from the one at time step k−1 involves generating
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a new particle set Yk from Yk−1. This new particle set incorporates a new control uk and a
measurement zk. The update is performed in the following steps:

• Extending the path posterior by sampling new poses. FastSLAM uses the control
uk to sample new robot pose xk for each particle in Yk−1. The pose xk is sampled in
accordance with the i-particle according to the motion posterior:

x
[i]
k ∼ p(xk|x[i]k−1, uk) (2.36)

The resulting sample is then added to a temporary set of particles, along with the path
of previous poses x

[i]
1:k−1.

• Updating the observed feature estimate Next the FastSLAM updates the posterior
over the feature estimates, represened by the mean µ

[i]
j,k−1 and the covariance Σ

[i]
j,k−1.

The updated values are then added to the temporary particle set along with the new
pose. For the observed feature the update is done via the equation p(mj|x1:k, z1:k) =
ηp(zk|xk,mj)p(mj|x1:k−1, z1:k−1). The new estimate at time step k is updated using the
linearized measurement model p(zk|xk,mj) in the same way as EKF SLAM:

h(mj, x
[i]
k ) ≈ h(µ

[i]
j,k−1, x

[i]
k ) +H

[j]
k (mj − µ[i]

j,k−1) (2.37)

=
ˆ
z
[i]
k +H

[j]
k (mj − µ[i]

j,k−1) (2.38)

The mean and the covariance of the posterior are obtained using the standard Extended
Kalman Filter measurement update:

K
[i]
k = Σ

[i]
j,k−1H

[j]
k
T (H

[j]
k Σ

[i]
j,k−1H

[j]
k
T +Qk)

−1 (2.39)

µ
[i]
j,k = µ

[i]
j,k−1 +K

[i]
k (zk −

ˆ
z
[i]
k ) (2.40)

Σ
[i]
j,k = (I −K [i]

k H
[j]
k )Σ

[i]
j,k−1 (2.41)

The two previous steps are repeated M times, resulting in a temporary set of M particles.

• Importance Resampling FastSLAM resamples this set of particles. it draws from its
temporary set M particles (with replacement) according to a the importance weight. The
resulting set then forms the new final set Yk. The necessity to resample arises from the
fact that the particles in the temporary set are not distributed according to the desired
posterior. The importance factor is given by:

w
[k]
k ≈ η|2πQ[i]

k |
− 1

2 exp

{
−1

2
(zk −

ˆ
z
[i]
k )TQ

[i]−1
k (zk −

ˆ
z
[i]
k )

}
(2.42)

with the covariance: Q
[i]
k = H

[j]
k
TΣ

[i]
j,k−1H

[j]
k + Qk Through the importance resampling

process, particles survive in proportion of their measurement probability.

A summary of the FastSLAM algorithm with known data association is provided below:

2.6 Conclusion

The three paradigm just discussed cover the vast majority of work in the field of Simulta-
neous Localization and Mapping. Extended Kalman Filter based SLAM (EKF-SLAM) comes
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Algorithm 4 FastSLAM Algorithm

Do the following M times:
Retrieval: Retrieve a pose x

[i]
k−1 from the particle set Yk−1

Prediction: Sample a new pose x
[i]
k ∼ p(xk|x[i]k−1, uk)

Measurement update: For each observed feature z
[i]
k :

Identify the correspondence j for the measurement z
[i]
k .

Incorporate the measurement z
[i]
k into the corresponding EKF by updating the mean

µ
[i]
j,k−1 and covariance Σ

[i]
j,k−1.

Importance weight: Calculate the importance weight w[j] for the new particle.
Resampling: Sample with replacement M particles where each particle is sampled with
probability proportional to w[j].

with a computational hurdle that poses serious scaling limitations. The most promising ex-
tension of EKF-SLAM are based on building local submaps. However, in many the resulting
algorithms resemble the graph-based approach. [20]

In practice, EKF-SLAM has been applied with some success. When landmarks are suffi-
ciently distinct, the approach approximates the posterior well. However, EKF-SLAM suffers
from its enormous update complexity, and the limitation to sparse maps.

Particle Filter methods sidestep some of the issues arising from the natural inter-feature
correlations in the map which plagued the EKF-SLAM. By sampling from robot poses, the
individual landmarks in the map become independent, and hence decorrelated. As a result
FastSLAM can represent the posterior by a sampled robot pose, and many local indepen-
dent Gaussian for its landmarks. The particle representation of FastSLAM has a number of
advantages. Computationally, FastSLAM can be used as a filter, and its update requires linear-
logarithmic time where EKF needed quadratic time. Further, FastSLAM can sample over data
association, which makes it a prime method for SLAM with unknow data association. On
the negative side, the number of necessary particles can grow very large, especially for robots
seeking to map multiple nested loops. [20]
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CHAPTER

3

ROBOT MOTION

3.1 Introduction

In this chapter, we will discribe the two remaining components for implementing the fil-
ter algorithms described in the previous chapter: the motion and the measurement models.
We will initially focus on the motion model that comprises the state transition probability
p(xk|uk, xk−1), which plays an essential role in the prediction step of the Bayes Filter. Later
on, we will then describe the probabilistic model of sensor measurements p(zk|xk), which is
essential for the measurement update step. [22]

Our exposition focuses entirely on mobile robot kinematics for robots operating in planar
environments. In this way, it is much more specific than most contemporary treatments of
kinematics.[22] In theory, the goal of a proper probabilistic model may appear to accurately
model the specific types of uncertainty that exist in robot actuation and perception. In practice,
the exact shape of the model often seems to be less important than the fact that some provisions
for uncertain outcomes are provided in the first place. In fact, many of the models that have
proven most successful in practical application vastly overestimate the amount of uncertain.
We will point out such findings when discussing actual implementation of probabilistic robotics
algorithms. [22]

3.2 Velocity Motion Model

The velocity motion model assumes that we can control a robot through two velocities, a
rotational and a translational velocity. Drive trains commonly controlled in this way include
differential drives, Ackerman drives, and synchro-drives. Drive systems not covered by the
model we are about to present are those without non-holonomic constraints, such as robots
equipped with Mecanum wheels or legged robots.
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3.2. VELOCITY MOTION MODEL

Figure 3.1: Motion carried out by a noise-free robot moving with constant velocities

We denote the translational velocity at time step k by vk, and the rotational velocity by
wk. Hence, we have:

uk =

(
vk
wk

)
(3.1)

We arbitrary postulate that positive rotational velocities wk induce a counterclockwise
rotation and positive translational velocities vk correspond to forward motion.

Before turning to the probabilistic case, let us begin by stating the kinematics for an ideal,
noise-free robot. Let uk = (v w)T denote the control input at time step k. If both velocities
are kept at a fixed value for the entire time interval [k, k + 1] the robot moves on a circle with

radius r =
∣∣∣ v
w

∣∣∣
Let xk−1 = (x y θ)T be the initial pose of the robot, and suppose we keep the velocity

constant at (v w)T for some time ∆t. We can show with ease that the center of the circle is at
:

xc = x− v

w
sin(θ) (3.2)

yc = y +
v

w
cos(θ) (3.3)

After some time ∆t of motion, our ideal robot will be at a new position xk = (x
′
y
′
θ
′
)T with:x′y′

θ
′

 =

xc + v
w

sin(θ + w∆t)
yc − v

w
cos(θ + w∆t)
w∆t

 (3.4)

=

xy
θ

+

− v
w

sin(θ) + v
w

sin(θ + w∆t)
+ v
w

cos(θ)− v
w

cos(θ + w∆t)
w∆t

 (3.5)

In reality, robot motion is subject to noise. The actual velocities differ from the commanded
or measured ones if the robot possesses a sensor for measuring velocity. We will model this
difference by a zero-centered random variable with finite variance. More precisely, let assume
the actual velocities are given by: (

v̂
ŵ

)
=

(
v + εv
w + εw

)
(3.6)
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3.2. VELOCITY MOTION MODEL

Here ε is a zero-mean error variable with variance σ2. Thus, the true velocity equals the
commanded velocity plus some small additive error (noise). The most common choice for the
error ε is the normal Gaussian distribution density given by the equation:

εσ2(x) =
1√

2πσ2
e−

1
2
x2

σ2 (3.7)

Therefore, a better model of the actual pose xk after executing the motion command uk with
noisy motion at xk−1 is thus:x′y′

θ
′

 =

xy
θ

+

− v̂
ŵ

sin(θ) + v̂
ŵ

sin(θ + ŵ∆t)
+ v̂
ŵ

cos(θ)− v̂
ŵ

cos(θ + ŵ∆t)
ŵ∆t

 (3.8)

Computation of p(xk|uk, xk−1)

Let us calculate the probability p(xk|uk, xk−1)of control action uk = (v w)T carrying the
robot from the pose xk−1 = (x y θ)T to the new pose xk = (x

′
y
′
θ
′
)T within ∆t time units.

To do so, we will first determine the control û = (v̂ ŵ)T required to carry the robot from
xk−1 to the position (x

′
y
′
)T regardless of the robot’s final orientation. Subsequently, we will

determine the final rotation necessary for the robot to attain the orientation θ
′
. Based on these

calculations, we can then calculate the desired probability p(xk|uk, xk−1).

We already assumed that the robot travels with a fixed velocity during ∆t, resulting in a
circular trajectory. The center of the circle is defined as (x∗ y∗)T and given by:

(
x∗

y∗

)
=

x+ x
′

2
+ µ(y − y′)

y + y
′

2
+ µ(x

′ − x)

 =


x+ x

′

2
+

1

2

(x− x′) cos θ + (y − y′) sin θ

(y − y′) cos θ + (x− x′) sin θ
(y − y′)

y + y
′

2
+

1

2

(x− x′) cos θ + (y − y′) sin θ

(y − y′) cos θ + (x− x′) sin θ
(x
′ − x)

 (3.9)

The radius of the circle is given by the Euclidean distance:

r∗ =
√

(x− x∗)2 + (y − y∗)2 (3.10)

Furthermore, we can now calculate the change of the heading direction:

∆θ = arctan
(
y
′ − y∗, x′ − x∗

)
− arctan(y − y∗, x− x∗) (3.11)

The motion model error is the deviation of ûk from the commanded velocity uk as defined
below:

verr = v − v̂ (3.12)

werr = w − ŵ (3.13)

Under our error model, the desired probability distribution p(xk|uk, xk−1) is the product of the
individual error probability distributions

p(xk|uk, xk−1) = ε(verr)× ε(werr) (3.14)
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3.3. ODOMETRY MOTION MODEL

3.3 Odometry Motion Model

The velocity motion model discussed earlier uses the robot velocity to compute posterior
over poses. Alternatively, we might want to use the odometry measurements as the basis for
calculating the robot’s motion over time. Odometry is commonly obtained by integrating wheel
encoder information.

Practical experience suggests that odometry, while still erroneous is usually more accurate
than velocity. Both suffer from drift and slippage, but velocity additionally suffers from the
mismatch between the actual motion controllers and its mathematical model. However, odom-
etry is only available in retrospect, after the robot moved. This poses no problem for filter
algorithms, such as localization and mapping algorithms discussed in the previous chapter.
But it makes this information unusable for accurate motion planning and control.

The mathematical derivation of the algorithm is relatively straightforward. To derive a
probabilistic motion model using odometry, we recall that the relative difference between any
two poses is represented by a concatenation of three basic motions: a rotation, a straight-line
motion (translation), and another rotation. The equations below show how to calculate the
values of the two rotations and the translation from the odometry reading uk = (xk−1 xk)

T

with xk−1 = (x y θ)T and xk = (x
′
y
′
θ
′
)T :

δ̂rot1 = arctan
(
y
′ − y, x′ − x

)
− θ (3.15)

δ̂trans =
√

(x− x′)2 + (y − y′)2 (3.16)

δ̂rot2 = θ
′ − θ − δrot1 (3.17)

Figure 3.2: Odometry Motion Model

We assume that the true values of the rotation and translation are obtained from the
measured ones by subtracting independent noise εσ2 with zero mean and variance σ2.

Consequently, the true position xk is obtained from xk−1 by an initial rotation with angle
δrot1, followed by a translation with distance δtrans, followed by another rotation with angle
δrot2. Thus: x′y′

θ
′

 =

xy
θ

+

δtrans cos θ + δrot1
δtrans sin θ + δrot1
δrot1 + δrot2

 (3.18)
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with δ = δ̂− εσ2 is the true robot measurements and δ̂ is the noisy measurement collected
from sensors.

The odometry motion model is obtained by computing the difference between the hypoth-
esized pose xk, relative to the initial pose xk−1, assuming that xk is the true final pose. The
probability p(xk|uk, xk−1) is computed by multiplying the probability distributions of the errors
in odometry data:

p(xk|uk, xk−1) = ε(δrot1 − δ̂rot1)× ε(δtrans − δ̂trans)× ε(δrot2 − δ̂rot2) (3.19)

3.4 Measurement Model

Environment measurement models comprise the second domain-specific model in proba-
bilistic robotics. Measurement models describe the formation process by which sensors mea-
surements are generated in the physical world. Today’s robots use a variety of different sensor
modalities, such as tactile sensors, range sensors, or cameras. The specifics of the model de-
pends on the sensor: Imaging sensors are best modeled by projective geometry, whereas sonar
sensors are best modeled by describing the sound wave and its reflection on surfaces in the
environments.

To illustrate the basic problem of mobile robots that use their sensors to perceive their
environment, the figure [3.3] below shows a typical sonar range scan obtained in a corridor with
a mobile robot equipped with a cyclic array of 24 ultrasound sensors. The distance measured
by the individual sensors are depicted in light gray and the map of the environment is shown
in black.

Figure 3.3: Typical ultrasound scan of a robot in its environment.

Many sensors generate more than one numerical measurement values when queried. For
example, cameras generate entire arrays of values of brightness, saturation and color, similarly,
range finders usually generate entire scans of ranges. We will denote the number of such
measurement values within a measurement zk by N , hence we can write:

zk = {z1k, z2k, ..., zNk } (3.20)
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3.4. MEASUREMENT MODEL

We will use znk to refer to an individual measurement for example one range value. The
probability p(zk|xk,m) is obtained as the product of the individual measurement likelihoods
[3.21]. Technically, this amounts to an Independence assumption between the noise in each
individual measurement beam. This assumption is only true in the ideal case, however many
dependencies exist due to a range of factors such as people who often corrupt measurements,
error in the model, approximations in the posterior and so on.

p(zk|xk,m) =
N∏
n=1

p(znk |xk,m) (3.21)

Beam Model of Range Finders

Range finders are among the most popular sensors used in modern robotics. This mea-
surement model is therefore an approximative physical model of range finders. Range finders
as the name suggest, measure the range to nearby objects and them often used along with a
beam, which is a good model of the workings of laser range finders, which is the preferable
model of ultrasonic sensors.

Our model incorporates four types of measurement errors, all of which are essential to
making this model work: small measurement noise, errors due to unexpected objects, errors
due to failures to detect objects, and random unexplained noise. The desired model probability
p(zk|xk,m) is therefore a mixture of four densities [3.4], each of which corresponds to a particular
type of error:

• Correct range with local measurement noise In an ideal world, a range finder
would always measure the correct range to the nearest object in its measurement field.
We will use zn∗k to denote the true range of the object measured by znk . Even if the sensor
correctly measures the range of the nearest object, the value it returns is subject to error.
This error arises from the limited resolution of range sensors. This measurement noise is
usually modeled by a narrow Gaussian phit with mean zn∗k and standard deviation σhit:

phit(z
n
k |xk,m) =

{
η N (znk , z

n∗
k , σhit) if 0 ≤ znk ≤ zmax

0 otherwise
(3.22)

where zn∗k iscalculatedfromxk and m via ray-casting, and zmax is the maximum sensor
range, and η is a normalizing constant.

• Unexpected Objects Environments of mobile robots are dynamics, whereas maps m
are statics. As a result, objects not contained in the map can cause range finders to
produce surprisingly short ranges. A typical example of moving objects are people that
share the operational space of the robot. One way to deal with such objects is to treat
them as part of the state vector and estimate their location. Much simpler approach is
to treat them as sensor noise which causes ranges to be shorter than zn∗k . The likelihood
of sensing unexpected objects decreases with range. Mathematically, the probability of
range measurements are described by an exponential distribution. The parameter λshort
is an intrinsic parameter of the measurement model:

pshort(z
n
k |xk,m) =

{
η λshort e

−λshortznk if 0 ≤ znk ≤ zmax

0 otherwise
(3.23)
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• Failures Sometimes, obstacles are missed altogether. For example, this happens fre-
quently for sonar sensors as a result of specular reflections. Failure also occur with laser
range finders when sensing black, light-absorbing objects. A typical result if a sensor
failure is a max-range measurement: the sensor returns its maximum allowable value
zmax.

Wel will model this with a point-mass distribution centered at zmax:

pmax(z
n
k |xk,m) = I(z = zmax) =

{
1 if z = zmax

0 otherwise
(3.24)

where I denotes the indicator function that takes on the value 1 if its argument it true,
and 0 otherwise.

• Random Measurements. Finally, range finders occasionally produce entirely unex-
plainable measurements. For example, sonars often generate phantom readings when
they bounce off walls, or when they are subject to cross-talk between different sensors.
We will model such measurements with a uniform distribution spread over the entire
sensor measurement range:

prand(z
n
k |xk,m) =


1

zmax
if 0 ≤ znk ≤ zmax

0 otherwise
(3.25)

These four different distributions are mixed by a weighted average defined by the param-
eters: zhit, zshort, zmax and zrand with zhit + zshort + zmax + zrand = 1:

p(znk |xk,m) =


zhit
zshort
zmax
zrand


T

.


phit(z

n
k |xk,m)

pshort(z
n
k |xk,m)

pmax(z
n
k |xk,m)

prand(z
n
k |xk,m)

 (3.26)

3.5 Conclusion

In this chapter, we derived two principal probabilistic motion models for mobile robots
operating on the plane, as well as a probabilistic measurement model. We derived an algorithm
for the probabilistic motion model p(xk|xk−1, uk) that represents control uk by a translational
and angular velocity, executed over a fixed time interval. In implementing this model, we
realized the existing of two control parameters, one for translational and one for rotational
velocities. Also, we presented an alternative motion model that uses the robot’s odometry
as input. Odometry measurements were expressed by three parameters, an initial rotation,
followed by a translation, and a final rotation. The probabilistic motion model was implemented
by assuming all three of these parameters are subject to noise.

Later on, we placed a strong emphasis on models for range finders, due to their great
importance in robotics. However, the models discussed here are only representatives of a
much broader class of probabilistic models. In choosing the right model, it is important to
trade off physical realism with properties that might be desirable for an algorithm using these
models. For example, we noted that a physically realistic model of range sensors may yield
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(a) Gaussian distribution phit (b) Exponential distribution pshort

(c) Uniform distribution pmax (d) Uniform distribution prand

Figure 3.4: Components of the range finder sensor model
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probabilities that are not smooth in the alleged robot pose which in turn causes problems for
SLAM algorithms.

We started with models for range finders and lasers in particular, we discussed measure-
ment models p(zk|xk,m). We also devised a maximum likelihood technique for identifying
the intrinsic noise parameters of the measurement model. Since the measurement model is a
mixture model.
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CHAPTER

4

TEST SIMULATION AND RESULTS

4.1 Introduction

The SLAM algorithms evaluated in this simulation are the ones we have talk about in
the last chapter. The simulation consist of a moving planer robot with absolute measurements
with different velocities: v1 = 0.9 m/s, v2 = 0.7 m/s and v3 = 0.5 m/s. The landmarks
featured in the map are motionless, and their coordinates are: [−5 20, 3 15, 10 3, 15 10]. For
the real trajectory at a given position is having a moderate measurement noise as shown in
the figure [4.1]. The state equation is a diagonal, which ensures that the next state’s estimate
or prediction is equal to the present state. The primary covariance matrix is well-defined by a
higher diagonal uncertainty mutually in the position of the landmark and the robot state and
by a comparable uncertainty, which means that none prevails over the other.

4.2 EKF-SLAM Simulation

The process noise matrix represented by Q and the measurement noise matrix represented
by R are computed in which the landmarks are motionless. For the next state prediction, the
measurement is done at the prediction position. The maximum range for the measurement
sensor is set to be 20. The robot state denoted by xk has 3 components: the planer position
x, y, and orientation θ. The true state vector at any time step is given by xk = [xk yk θk]

T .
The robot has a speed sensor and a gyroscope, so the input vector used at each time step is
uk = [vk ωk]

T . Also, the robot has a GNSS sensor, which means that the robot can observe its
x-y position at each time step: zk = [xk yk]

T .
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Figure 4.1: A moving robot with absolute measurements and a process noise

The robot motion model is given by the following equations:
ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω

(4.1)

The motion model in state space representation is as follows:

ẋk+1 = f(xk, yk, θk) (4.2)

In order to predict and update the mean µk and the covariance Σk, the Extended Kalman
Filter needs to compute the Jacobian Gk and Hk by replacing the system state xk by the mean
µk. Then the Kalman Gain is calculated and used in the correction step as described by the
algorithm 2.

4.2.1 Interpretation

The obtained results with different velocities and measurements range are presented in the
figure [4.2]. By varying the robot velocity, the robot is diverging from its route and therefore,
the coverage area is reduced as seen in figure 4.2a, 4.2f. The EKF-SLAM in red is pretty
accurate as estimating the true robot position in blue, however is the case of v = 2.5 m/s, the
EKF-SLAM tripped at ones, but it quickly recovers. The error between the dead-reckoning in
dark line and the true robot pose is intolerable. The estimate location of the landmarks featured
in the map is surprisingly precise in the case of a maximum range of 20, however when it is set
to 10, the error between the true location of landmarks and the estimated one is increasing 4.2b,
4.2c. Initially, due to the low range of the sensor, the robot did not estimate all the landmarks
featured in the map 4.2a, 4.2c, 4.2e, but after sometime discovering the environment, all the
landmarks were located with ranging error depending of on the maximum range of the sensor.
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4.2. EKF-SLAM SIMULATION

(a) v = 2.5 m/s, measurement range 20 (b) v = 0.9 m/s, measurement range 20

(c) v = 0.9 m/s, measurement range 10 (d) v = 0.7 m/s, measurement range 20

(e) v = 0.7 m/s, measurement range 10 (f) v = 0.5 m/s, measurement range 20

Figure 4.2: EKF-SLAM Simulation
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4.3 Particle Filter SLAM Simulation

The Particle Filter present a big improvement over the standard Extended Kalman Filter
for using a set of particles to estimate the robot’s belief bel(xk) instead of using parametric
representation consisting of Gaussian function density with mean µk and covariance Σk. Each
particle in Particle Filter contains a hypothesis of the robot pose that assume its position is
correct. Then, by using this assumption, every particle will maintain its own map.

There are several steps to implement particle filter algorithm. These steps are mentioned
below:

• Draw a distribution of even weighted particles.

• Update the robot’s state xk in each particle with control command uk.

• Get observation data zk from sensors.

• Update the robot’s state estimate by incorporating the robot’s observation.

• Calculate the importance weight wn of each particle using the difference between actual
observation and predicted observation.

• Resample particles proportional to their weights.

These steps are put into the prediction and correction steps of the Bayes Filter in order to
implement the Particle Filter.

4.3.1 Interpretation

After implementing the Particle Filter algorithm described is the section [3], and varying
the robot velocity (v = 2.5 m/s, v = 0.9 m/s and v = 0.5 m/s) as well as the maximum sensor
range, we obtained the result presented in the figure 4.3. Using 100 particle. Initially, and due
to the fact that all particles generated have the same importance weight, the error in the robot
position estimate was pretty high for all cases, and also not all landmarks in the map where
located, then the algorithm slowly converges toward the robot ground true marked in blue line
in the case of v = 0.9 m/s for maximum range of 20 and 10, and v = 0.5 m/s for maximum
range of 20 (figure 4.3e, 4.3f and 4.3g). When the robot moves with high (2.5 m/s) or low
(0.5 m/s) speed, the robot starts to diverge from its route and the coverage area decreased
4.3b, 4.3c, 4.3d and 4.3i, which leads to an increasing error in estimation, and then divergence.
The dead-reckoning curve in dark colour represent the pose estimate just by using the previous
estimate and the odometry data. As seen from the figure 4.3 it is clearly bad !

The algorithm showed promising results in some cases and terrible results in other cases.
Some tweaks are needed via trial-and-error in order to obtain better results. Augmenting the
number of particles at every resampling step or utilizing sensors with higher maximum range
can potentially improve the robot position estimate and the landmarks location in the map.
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4.3. PARTICLE FILTER SLAM SIMULATION

(a) v = 2.5 m/s, measurement
range 20

(b) v = 2.5 m/s, measurement
range 20

(c) v = 2.5 m/s, measurement
range 10

(d) v = 2.5 m/s, measurement
range 10

(e) v = 0.9 m/s, measurement
range 20

(f) v = 0.9 m/s, measurement
range 10

(g) v = 0.5 m/s, measurement
range 20

(h) v = 0.5 m/s, measurement
range 10

(i) v = 0.5 m/s, measurement
range 10

Figure 4.3: Particle Filter SLAM applied to the moving planar robot with different velocities
and measurement ranges
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4.4. FASTSLAM SIMULATION

4.4 FastSLAM Simulation

As discussed in the section [2.5], the main advantage of the FastSLAM algorithm is the
separation of the SLAM problem into a localization problem and landmark estimation problem.
As a result, this algorithm can build very wide maps effectively and quicker than other exist-
ing SLAM algorithms such as Extended Kalman Filter SLAM and Particle Filter SLAM. The
FastSLAM algorithm uses the Particle Filter to compute the posterior over the robot paths and
each particle has k Kalman Filters that estimate the k-th landmark position conditioned on
the robot path. Due to the large number of particles needed, the FastSLAM algorithm is very
demanding in terms of computational power. However, some advance technique were imple-
mented such as The sample impoverishment in the sample process and the Particle depletion
in the importance resampling process which only incorporate the most recent measurement in
the pose prediction.

The proposed algorithm for FastSLAM requires the following steps :

• Step 1: the robot path evaluation is implemented with a particle filter based on both
the motion controls uk and the sensor observations zk. While landmark positions are
estimated with k independent Kalman Filters for each particle.

• Step 2: Update the map: While the measurement corresponds to the observed landmark
in the map previously, this landmark is updated using the standard Extended Kalman
Filter update procedure.

• Step 3: Sample weight, The FastSLAM algorithm evaluates all particles based on their
importance weight wk to guarantee accuracy estimation.

4.4.1 Interpretation

While running the simulation, the results show a set of randomly localized, equally weighted
particles trying to estimate the landmarks location in the map (figure 4.4a). As the robot moves
through the environment collecting measurement data, the particles tend to have good estimates
of the landmarks location, Thanks to Importance Resampling. This, however explains having
very few particles compared to the initial situation, as particles are resampled in the positions
of other particles having higher importance weight 4.4b, 4.4c. After sometime, the algorithm
successfully located all the landmarks featured in the map as well as accurately estimating the
robot position 4.4d.
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4.5. CONCLUSION

(a) (b)

(c) (d)

Figure 4.4: FastSLAM Simulation

4.5 Conclusion

In this experiment, we proposed three different SLAM algorithms for a moving planer
robot with unknown location, EKF-based SLAM, Particle Filter and FastSLAM. The environ-
ment consist of motionless landmarks which positions are unknown to the robot. Firstly, the
SLAM with EKF is implemented and an analytical expression for the the EKF-based SLAM
algorithm is derived and their presentation is evaluated. The SLAM algorithm with EKF is
evaluated in different scenarios, and several iterations were applied to explain the performance
of EKF-based SLAM. The EKF-SLAM algorithm performance for varying velocities are pre-
sented in the figure [4.2]. Each process of localization is effective in its domain. In this analysis,
many localization factors such as velocity, coverage area, localization time, maximum range of
measurement are taken into consideration. The planned EKF-based SLAM algorithm present
high precision and accurately estimated the robot position and landmark location for relatively
low velocities. Particle Filter however, comes with computation cost and complexity due to
the number of particles used (in our case 100 particle) and its non-parametric approach to the
SLAM problem. The number of particles did affect the resulting map overtime, causing an
increasing uncertainty caused by error accumulation from noise in sensor measurements. For
relatively low or high velocities, the Particle Filter diverged and could not locate the robot.
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Also, the particle depletion problem that causes the number of particles to decrease in each
Importance Resampling step which affected noticeably the correction step.

FastSLAM however, solves the problem of computation by decomposing the SLAM prob-
lem into two parallel tasks, one for estimating the robot position by utilizing Particle Filter
with reduced number of particles, and the other for the global mapping that utilizes EKF
for each landmark featured in the map. The noticeable performance of the FastSLAM over
the two other SLAM algorithms is the enhanced quality of estimation and the low latency for
localization task.
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The time has come to conclude our discussion of the SLAM problem and the promising
solutions presented in this thesis. It should now be clear that there is no right answer to the
SLAM problem. There are several ways of collecting data, and other ways of using the data
after it is collected. Different environments lend themselves to different approaches, and each
of the algorithms presented in this thesis have their place.

We began our discussion in the first chapter by establishing what the SLAM problem is on
an intuitive level, and by discussing what a solution to the SLAM problem would accomplish.
We first broke the SLAM problem down into the component problems (localization and mapping
on their own), and we discovered each could be solved without too much difficulty. The problem
is, in order to localize we need to start with an error free map, and to map we need to be able
to localize. This is what motivated us to consider the first solution to the SLAM problem, the
Kalman Filter.

In the Kalman Filter we found a solution that could take advantage of all available data
statistically minimize the total squared error in our state prediction. The Kalman Filter accom-
plishes this task for us by maintaining a state prediction and a covariance matrix containing
a confidence value for every binary relationship in the environment. We noticed the Kalman
Filter specified how each observation could be used to update all feature prediction, and all
covariance matrix values. Also, we noticed that the state prediction and covariance matrix had
a fixed size independent of the number of iterations of the filter. Consequently, the Kalman
Filter allows us to map for as long as we want without increasing the time to run each itera-
tion. While the Kalman Filter is optimal in the sense that it yields a least squares prediction, it
cannot always produce this prediction in real time. The problem is maintaining the covariance
matrix which is quadratic in size with respect to the number of features. To cope with nonlin-
ear problems, we extended the Kalman Filter. One technique described calculates a tangent to
the nonlinear function. Tangents are linear, making the linear Kalman Filter applicable. The
technique for finding the tangent is called the Taylor expansion. Performing this operation at a
specific point yield to a matrix known as the Jacobian. The resulting Extended Kalman Filter
is then used to calculate the correct posterior, assuming that the initial belief is Gaussian, the
noise add to the state transition probability must also be Gaussian and the same applies to the
measurement probability. A practical consideration when applying Extended Kalman Filter is
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to always keep the uncertainty of the state estimate as small as possible, otherwise, the robot
will be less certain and the Gaussian belief will become wider because of the nonlinearities in
the state transition and measurement functions.

The next type of filters presented in this thesis are the non-parametric Bayesian Filters
such as the Particle Filter. Non-parametric filters approximate the posterior by a finite number
of values under the assumption that both the system model and the shape of the posterior
approximation errors converge uniformly to zero as the number of values used to represent the
posterior goes to infinity. The Particle Filter represent the posterior by a random sample of
states, drawn from the posterior. Such samples are called particles. We saw that the Particle
filter is easy to implement and is the most versatile of all Bayes filters algorithms represented
in this thesis.

FastSLAM approaches the SLAM problem from a Bayesian perspective and draws upon
the insight that observations are conditionally independent of one another given the true robot
pose. Errors in robot pose are accounted for by maintaining a set of poses represented by
particles. FastSLAM also used simple Kalman Filter just like the one we saw, to update each
feature prediction for each particle. This allows for an approximation of the optimal estimate
while at the same time making it possible to take many more features into account. FastSLAM
often outperforms Extended Kalman Filter despite being non-optimal because so many more
features can be utilized in a given amount of time.

The simulation presented in the last chapter emphasizes the differences we already talked
about in this thesis. By utilizing different scenarios for a moving non-holonomic wheelded robot,
the experiment results were predictable. For higher velocities, the robot deviates from its route
and the coverage area decreases, the pose estimate was terrible and the landmarks location was
inaccurate. The Particle Filter needed some empirical tweaks in order to successfully estimate
the robot pose and the landmarks featured in the environment. FastSLAM in the other hand
performed very well at localizing the robot, but its computational constraint was noticeable.
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Abstract

In this work we provided a thorough overview of the rapidly growing topic of Simultaneous
Localization and Mapping. SLAM is a subfield of Probabilistic Robotics concerned with local-
ization, mapping, and motion control. A lot of robotic research goes into SLAM to develop
self-driving cars, exploration robots, and disaster-relief robots. To begin with, we provided
a mathematical description of the SLAM problem using Bayes recursive filtering techniques
including linear Kalman Filter, Extended Kalman Filter, Particle Filter, and FastSLAM. We
have particularly chosen these algorithms because they build off one another and they are used
as a stepping stone on the way of the more state-of-the-art SLAM algorithms

Résumé

Dans ce travail, nous avons fourni un aperçu complet du sujet en pleine expansion de la
localisation et de la cartographie simultanées (SLAM). Le SLAM est un sous-domaine de la
robotique probabiliste qui s’intéresse à la localisation, à la cartographie et au contrôle du mou-
vement. De nombreuses recherches en robotique portent sur le SLAM afin de développer des
voitures auto-conductrices, des robots d’exploration et des robots de secours en cas de catas-
trophe. Pour commencer, nous avons fourni une description mathématique du problème SLAM
en utilisant des techniques de filtrage récursif de Bayes, notamment le filtre de Kalman linéaire,
le filtre de Kalman étendu, le filtre à particules et FastSLAM. Nous avons particulièrement
choisi ces algorithmes parce qu’ils s’appuient les uns sur les autres et qu’ils sont utilisés comme
tremplin pour les algorithmes SLAM les plus avancés.

Key Words

SLAM, Kalman Filter, Extended Kalman Filter, FastSLAM, Particle Filter, Python, Bayes
Estimation.


