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GENERAL INTRODUCTION

Aerial robots has grown in popularity over the last decade as a result of technological ad-
vancements and several potential uses. Unmanned Aerial Vehicles known as ”rotorcraft”, are
self-flying aircraft with one or more rotating wings or rotors that produce lift and propulsion,
and they are capable of following trajectories, navigating in space, employing visual navigation,
taking off, as well as performing quasi-stationary and low-altitude missions with great maneu-
verability. They have access to a wind range of military and civilian applications, including
aerial surveillance, intelligence tactical reconnaissance, exploration of unknown environments,
warefare and transportation.

Autopilots for mini-UAVs provide a number of theoretical and technical hurdles, as well as
technological challenges. Indeed, the limited the payload of miniature vehicles imposes sever
limitations on the navigation sensors and on-board electronics that can be used. Furthermore,
due to their complex dynamics, non-linearities, and high degrees of coupling between the differ-
ent degrees of freedom, as well as the dynamics of the actuators, the synthesis of control laws
becomes problematic. From the perspective of a control system, most control models involve
a trade-off between performance and flying mode, as well as the complexity of the control law.
Machine learning in particular Reinforcement Learning, has reduced the numbers of challenges
faced by aerial robotics in general beside enhancing the capabilities and opening the door to
different sectors. Reinforcement Learning has evolved a long way with the enhancements from
deep learning. Recent research efforts into combining deep learning with Reinforcement Learn-
ing have led to the development of some very powerful Deep Reinforcement Learning systems,
algorithms, and agents which have already achieved some extraordinary accomplishments. Not
even such systems surpassed the capabilities of most the classical control strategies, Reinforce-
ment Learning agents have also started outperforming the best of human intelligence at tasks
which were believed to require extreme human intelligence, creativity, and planning tasks. Some
Reinforcement Learning agents consistently beating the best human players at complex games
such as Google’s AlphaGO beating the best human player in GO.

In Reinforcement learning, an agent is given a reward for every action it takes in an envi-
ronment, with the objective to minimize the reward over time. Using Reinforcement Learning,
it is possible to develop optimal control policies for Unmanned Aerial Vehicles without making
any assumptions about the aircraft dynamics. Recent works in robotics research community has
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shown Reinforcement Learning to be effective for Unmanned Aerial Vehicles autopilots, provid-
ing adequate path tracking, real-time monitoring, data collection and processing, monitoring
in smart cities, military, agriculture and mining.

In this thesis, we talked about Unmanned Aerial Vehicles history, from early designs to
more modern intelligent aircraft, then we developed a mathematical model for the quadcopter
using the Newton-Euler formalism, then a classical backstepping control strategy for attitude
control. Finally, we study in depth the accuracy and precision of attitude control provided
by intelligent flight controllers trained using Reinforcement Learning. We developed a novel
training environment using the OpenAI GYM library with the use of the PyBullet high-fidelity
physics simulator for the agent to learn and train.

This thesis is divided into five chapters, each of which is briefly described in the paragraph
below:

• Chapter 1: presents a history of Unmanned Aerial Vehicles along with a classification
of aerial systems according to three main families: fixed-wings, flapping-wing and rotary-
wings.

• Chaapter 2: covers a brief description of the state-of-the-art commercial flight controllers
currently in use.

• Chapter 3: covers in the first part a mathematical description of the dynamical model
of the quadcopter using the Newton-Euler formalism. The second part of the chapter
is dedicated to the design of a classical control strategy using the backstepping control
procedure for attitude control.

• Chapter 4: An introduction to Reinforcement Learning paradigm and the use of Marko-
vian decision process environments and Dynamic Programming for solving the optimiza-
tion criterion. Later on we gave a description of the Reinforcement Learning from a
control system strategy and the similarities between the two promising field. And fi-
nally, we spoke about Value Iteration and Policy Iteration as the two main approaches
for solving the Reinforcement Learning probelm.

• Chapter 5: covers the quadcopter control using Reinforcement Learning and its main
advantages over the classical control schema. After that we familiarized ourselves with the
git version control and the docker virtualization techniques, the PyBullet physics engine
used alongside OpenAI GYM library for creating the environment for the Reinforcement
Learning agent to train.

xiii



CHAPTER

1

INTRODUCTION

The interest toward Aerial Robotics and unmanned aerial vehicles (UAVs) such as drones is
daily growing these recent decades, not only within research communities, but also among
industrial companies, military and also the open public such as hobbyists. This emerging
technology showed a huge potential in various sectors to provide a wide range of applications
and services to improve human life and the quality of service. The thriving focus of research in
UAV’s assistance paradigm as a fundamental concept resulted in a constant improvement and
an increasing usage in a wide range of civil and domestic applications such as: photography,
surveillance, Internet of Things (IoT), environment monitoring, search and rescue, product
delivery and agriculture, thanks to their decreased weight, reduced size, low cost and their
increasing functionalities.

1.1 History

1.1.1 The First Projects

Although, originally built for military purposes, the drones have experienced an exponential
progress and advancements and made a break to consumer electronics but the original idea
of a ”flying machine” preoccupied man since the beginning of time. It was documented that
the major breakthrough contribution and early design for a flying machine occurred during the
era of Pythagoras. By applying a series of geometric notions and observations to the study
of structures, links and joints, Archytas the Tarantine (also referred to as Leonardo Da Vinci
of the ancient world) created the first UAV of all times in 425 B.C by building a mechanical
steam-powered flying pigeon (in Greek περιστέρι) that could fly by moving its wings. It was
called that way because of its structure that reassembles a bird. This invention also known as
”the first autonomous volatile machine of antiquity” was a highly advanced invention for that
time and it was one of the first studies into how birds fly. The Flying Pigeon was lightweight
because it was built from a hollow cylindrical shape piece of wood with wings projected out

1



1.1. HISTORY

to either side, and smaller wings to the rear. The rear of the flying pigeon had an opening
that led to the internal bladder and it was connected to a heated, airtight boiler, this boiler
created more steam powering the pigeon. The pressure of the steam eventually exceeded the
mechanical resistance of the connection, and the flying pigeon took flight. It is alleged that it
flew about 200 meters before falling to the ground once all energy was used.

Figure 1.1: Flying Pigeon

Around that same era, at another part of the ancient world, in China at about 400 B.C
the Chinese were the first to document the idea of a vertical flight aircraft known as Bamboo
flying toy. This Bamboo-copter is spun by rolling a stick attached to a rotor. The spinning
creates lift and the toy flies when released.

Figure 1.2: Bamboo-copter

In 1483, The Italian polymath Leonardo Da Vinci designed an aircraft called ”the Aerial
Screw” or ”Air Gyroscope”, it was one of several aerial machines designed by Leonardo including
an early Parachute, an Ornithopter and a Hang Glider. This aircraft comprises a large structure
built on a solid circular platform with a central vertical pole supported by three diagonal
members meeting at a small circular plate about half way up the pole. The structure had a 5
meter diameter and the idea was to make the shaft turn and if enough force were applied, the
machine could spun and fly. The inner edge of the sail winds clockwise around the pole, while
the outer edge of the sail is connected by ropes or wires to a ring that rotates around the lower
platform. Some experts consider that the modern design of the today’s helicopter is heavily
inspired by Da Vinci’s Aerial Screw aircraft.

2
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Further, Da Vinci in 1508 designed a flying mechanical bird that reassembles Archytas
Flying Pigeon. It could flap its wings by the help of a double crank mechanism as it descended
along a cable.

Figure 1.3: Air Gyroscope

Two additional designs directly inspired by the Chinese Bamboo-copter were documented
in 1754 and 1783 respectively. The very first self-propelled model of a lifting airscrew con-
structed and flown by the the ”Father of Russian Science” Mikhail Lomonosov. He demon-
strated his invention called ”Aerodynamic” to be used for the purpose of depressing the air by
means of wings rotated horizontally in the opposite directions by the agency of a spring of the
type used in clocks in order to lift the machine into the air. In July 1754, he presented his
model to the Russian Academy of Science and it appeared that during the course of his presen-
tation, the model was not actually in free flight but was suspended from a string. The second
design was credited to Launoy and Bienvenue whose model consisted of a counter rotating set
of turkey feathers.

(a) Coaxial rotor, Lomonosov (b) Contra-rotating propeller,
Launoy and Bienvenue

If practical results were not forthcoming, there was one memorable advance achieved during
1860 by the French pioneer Ponton d’Amecourt who flew a small steam-driven helicopter and
took out French and British patents on it. It was at that time the term ”helicopteres” was first
coined, based on the greek word ”ελικόπτερο” that is composed of two words, ”ελικας” referring

3
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to something that spins (spiral) and ”πτερον” that means feather (like a bird feather) or wing
(like airplane wing).

Figure 1.5: steam-driver helicopter, d’Amecourt

The major breakthrough in helicopter history of modern times was the Sikorsky S-1 aircraft.
Designed by the Russian-American aviation pioneer Igor Ivanovich Sikorsky in 1910, the S-1
was the first fixed wing, non-piloted coaxial helicopter powered by a 15 hp (11 kW) Anzani
three-cylinder, air-cooled engine. The first successful flight attempt by Sikorsky was in early
May of that same year, during a take-off on a windy day, the helicopter briefly became airborne
due mostly to its well designed headwind. Further attempts were made but they were less
successful and Sikorsky decided to disassemble the S-1 and save the main wing section to a
much improved design. In June 1910, Sikorsky constructed his second fixed wing helicopter
by using the same main wing section from the S-1 and a more powerful 25 hp (19kW) Anzani
engine in a tractor configuration. Later that same month, several successful flights took place
before the S-2 got completely destroyed when Sikorsky inadvertently stalled the underpowered
aircraft at an altitude of 70 feet.

(a) Sikorsky S-1 aircraft (b) Sikorsky S-2 aircraft

1.1.2 Pre-World War Designs

Before World War I, the earliest record use of unmanned aerial vehicles for warefare occurred in
1849, serving as a balloon carrier, Austrian forces besieging Venice attempted to float some 200
incendiary balloons each carrying a 24 to 30 pound of explosives . The balloons were mainly
launched from land, however some were also launched from the SMS Volcano Austrian ship.

4
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The Austrian military also used smaller pilot balloons to determine the correct fuse settings
and hit the target precisely. However, these balloons don’t generally meet the modern defi-
nitions of unmanned aerial vehicles. Therefore, it is accepted that the first pilotless aircraft
used in warfighting was suggested from Archibald Montgomery Low. He has been called ”the
father of radio guidance systems” due to his pioneering work on planes, torpedoes boats and
guided rockets. His expertise in television and radio technology was being used to develop
one of the earliest remotely controlled pilotless aircraft to attack the Zeppelins. This led to
a remarkable succession of British drone weapons in 1917 and 1918. Several aeroplane manu-
facturing companies in the United States and Europe especially in the United Kingdom such
as Sopwith Aviation and its contractor Rushton Proctor, de Havilland and the Royal Aircraft
Factory, began constructing and producing remotely controlled aircrafts that involved Low’s
ingenious radio control system that was firstly secretly developed at the British Royal Corps
for the British Royal Naval Air Service and Royal Air Force. Soon after, the Hewitt-Sperry
Automatic Airplane otherwise known as the ”flying bomb” made its first flight, emphasizing
the concept of an unmanned aircraft. The control was achieved using gyroscopes developed
by the Gyroscope company and they were intended to be used as aerial torpedoes as an early
version of today’s cruise missiles.

Figure 1.7: Hewitt-Sperry automatic airplane

Early US efforts in late 1917, came with the Kettering Bug experimental unmanned aerial
torpedo named after the American inventor and Engineer Charles Kettering. It was a project
commissioned by the US army for creating a flying bomb capable of striking ground targets
up to 121 kilometers from its launch point, while traveling at speed of 80 kph (kilometers per
hour). The Bug was designed with a small on-board gyroscope like the one used in Hewitt-
Sperry airplane. Its main goal is to guide the aircraft to its destination at approximately 190
kph, and the control was maintained by using a pneumatic/vacuum system, electric system and
an aneroid barometer/altimeter. To hit the ground target precisely, technicians had to plot the
craft’s trajectory and predict approximately how many engine revolutions were necessary to
reach the target using a mechanical system that can track the distance the aircraft flew. While
the Bug’s revolutionary technology was successful, it was not in time to flight in the war, which
ended before it could be fully developed and deployed.

1.1.3 Interwar period

After the World War I, three standard American Army Fighter aircraft were converted to drones
and they were the early cruise missile monoplane aircrafts that flown under autopilot. They
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Figure 1.8: Kettering Bug airplane

were tested between 1927 and 1929 by the American Royal Navy. Around that same time,
the development of radio controlled pilotless aircraft was taking place, notably the invention
of the Fairey Queen floatplane, the DH.82B Queen Bee and the Airspeed Queen Wasp by the
British, the first infrared-sensitive (night vision) electronic television camera for anti-aircraft
defense, and remotely guided aircrafts that utilizes prototypes of a camera by the Hungarian
scientist Kálmán Tihanyi. His solutions were so influential to the point that many aircraft
manufacturing companies in Britain and the US still used his solutions even half a century
later, until the mid 1980s.

After the noteworthy success of the radio controlled aircrafts, a large-scale production of
purpose-build drones began to see the lights around the second World War. The Radioplane
OQ-2 was the first mass-produced UAV in the US manufactured by the Radioplane Company
used for drone targeting. Around 1937, the US Navy began experimenting with the Curtiss
N2C-2 drone which later was adopted by the US Army Air Forces (USAAF) in 1939 resulting
in hundred versions of Culver PQ-8, Culver PQ-14 Cadet and an improved modified version
B-17 1flying Fortress and B-24 Librator which were very large aerial torpedoes used as heavy
bombers in Aphrodite and Anvil operations on a small scale during World War II.

1.2 The New Era in UAVs

The development of aerial drones is growing rapidly and its increasing interest is attracting
not only the military but also the open public. This innovative and game-changing technology
has the potential to transform commercial industries and open limitless future opportunities
in the field of aerial robotics. Drones are already breaking barriers in the way companies do
business. Huge corporations like Amazon and Google are testing ways to deliver packages and
product with drones, Facebook also is using drones to provide internet connections in remote
location. Below, are some of the many ways UAVs are being used to maximize productivity
and do various things that could never be possible before:

• Aerial Photography: Drones are now being use by both professional film makers and
hobbyists to capture footage that would otherwise require expensive helicopters and
cranes. Furthermore, these autonomous flying devices are also used by journalists for
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collecting footage and information in live broadcast eliminating the need of putting hu-
man life in danger especially in the coverage of sensitive dangerous areas like warzones.

• Shipping and Delivery: Major techology companies like Amazon, UPS and DHL are
in favor of drone delivery. Thanks to their reduced size and decreasing lightweight, they
could save a lot of manpower and shift unnecessary road traffic to the sky. Besides,
they can also be used over small distances for the delivery of food, letters, medicines and
beverages.

• Geographic Mapping: Modern high-technology drones can acquire very high-resolution
data and download imagery in difficult to reach locations like coastlines, rain-forests,
mountaintops and islands. They are also being used to create very-detailed 3D maps and
contribute to crowd sourced mapping applications.

• Disaster Management: Drones are used in rescue and firefighting missions to gather
information and navigate debris in natural disaster, help and search for survivors saving
the need to spend resources on manned helicopters and radars. Moreover, telecommuni-
cation, water and electricity companies are also adopting drone technology to assess their
utilities integrity and infrastructural damage.

• Precision Agriculture: For monitoring the crops, farmers and agriculturists use drones
equipped with infrared sensors that can be tuned to detect crop health, enabling them to
react and improve crop conditions locally, with inputs of fertilizers or insecticides.

• Weather Forecast: Drones are also being developed to monitor dangerous and unpre-
dictable weather. Since they are relatively cheap and unmanned, drones can be sent into
hurricanes and tornadoes so that scientists and weather forecasters acquire new insights
into their behavior and trajectory and prevent mishaps.

• Law Enforcement: Drones are contributing to the law by helping with the surveillance
of large crowds to ensure public safety. They assist in monitoring criminal and illegal
activities such as illegal transportation of drugs, human traffic or organized crime.

1.3 Classification of Drones

Depending on the platform and mission, drones often vary widely in their configurations. There-
fore, they can be classified into several categories based on different parameters. Adam Watts,
classified drones platforms for civil scientific and military uses based upon performance charac-
teristics and features, such as size, flight endurance, wing span and loading, range, maximum
altitude and speed, and production cost. In his classification, Watts classified drones as MAVs
(Micro of Miniature Aerial Vehicles), NAVs (Nano Aerial Vehicles), VTOL (Vertical Take-Off
and Landing), HTOL (Horizontal Take-Off and Landing) LASE (Low Altitude, Short En-
durance), LASE Close, LALE (Low Altitude, Long Endurance), MALE (Medium Altitude,
Long Endurance) and HALE (High Altitude, Long Endurance). In figure 1.9, the spectrum of
different types of drones is presented.

Furthermore, drones can also be categorised into three classes based on the minimum take-
off weight combined with how the drones are intended to be used and where they are expected
to be operated. The table below show the Brooke-Holland weight categorization:
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Figure 1.9: Spectrum of drones

Class Type Weight Range

Class I(a) Nano drones weight ≤ 200 g
Class I(b) Micro drones 200 g < weight ≤ 2 kg
Class I(c) Mini drones 2 kg < weight ≤ 20 kg
Class I(d) Small drones 20 kg < weight ≤ 150 kg
Class II Tactical drones 150 kg < weight ≤ 600 kg
Class III MALE/HALE/Strike drones weight ≥ 600 kg

Table 1.1: Brooke-Holland categorization

• UAVs: they are distinguishable from other types of small drones such as MAVs and NAVs
by several aspects including the operational purpose of the aerial vehicle, the materials
used in its fabrication, and the complexity and cost of the control system. UAVs vary
widely in configuration and size. They can also be considered as HTOL, VTOL, hybrid
model (tilt-wing, tilt-rotor, tilt-body, and ducted fan).

• HTOL and VTOL they are one of UAV’s four configurations which are specified by
lift/mass balance and by stability and control. There are flying tailless wing UAVs or
tailplane-aft, tailplane forward and tail-aft on booms. Different propulsion systems are
used for this particular configuration.

• Tilt-Rotor, Tilt-Wing and Tilt-Body The VTOL drones have demonstrated their
efficiency in hovering flight mode over HTOL, but they have some limitations in cruise
speed because of the stalling of the retreating blades. For longer range missions, higher
cruise speed is required. However, the ability of vertical take-off and landing is highly
valuable. To overcome these limitations, new hybrid model combining the capabilities
of both VTOL and HTOL was introduced. Tilt-Rotor UAVs have all rotors initially in
vertical position in vertical flight, but for the cruise flight, they tilt forward through 90°.
In Tilt-Wing UAVs, the rotors are usually fixed to the wings and tilt with the wings hence
the name. The angle of the whole wing is changed from zero to 90° in order to convert
its flight modes from horizontal to vertical. The Tilt-Body UAVs or free wing-tilt UAVs
are completely different than the two other configurations, the wings are completely free
to rotate in pitch axis and the fuselage is a lifting body.

• Helicopter and heli-wing There are four types of helicopter UAVs, namely single rotor,
coaxial rotor, tandem rotor, and quad-rotor. Heli-wing UAVs are other types of drones
which use a rotating wing as their blade. They can fly as a helicopter vertically and also
fly as a fixed wing UAV.

• µUAVs: Are small unmanned aerial vehicles, small enough to be man-portable. They
can be carried and launched by hand. They have exacly the same configurations as the
bigger model of UAVs but smaller in size and lighter. The propulsion system generally
used in this type of drones is electrical mainly because µUAVs cannot carry big payloads.
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Other than HTOL, VTOL and Tilt-rotor, there exist some other variants of µUAVs such
as Ornithopter, Flapping wing, Cyclocopter, Ducted fan and other unconventional types.

• MAV and NAV UAVs: Micro and Nano unmanned vehicles as the name already
suggests, are the smallest and lightest types of UAVs. These drones are mainly used
to carry visual, acoustic, chemical and biological sensors, they have a range less than 1
km and a maximum flight altitude around 100 m and medium autonomy. Different type
of Micro and Nano air vehicles are attracting various disciplines including Aerospace,
mechanical, electrical and computer engineering.

• Bio-drones Because of the importance of reconnainssance and patrolling in civil and
military applications, applying new instruments for this type of tasks has received much
attention. One of the techniques developed for this type of missions, propose the use
of live birds and insects that can be controlled by using some electrical chips on them
instead of designing new artificial drones.

Figure 1.10: RQ-4 Global
Hawk

Figure 1.11: Boeing X-50
Dragonfly

Figure 1.12: UAV Quand Tilt
Wing

1.4 Conclusion

In this chapter, we briefly presented the historical context associated with the appearance early
design of the first flying aircrafts. We have also seen the major UAV architectures and their
applications. Different configurations of vehicles have been mentioned such as: rotary wings,
fixed-wings and flapping-wings.
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CHAPTER

2

STATE OF THE ART

2.1 Introduction

Several commercial flight control systems for small UAVs are currently available in the market,
intended to be customizable for integration with a wide range of unmanned aerial systems
They typically include integrated sensors such as GPS receivers, accelerometers, rate gyros,
and barometric sensors for measuring the state of the vehicle as well as a processing system to
run control loops and communicate with ground solution software. These control system units
are typically used for civilian tasks as aerial photography, mapping, research or just as hobby.
The next chapter summarizes some of the widely used open-source control systems for drone
control.

(a) ArduPilot (b) PX4 AutoPilot (c) OpenPilot Revolution

Figure 2.1: Commercial AutoPilots
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2.2 ArduPilot

ArduPilot is an open-source autopilot system that enable the creation and use of trusted,
autonomous, unmanned vehicle system and provides a comprehensive suite of tools suitable
for any aerial vehicle and application. ArduPilot is a constantly evolving framework thanks
to its large community of users. Although ArduPilot does not manufacture any hardware,
ArduPilot firmware works on a wide variety of different hardware, and offer some advanced
functionalities including real-time communication and Mission Planner which features point-
and-click interaction with any hardware supported, custom scripting and complex realistic
simulations. Some of other ArduPilot features are presented in the section below:

• Many command modes to fit every type of vehicle: Acro, Stabilize, Loiter, Alt-hold,
Return To Launch, Land, Follow Me, GeoFence, etc.

• Autonomous flight modes that execute fully scripted missions with advanced features.

• Advanced failsafe options bring peace of mind in the event of lost control signal, low
battery conditions, or other system failures.

• Three Axis camera control and stabilization, shutter control, live video link with pro-
grammable on-screen-display.

• Real-time two-way communication between your GCS and controller, including GPS po-
sition, battery status, and other live information.

• Full data logging for comprehensive post mission analysis, with graphing and Google
Earth mapping tools.

• Industry leading control algorithms for vehicles of all types, with robust sensor compen-
sation algorithms, filtering and tuning capabilities.

• Cross-platform. Supports Windows, Mac and Linux. Use the graphical Mission Planner
setup utility in Windows (works under Parallels on a Mac or Mono on Linux) or use a
command-line interface on any other operating system. Ground stations are available for
all three operating systems. Based on the Arduino programming environment, which is
also fully cross-platform.

• Supports full ”hardware-in-the-loop” simulation with Xplane and Flight Gear.

2.3 PX4 Autopilot

PX4 is a popular open-source flight control software for drones and other unmanned vehicles.
It provides a flexible set of tools for drone developers to share technologies to create tailored
solutions for drone applications. PX4 provides a standard to deliver drone hardware support
and software stack, allowing an ecosystem to build and maintain hardware and software in
a scalable way. PX4 is part of Dronecode, a non-profit organization administered by Linux
Foundation to foster the use of open source software on flying vehicles. Dronecode also hosts
QGroundControl, MAVLink and the SDK.
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• Real-time Kinematic (RTK) is a satellite navigation technique used to enhance the pre-
cision of position data derived from satellite-based positioning systems. It increases the
accuracy of GNSS/GPS system to centimeter-level.

• Precision Landing and target recognition for multicopters using IR-LOCK sensor. It
enables landing with a precision of roughly 10 cm.

• Iridium/RockBlock Satellite Communication System can be used to provide long range
high latency link between a ground station and the aerial vehicle.

• Obstacle Avoidance enables the aerial vehicle to navigate around obstacles when following
a preplanned path.

• Collision Prevention can be used to automatically slow and stop the aerial vehicle before
it can crash into an obstacle.

2.4 OpenPilot Revolution

The OpenPilot Revolution, also called ’Revo’ is a new breed of Autopilot using the STM32F4
series, 210MIPS ARM Micro-controller. The board contains a hardware floating point unit
(FPU) that allows precise, low-latency processing of real-life measurements using advanced at-
titude estimation algorithms. The Revolution is a flight control coputer with autopilot, intended
for multirotors, helicopters and fixed wings. It’s a full 10 DoF with gyroscope, accelerometer,
magnetometer and pressure sensors.

• Quick Satellite Searching: it only needs 10 seconds to find up to 6 satellites in open space.

• Build-in Compass with a high refresh-rate up to 10GHz.

• Support for GPS, BD/GLONASS, SBAS.

• Supported antennas Active and Passive.

• Odometer Travelled Distance.

• Noise figure On-Chip LNA (NEO-M8M) and eLNA for Extra Lowest Noise Figure (NEO-
M8N/Q).
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CHAPTER

3

QUADCOPTER MATHEMATICAL MODEL

3.1 Introduction

The quadcopter is a flying aircraft made up of four rotating motors, holds the electronic board
in the middle and the motors at four extremities. Before describing the mathematical model
of the quadcopter, it is necessary to introduce the reference coordinates in which we describe
the structure and the position. For the quadcopter, it is possible to use two reference systems
[3.1]. The first called inertial, is fixed to the earth and the second is mobile and it is attached
to the barycenter of the quadcopter. In the scientific literature it is called OABC system, where
ABC stands for: Aircraft Body Center.

Figure 3.1: Mobile reference system and fixed reference system

3.2 Mathematical Model

The attitude and position of the quadcopter can be controlled to desired values by changing
the speeds of the four motors. The set of forces and moments acting on the quadcopter are: the
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thrust caused by rotors rotation, the pitching moment and the rolling moment caused by the
difference of four robots thrust, the gravity, the gyroscopic effect, and the yawing moment. The
gyroscopic effect only appears in the lightweight construction quadcopter. The yawing moment
is caused by the unbalance of the four robots rotational speeds, and it can be cancelled out
when two rotors rotate in the opposite direction. As a result, the propellers are divided in two
groups. In each group there are two diametrically opposite motors that we can easily observe
thanks to their direction of rotation. We distinguish the front and rear propellers rotating
counterclockwise and the right and left propellers rotating clockwise as seen in the figure below
[3.2]

Figure 3.2: Direction of propeller’s rotations

The motion of the quadcopter can be divided into two parts, the movement of the barycen-
ter and the movement around the barycenter. Six degrees of freedom are required to describe
the full motion, three translation and three rotation motions along three axes. The control for
6 DoF motions can be implemented by adjusting the rotational speeds of different motors. The
motions include forward and backward movements, lateral movement, vertical movement, roll
motion, pitch and yaw motions. The yaw motion can be realized by a reactive torque produced
by the rotors. When the four rotor speeds are the same, the reactive torques will balance each
other and the quadcopter will not rotate. Because of four inputs and six outputs, the quad-
copter is considered an underactuated nonlinear complex system. In order to control it, some
assumptions are made in the process of quadcopter modeling: the quadcopter is a rigid body,
the structure is symmetric and the ground effect is ignored.

Depending of the speed rotation of each propeller, it is possible to identify the four basic
movements of the quadcopter, which are showed in the figures below [3.3]

3.2.1 Euler Angles

The Euler angles are three angles introduced by Leonard Euler to describe the orientation
of a rigid body. To describe such an orientation in a 3-dimensional Euclidean space, three
parameters are required. In our case will use ZYX Euler angles. Euler angles are typically
denoted as φ ∈] − π, π], θ ∈] − π

2
, π
2
[ and ψ ∈] − π, π] and they represent a sequence of three

elemental rotations, i.e rotations about the axes of a coordinate system, since any orientation
can be achieved by composing three elemental rotations. They are also used to describe the
orientation of a frame of reference relative to another and they transform the coordinates of a
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(a) Thrust (b) Pitch

(c) Roll (d) Yaw

Figure 3.3: Quadcopter movements

point in a reference frame in the coordinates of the same point in another reference frame. The
combination used is described by the following rotation matrices:

Rx(φ) =

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 (3.1)

Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (3.2)

Rz(ψ) =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 (3.3)

The inertial position coordinates and the body reference coordinates are related by the
rotation matrix Rzyx(φ, θ, ψ) ∈ SO(3) [3.5]:

Rzyx(φ, θ, ψ) = Rz(ψ).Ry(θ).Rx(φ) (3.4)

=

cosψ cos θ cosψ sin θ sinφ− sinψ cosφ cosψ sin θ sinφ+ sinψ sinφ
sinψ cos θ sinψ sin θ sinφ+ cosψ cosφ sinψ sin θ cosφ− cosψ sinφ
− sin θ cosθ sinφ cos θ cosφ

 (3.5)

This matrix describe the rotation from the body reference system to the inertial reference
as shown in the following figure [3.4]:

3.2.2 Newton-Euler Formalism

We provide here a mathematical model of the quadcopter, exploiting Newton and Euler equa-
tions for the 3D motion of a rigid body. The goal is to obtain a deeper understanding of the
dynamics of the quadcopter and to provide a model that is sufficiently reliable for simulating
and controlling its behavior.
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Figure 3.4: Euler Angles

We denote χ =
[
x y z φ θ ψ

]T
the vector containing the linear and angular position

of the quadcopter in the inertial frame and µ =
[
u v w p q r

]T
the vector containing the

linear and angular velocities in the body frame. From 3D body dynamics, it follows that the
two reference frames are linked by the following relations:

v = R . vB (3.6)

ω = T . wB (3.7)

where v =
[
ẋ ẏ ż

]T ∈ R3, ω =
[
φ̇ θ̇ ψ̇

]T ∈ R3, vB =
[
u v w

]T ∈ R3, ωB =
[
p q r

]T ∈
R3, and T is a matrix for angular transformations:

T =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ cos θ−1 cosφ cos θ−1

 (3.8)

The quadcopter kinematic model is:

ẋ = u[cosψ cos θ] + v[cosψ sin θ sinφ− sinψ cosφ] + w[cosψ sin θ sinφ+ sinψ sinφ]

ẏ = u[sinψ cos θ] + v[sinψ sin θ sinφ+ cosψ cosφ] + w[sinψ sin θ cosφ− cosψ sinφ]

ż = −u[sin θ] + v[cosθ sinφ] + w[cos θ cosφ]

φ̇ = p+ q[sinφ tan θ] + r[cosφ tan θ]

θ̇ = q[cosφ]− r[sinφ]

ψ̇ = q
sinφ

cos θ
+ r

cosφ

cos θ
(3.9)

Newton’s law of dynamics states the following matrix relation for the total force acting on the
quadcopter:

m(wB ∧ vB + v̇B) = FB (3.10)

where m is the mass of the quadcopter, ∧ is the cross product and FB =
[
fx fy fz

]T ∈ R3

is the total force acting the quadcopter.

Euler’s equation on the other hand gives the total torque applied to the quadcopter:

Iω̇B + ωB ∧ (IωB) = τB (3.11)
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where τB =
[
τφ τθ τψ

]T ∈ R3 is the total torque acting on the quadcopter and I is the
diagonal inertial matrix:

I =

Ixx 0 0
0 Iyy 0
0 0 Izz

 (3.12)

So, the dynamical model of the quadcopter in the body frame is:

fx = m(u̇+ qw − rv)

fy = m(v̇ − pw + ru)

fz = m(ẇ + pv − qu)

τφ = ṗIxx − qrIyy + qrIzz

τθ = q̇Iyy + prIxx − prIzz
τψ = ṙIzz − pqIxx + pqIyy

(3.13)

These equations hold as long as we assume that the origin and the axes of the body frame
coincide with the barycenter of the quadcopter and the principal axes.

3.3 Forces and moments

The set of total forces acting on a quadcopter are the thrust force produced by the spinning
motors which lift it up and the gravitational force due to the earth gravitational field, and
lastly the drag force due to the air friction. All the spinning motors create torques about the
z-axis, this created torque is mandatory to keep all the propellers spinning and it also provides
the necessary thrust to overcome the drag force. The external forces FB in the body frame are
given by:

FB = Tzê3 −mgRT .êz + F w (3.14)

where êz is the unit vector in the inertial z-axis, ê3 is the unit vector in the body z-axis,
g is the gravitational acceleration, Tz is the total thrust generated by rotors and F w =[
fwx fwy fwz

]T ∈ R3 are the forces produced by wind on the quadcopter. Similarly, the
external moments in the body frame τB are given by:

τB = τ c − ga + τw (3.15)

where ga represents the gyroscopic moments caused by the combined rotation of the four rotors

and the vehicle body, τ =
[
τφ τθ τψ

]T ∈ R3 are the control torques generated by differences

in the rotor speeds and τw =
[
τwφ τwθ τwψ

]T ∈ R3 are the torques produced by the drag
force. The gyroscopic moment ga is given by:

ga =
4∑
i=1

(−1)i+1JP (ωB ∧ ê3)Ωi (3.16)

where Jp is the inertia of each spinning rotor and Ωi is the angular speed of the i-th rotor.
The term JP is found to be relatively small, as a result, the gyroscopic moments are removed
in the controller formulation. In addition, there are numerous aerodynamic and aeroelastic
phenomenon that affect the flight of the quadcopter, such as the ground-effect: when flying
close to the ground or during the landing stage, the air flow generated by the propellers disturbs
the dynamics of the quadcopter.
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So the complete dynamic model of the quadcopter using the Newton-Euler formalism in
the body frame is obtained substituting the force expression [3.14] in the dynamic model [3.13]:

fwx −mg sin θ = m(u̇+ qw − rv)

fwy +mg[cos θ sinφ] = m(v̇ − pw + ru)

fwz +mg[cos θ cosφ]− Tz = m(ẇ + pv − qu)

τφ + τwφ = ṗIxx − qrIyy + qrIzz

τθ + τwθ = q̇Iyy + prIxx − prIzz
τψ + τwψ = ṙIzz − pqIxx + pqIyy

(3.17)

3.4 Actuator Dynamics

Here we consider the inputs that can be applied to the system in order to control the behavior
of the quadcopter. We have four rotors, and the DoF we control are as many commonly, the
control inputs that are considered are one for the vertical thrust and one for each of the angular
motions. Let us consider the values of the input forces and torques proportional to the squared
speeds of the rotors, their values are the following:

Tz = b(Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4)

τφ = bl(Ω2
3 − Ω2

1)

τθ = bl(Ω2
4 − Ω2

2)

τψ = d(Ω2
2 + Ω2

4 − Ω2
1 − Ω2

3)

(3.18)

where l is the distance between any rotor and the center of the drone, b is the thrust factor
and d is the drag factor. Substituting [3.18] in [3.17] we obtain the dynamic model of the
quadcopter in the body framed:

fwx −mg sin θ = m(u̇+ qw − rv)

fwy +mg[cos θ sinφ] = m(v̇ − pw + ru)

fwz +mg[cos θ cosφ]− Tz = m(ẇ + pv − qu)

bl(Ω2
3 − Ω2

1) + τwφ = ṗIxx − qrIyy + qrIzz

bl(Ω2
4 − Ω2

2) + τwθ = q̇Iyy + prIxx − prIzz
d(Ω2

2 + Ω2
4 − Ω2

1 − Ω2
3) + τwψ = ṙIzz − pqIxx + pqIyy

(3.19)

3.5 State Space

After writing the quadcopter dynamical mode, it is possible to rewrite them in the state-space
form, to do so, we begin by organizing the state’s vector in the following way:

x =
[
x y z u v w φ θ ψ p q r

]T ∈ R12 (3.20)
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and combining the previous equations [3.13] and [3.9] in one form give us:

ẋ = u[cosψ cos θ] + v[cosψ sin θ sinφ− sinψ cosφ] + w[cosψ sin θ sinφ+ sinψ sinφ]

ẏ = u[sinψ cos θ] + v[sinψ sin θ sinφ+ cosψ cosφ] + w[sinψ sin θ cosφ− cosψ sinφ]

ż = −u[sin θ] + v[cosθ sinφ] + w[cos θ cosφ]

u̇ = rv − qw − g sin θ +
fwx
m

v̇ = pw − ru+ g[cos θ sinφ] +
fwy
m

ẇ = qu− pv + g[cos θ cosφ] +
fwx − Tz

m
φ̇ = p+ q[sinφ tan θ] + r[cosφ tan θ]

θ̇ = q[cosφ]− r[sinφ]

ψ̇ = q
sinφ

cos θ
+ r

cosφ

cos θ

ṗ =
Iyy − Izz
Ixx

rq +
τφ + τwφ

Ixx

q̇ =
Izz − Ixx
Iyy

+
τθ + τw

Iyy

ṙ =
Ixx − Iyy
Izz

+
τψ + τwψ

Izz
(3.21)

An alternative formulation to the kinematics model useful for studying the control is rewriting
the previous equations [3.9] and [3.13] using Newton’s law of dynamics:

mv̇ = R.FB (3.22)

= TzR.ê3 −mgêz (3.23)

We will assume that
[
φ̇ θ̇ ψ̇

]T
=
[
p q r

]T
holds true for small angles of movement. The

dynamics model of the quadcopter in the inertial frame is:

ẍ = Tz
m

(cosψ sin θ cosφ+ sinψ sinφ)

ÿ = Tz
m

(sinψ sin θ cosφ− cosψ sinφ)

z̈ = Tz
m

(cos θ cosφ)− g

ṗ =
τφ
Ixx

+
Izz − Iyy
Ixx

θ̇ψ̇

q̇ =
τθ
Iyy

+
Ixx − Izz
Iyy

φ̇ψ̇

ṙ =
τψ
Izz

+
Iyy − Ixx
Izz

φ̇θ̇

(3.24)

Redefining the state’s vector as:

x =
[
x y z φ θ ψ ẋ ẏ ż p q r

]T ∈ R12 (3.25)

It is possible to rewrite the equations of motion as affine in control state-space:

ẋ = f(x) +
4∑
i=1

gi(x)ui (3.26)
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where:

f(x) =



ẋ
ẏ
ż

q
sinφ

cos θ
+ r

cosφ

cos θ
q[cosφ]− r[sinφ]

p+ q[sinφ tan θ] + r[cosφ tan θ]
0
0
g

Iyy − Izz
Ixx

qr

Izz − Ixx
Iyy

pr

Ixx − Iyy
Izz

pq



(3.27)

and:
g1(x) =

[
0 0 0 0 0 0 g71 g81 g91 0 0 0

]T
(3.28)

g2(x) =
[

0 0 0 0 0 0 0 0 0 1
Ixx

0 0
]T

(3.29)

g3(x) =
[

0 0 0 0 0 0 0 0 0 0 1
Iyy

0
]T

(3.30)

g4(x) =
[

0 0 0 0 0 0 0 0 0 0 0 1
Izz

]T
(3.31)

with:

g71 =
1

m
(cosψ sin θ cosφ+ sinψ sinφ) (3.32)

g81 =
1

m
(sinψ sin θ cosφ− cosψ sinφ) (3.33)

g91 =
1

m
(cos θ cosφ) (3.34)

(3.35)

and the control input vector u is:

u =


u1
u2
u3
u4

 =


Tz
τφ
τθ
τψ

 =


Tz

bl(ω2
3 − ω2

1)
bl(ω2

4 − ω2
2)

d(ω2
2 + ω2

4 − ω2
1 − ω2

3)

 (3.36)

In condense form, the quadcopter dynamical model is given as:
ξ̇

ξ̈
η̇
η̈

 =


v

1

m
TzRê3 − gêz

ω̇
I−1(τB − ω ∧ Iω)

 (3.37)
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3.6 Classical Control Strategy

The development of non-linear control laws that can achieve the desired performance has been
subject of much research. Numerous studies have been conducted on the subject. The represen-
tation of aerodynamic forces in precise modeling of the quadcopter dynamics uses terminology
(aerodynamic terms, aerodynamic coefficient, air density, apparent surface) that are difficult
to understand. In the same way, the knowledge of the physical constants of the vehicle (mass,
inertia) is subject to uncertainties. The goal is to synthesize control principles that allow the
vehicle to be maintained in the presence of external disturbances.

3.6.1 Design of the Backstepping Controller

The backstepping control is based on a multistep method, and at each stage, a virtual command
is generated to ensure that the system converges to its equilibrium state. The stabilization of
each synthesis step is ensured by the Lyapunov functions.

A nonlinear control strategy is implemented to stabilize the quadcopter near quasi sta-
tionary flight. The altitude of the quadcopter is stabilized by using the vertical force input u1.
The desired roll and pitch angles are generated from the position subsystem to the rotational
controller. The rotational controller is used to stabilize the quadcopter near quasi stationary
flight with inputs u2, u3 and u4.

Translation Dynmaics

Altitude subsystem of the quadcopter is given by [3.24]. An integral backstepping control is
implementing for altitude subsystem. Firstly, we begin by defining the position error δξ and
the velocity error δv as δξ = ξd − ξ and δv = ρ1 − v respectively where ρ1 is a virtual input as
the backstepping control strategy requires. So the Lyapunov function candidate is as follows:

V1 =
1

2
δTξ δξ (3.38)

Differentiating V1 with respect to time gives:

V̇1 = δTξ δ̇ξ (3.39)

= δTξ (ξ̇d − ξ̇) (3.40)

replacing ξ̇ with v from the quadcopter model [3.37] and adding and subtracting ρ1 from the
above equation leads to:

V̇1 = δTξ (ξ̇d − v) (3.41)

= δTξ (ξ̇d − v) + δTξ (ρ1 − ρ1) (3.42)

= δTξ (ξ̇d − ρ1) + δTξ (ρ1 − v) (3.43)

= δTξ (ξ̇d − ρ1) + δTξ δv (3.44)

By setting ρ1 = ξ̇d − kδξ with k > 0 and replacing it above:

V̇1 = −kδTξ δξ + δTξ δv (3.45)
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It’s clear that the first term in negative, so the next step in the control strategy is to show
that the second term is also negative. For that, we introduce the second Lyapunov candidate
function:

V2 = V1 +
1

2
δTv δv (3.46)

Taking the time derivative of V2, we obtain:

V̇2 = V̇1 + δTv δ̇v (3.47)

= −kδTξ δξ + δTξ δv + δTv δ̇v (3.48)

We already defined δv as the error between the virtual velocity ρ1 and the actual system’s
velocity v, so differentiating it with respect to time:

δ̇v = ρ̇1 − v̇ (3.49)

= ξ̈d − kδ̇ξ −
1

m
TzRê3 + gêz (3.50)

Replacing δ̇v in [3.48]:

V̇2 = −kδTξ δξ + δTξ δv + δTv (ξ̈d − kδ̇ξ −
1

m
TzRê3 + gêz) (3.51)

= kδTξ δξ + δTv (δξ + ξ̈d − kδ̇ξ −
1

m
TzRê3 + gêz) (3.52)

Choosing Tz = mR−1[δξ + ξ̈d − kδ̇ξ + gêz + λδv] with λ > 0 and replacing it in above [3.52]:

V̇2 = −kδTξ δξ − λδTv δv < 0 (3.53)

Which is negative. The result that we obtained is so important because it indicates that the
origin is asymptotically stable, which translate to δξ and δv tend to 0 as time goes by, it also
means that ξ goes to ξd and our virtual velocity control ρ1 goes to the actual system’s velocity
v

Rotational Dynamics

As we have done with translation dynamics, we will do the same thing for the rotational
dynamics. We begin by defining δη and δω as δη = ηd − η and δω = ρ2 − ω respectively. Let’s
the Lyapunov candidate function V3 be:

V3 =
1

2
δTη δη (3.54)

Taking the time derivative of V3 gives:

V̇3 = δTη δ̇η (3.55)

= δTη (η̇d − η̇) (3.56)

replacing η̇ with ω from the quadcopter model [3.24] and adding and subtracting ρ2 from the
above equation leads to:

V̇3 = δTη (η̇d − ω) (3.57)

= δTη (η̇d − ω) + δTη (ρ2 − ρ2) (3.58)

= δTη (η̇d − ρ2) + δTη (ρ2 − ω) (3.59)

= δTη (η̇d − ρ2) + δTη δω (3.60)
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By setting ρ2 = η̇d − kδη with k > 0 and replacing it above:

V̇3 = −kδTη δη + δTη δω (3.61)

As we can clearly notice, the first term in V3 is negative as we desire, but the sign of the second
term is unknown. For that we define a second Lyapunov candidate function V4 as:

V4 = V3 +
1

2
δTω δω (3.62)

Taking the time derivative of V4, we obtain:

V̇4 = V̇3 + δTω δ̇ω (3.63)

= −kδTη δη + δTη δω + δTω δ̇ω (3.64)

We already defined δω as the error between the virtual velocity ρ2 and the actual system’s
velocity ω, so differentiating it with respect to time:

δ̇ω = ρ̇1 − v̇ (3.65)

= η̈d − kδ̇η − I−1(τB − ω ∧ Iω) (3.66)

Replacing δ̇ω in [3.64]:

V̇4 = −kδTη δη + δTη δω + δTω (η̈d − kδ̇η − I−1(τB − ω ∧ Iω)) (3.67)

= kδTη δη + δTω (δη + η̈d − kδ̇η − I−1(τB − ω ∧ Iω)) (3.68)

By choosing τB = I[δη + η̈d − kδ̇η] + ω ∧ Iω + λδω with λ > 0 and replacing it in the previous
equation, we end up with:

V̇3.5 = −kδTη δη − λδTω δω < 0 (3.69)

So we have demonstrated the asymptotic stability of the origin i.e δη and δω which means η
tend to approach the desired orientation ηd and our virtual control input ρ2 approaches the
system’s actual angular velocity ω.

3.7 Simulation Results

Simulation experiments for the attitude control of the quadcopter are done in order to evaluate
the efficiency of hierarchical control using the backstepping control strategy. On the whole
dynamic model of the quadcopter, an application of the proposed approach is tested without

taking into account external disturbances. The initial position is: ξ(0) =
[
0 0 0.5

]T
and the

initial angular orientation is: η(0) =
[
0 0 0.3

]T
, the linear and angular velocities are set to

0.

The simulation results are presented below:
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Figure 3.5: x and y positions

Figure 3.6: z position and yaw angle ψ
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Figure 3.7: Roll and Pitch angles φ, θ

The figures above show the evolution of the translational and yaw position over time. When
the desired references are introduced, the quadcopter is able to track the reference trajectories.
The evolution of quadcopter x, y, and z positions are represented on figures 3.5, 3.6. We see
that the trajectory tracking capability is acceptable and the quadcopter maintained the desired
attitude. The roll and pitch trajectories are presented in the figure 3.7. These two trajectories
were generated by the translational controller to help the flying vehicle following the position
trajectory ξd. This shows the effectiveness of the proposed control strategy. We note that, when
the quadcopter is changing position, we notice some spikes in the roll and pitch angles and this
primarily due to the coupling between the quadcopter translation and rotation dynamics as
seen in the model dynamics [3.24]

3.8 Conclusion

In this chapter we studied mathematical modelling and control of the quadcopter. The mathe-
matical model was presented and the differential equations were derived from the Newton-Euler
formalism. The model was then verified by simulating the flight of the quadcopter with Mat-
lab/Simulink. Stabilisation of attitude of the quadcopter was done by utilising the backstepping
control strategy. The simulation proved the presented mathematical model to be realistic in
modeling the position and attitude of the quadcopter. The simulation results also showed that
the controller was efficient is stabilising the quadcopter to the desired altitude and attitude.
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The presented model and control methods were tested only with simulations. Real exper-
imental prototype of a quadcopter should be constructed to achieve more realistic and reliable
results.
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CHAPTER

4

REINFORCEMENT LEARNING

4.1 Introduction

Reinforcement learning is a highly promising area of Machine Learning paradigms alongside
with Supervised learning and unsupervised learning, it deals with how intelligent agents learn
and behave in known or unknown, fully observable or partially observable environment in order
to maximize the notion of a cumulative reward, it is used primarily in decision-making. The
agent is not necessarily a software entity, it could also be embodied in hardware such as robots,
UAVs or autonomous vehicles

Reinforcement learning differs from supervised learning in not needing labeled data for
training or testing, instead it focuses in finding a balance or trade-off between exploration
(exploring uncharted areas in the environment) and exploitation (the current knowledge).

The environment has a state that can be partial of fully observable. The agent can then
perform a set of actions to interact with its environment, by taking either a fully deterministic
or stochastic action, the environment will then transition to a new state generating a scalar
reward. The goal here for the agent is to maximize the cumulative reward and find the optimal
or nearly-optimal policy that will help the agent decide which action to take given a state. [2]

The environment is typically stated in the form of Markov Decision Process or MDP
because many reinforcement learning algorithms for this context use Dynamic Programming
and they obey the so called: Markov property which states that: The future is independent
of the past given the present. Once the current state in known, the history of information
encountered so far may be thrown away, and that state is a sufficient statistic that gives us the
same characterization of the future as if we had the whole history.

One of the main issues in Reinforcement Learning is finding the right balance between
Exploration and Exploitation. Since exploration is inherently costly in terms of resource, time
and opportunity, a natural and crucial question in Reinforcement Learning is to address the
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dichotomy between exploration of uncharted territory and exploitation of existing knowledge.
Such question exists in both the stateless Reinforcement Learning settings such as multi-armed
bandit problem and the more general multi-state Reinforcement Learning settings. Specifically,
the agent must balance between greedily exploiting what has been learned so far to choose
actions that yield near-term higher rewards, and continuously exploring the environment to
acquire more information to potentially achieve long-term benefits. Extensive studies have
been conducted to find strategies for the bets trade-off between exploration and exploitation.
[[18]]

Figure 4.1: Reinforcement learning block diagram

4.2 Reinforcement Learning from Control Theory per-

spective

Optimal control deals with the problem of finding an optimal control law for a given system to
achieve some optimality criterion. A control problem includes the notion of a cost functional
that is a function of control and state variables. By using the Pontryagin’s maximum prin-
ciple (PMP) or solving the Hamilton-Jacobi-Bellman we can derive the optimal control
that minimizes or maximizes the cost functional by solving out a set of differential equations
describing the path of the control variables. Control problems usually include ancillary con-
straints.

We can illustrate this with a simple example, consider the problem of cruise control, the
question is how should the driver press the acceleration pedal in order to minimize the fuel
consumption, given that it must complete a given course in a time not exceeding some amount.

Let’s consider the nonlinear discrete-time system illustrated in the figure below with xk is
the state of the system at the k-th sampling time, uk is the control input to drive the dynamics
of the system and wk is a random disturbance. In generalized and more abstract forms, we can
define the cost functional as:

J = gN(xN) +
N−1∑
k=0

gk(xk, uk, wk) (4.1)

subject to the system’s dynamics: xk+1 = fk(xk, uk, wk) given the initial condition xk=0 = x0,
gN and gk are referred to as Mayer term and Lagrangian respectively in calculus of variation.

With a full and perfect knowledge of the system state, we can then find the optimal control
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Figure 4.2: discrete-time nonlinear system

law u∗ that minimizes the above cost functional, in other words:

min
uk
J = min

uk
Ewk

[gN(xN) +
N−1∑
k=0

gk(xk, uk, wk)] (4.2)

where E[.] denotes the expected value.

By the help of optimization theory, the optimal control law u∗ for our optimal control
problem is given by:

u∗k = arg min
uk

Ewk
[gN(xN) +

N−1∑
k=0

gk(xk, uk, wk)] (4.3)

In Reinforcement Learning context however, we can think of the agent as the controller driving
the system, the environment as the plant or the system’s dynamics, the reward function as the
feedback loop and the cost functional as the value function. Formally, Reinforcement Learning
problems can be described as Markov-decision Process (MPD), for simplicity we will assume a
fully deterministic environment where a certain action in a given state will consistently result
in a next state and reward, so at every time step t:

• The environment is in state s in the state space S which may be discrete or continuous,
starting from the initial state s0 to the terminal state sT

• The agent will take an action a in the set of action space A by obeying the policy π(at|st),
A here can also be discrete or continuous.

• The environment then will transition to a new state st+1 using the state transition dy-
namics T (st+1|st, at), the next state is only dependent on the current state and action
and T is not known to the agent.

• The agent then receives a reward from the environment using the reward function rt+1 =
R(st, at, st+1) with r : A × S → R is a map from action space and state space to a
real number resulting in either a reward (positive reinforcement) if rt > 0 or punishment
(negative reinforcement) if rt < 0. The reward function R is not known to the agent.

• The future rewards are discounted by a factor of γk where γ ∈ [0, 1) is the discount factor
and k is the future timestep.
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• Horizon H, is the number of timesteps T needed to complete one episode from s0 to sT .

As we said earlier, the main goal of the agent is to find the optimal policy π∗(at|st) that
maximizes the discounted cumulative reward R(st, at, st+1) in other words:

π∗ = arg max
π

E[R(st, at, st+1)|π] (4.4)

Which is very similar to the optimal control law u∗ in classical optimal control.

4.3 Dynamic Programming

The term Dynamic Programming (DP) refers to a collection of algorithms that can be used
to compute optimal policies given a perfect model of the environment as a Markov Decision
Process MDP. Classical Dynamic Programming algorithms are of limited utility in Reinforce-
ment Learning both because of their assumption of a perfect model and because of their great
computational expense, but they are still important theoretically. [16]

The key idea of Dynamic Programming, and of Reinforcement Learning generally, is the
use of value functions to organize and structure the search for good policies. In the next section,
we show how Dynamic Programming can be used to compute value function and then obtain
the optimal policy the agent should take to maximize the return. [16]

4.3.1 Value Iteration

Q-Learning

Q-Learning [19] is a form of model-free Reinforcement Learning, it can be viewed as a method of
Asynchronous Dynamic Programming (ADP). It provides agents with the capability of learning
to act optimally in Markovian Decision processes by experiencing the consequences of actions,
without requiring them to build maps of the domains.

An important question that one may ask is that, if the Reinforcement Learning problem
is to find the optimal policy π∗ that maximizes the discounted cumulative reward, how does
the agent learn by interacting with the environment? The equation for finding the optimal
policy does not explicitly indicate which action to try by the agent and the succeeding state to
compute the return. So it is interesting to define a function that shows us how good a certain
action is, given a particular state, for an agent following a policy. In other words, instead of
finding the policy that maximizes the value for all states in any given finite MDP, the equation
[4.5] looks for the action that maximizes the quality Q-value for all states and hence the optimal
policy π∗.

π∗ = arg max
a
Q(s, a) (4.5)

One of the key properties of the Q-value function is that it must satisfy Bellman Optimality
Equation, according to which the optimal Q-value for a given state-action pair equals the
maximum reward the agent can get from an action in the current state, plus the maximum
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discounted reward it can obtain from any possible state-action pair that follows. The Bellman
equation is given below:

Q∗(s, a) = E[Rt+1 + γmax
a′

Q∗(s′, a′)] (4.6)

The Bellman equation is the core of the Q-value function algorithm, and the foundation not
only in Reinforcement Learning but also in much more general Dynamic Programming, which
is a widely used method for solving practical optimization problems. As you may notice, this
definition is recursive, intuitively, it decomposes the value computation into an immediate
expected reward from the next state Rt+1, plus the value of a successor state Q∗(s′, a′) with a
discount factor γ.

Without knowing anything about the dynamics of the environment, the agent tries an
action a, observes what happens in the form of reward r and next state s, maxa′ Q

∗(s′, a′)
chooses the next best action the agent should take that will give the maximum Q-value for
the next state, then updating the Q-value for that current state-action pair. Doing the update
iteratively will eventually learn the Q-value function.

After N steps into the future, the agent will decide what action to take that yields a better
reward resulting in a new state. The weights for this step is calculated as γN which value the
earlier rewards received by the agent higher than those received later, reflecting the notion of a
”good start”. The algorithm therefore, has to calculate the quality Q(s, a) of a state-action pair
combination. Before learning begins, Q is initialized to a possibly arbitrary fixed value, and
the actions are taking randomly to force the agent to explore the environment. As the learning
progresses, at each time t, the agent selects an action at, enters a new state st+1, and observes
the reward obtained Rt and the Q-value function get updated using the Bellman equation. In
an algorithmic fashion, the Q-Learning process is illustrated in the algorithm below:

Algorithm 1 Q-Learning Algorithm

Initialize Q(s, a) arbitrarily
for for each episode do

Initialize S
for for each step of episode do

Choose a from s using policy derived from Q
Take action a, observe R and s′

Update
Q(s, a)← Q(s, a) + α[R+ γmaxa′ Q(s′, a′)−Q(s, a)]
s← s′

until s is terminal
end for

where, α is the learning step or step size that determines to what extent newly acquired
information overrides old information. When setting α = 0, the agent will learn nothing, or
exclusively exploiting prior knowledge and not acquiring new experiences, while for α = 1, the
agent will only consider the most recent information acquired neglecting past experiences to
explore possibilities.

Deep Q-Learning

The iterative nature of the Q-Learning algorithm might be sufficient for tasks where there is
relatively small state space, but the method’s performance will decrease drastically when we
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tackle more complex environments. The big amount of computational resources and time it
needs to traverse the new states and modify the Q-values will most likely render the task com-
putationally inefficient and infeasible. An alternative way consists of using a general function
approximator to estimate the optimal Q-value function instead of computing the Q-values di-
rectly through value iteration, and the method of choice to do it is by using artificial Neural
Networks. The act of integrating artificial Neural Network into the Q-learning process is re-
ferred to as Deep Q-Learning, and the network that uses Deep Neural Networks with many
neurons and hidden layers to approximate Q-functions is called Deep Q-Network or DQN.

The working principle of Deep Q-Learning algorithm is that, a Neural Network receives
states from an environment as an input and then produces estimated Q-values for each action
the agent can choose in those states. As mentioned earlier, the Q∗ must satisfy the Bellman
optimality criterion Q∗(s, a) = E[Rt+1 +γmaxa′ Q

∗(s′, a′)], so we will compute the exact target
values from the right-hand side of the equation, then we will compare it to the model’s estimated
output to calculate the loss. Next, using the Backpropagation algorithm and Stochastic Gradi-
ent Descent (SGD), the Neural Network will update its weights and biases by backpropagating
the error, and adjust the output once again to minimize the error as much as possible.

It should be noted that, for small state spaces and less complex environments, it is rec-
ommended to use standard Q-Learning rather than Neural Networks as conventional value
iteration is likely to converge to optimal values faster.

The figure [4.3] below, shows the difference between classical Q-Learning algorithm for
Markovian Decision processes, and the Deep Q-Network algorithm.

Figure 4.3: Q-Learning vs Deep Q-Network

32



4.3. DYNAMIC PROGRAMMING

Double Q-Learning

In some finite stochastic Markovian Decision processes, the well-known Reinforcement Learning
algorithm Q-Learning performs very poorly. This poor performance is caused by large overes-
timations of action values. These overestimations result from a positive bias that is introduced
because Q-Learning uses the maximum action value as an approximation for the maximum
expected action value. An alternative way is to approximate the maximum expected value for
any set of random variables [7]. This is done by using two identical Neural Network models.
One learns during experience replay, just like DQN does, and the other one is a copy of the last
episode of the first model. The Q-value is actually computed with the second model with the
reward added to the next stage maximum Q-value. If every time the Q-value calculates a high
number for a certain state, the value that is obtained from the output of the Neural Network
for that specific state will become higher. The output value estimated by the output neuron
will eventually get higher. Now let suppose that for a state s, the action a is a higher value
than action b, then the action a will get chosen every time for that same state s. Now consider
if for some memory experience action b becomes the better action for the state s, then it is
difficult to tell the Neural Network that the action b is the better action in some condition,
since the Network was trained in a way to give a much higher value for action a when given the
state s. This justifies the use of a secondary model that is the exact copy of the main model
from the last episode and obviously, since the difference between values of the second model
are lower than the main model, we use this second model to attain the Q-value. The obtained
double estimator sometimes underestimate rather than overestimate the maximum expected
value. When finding the index of the highest Q-value from the main model, it will further be
used to obtain the action from the second model, and the rest is history. Applying this double
estimator to the conventional Q-learning process, constructs a new off-Policy Reinforcement
Learning algorithm called Double Q-Learning. [13]

4.3.2 Policy Iteration

We explained in the previous chapter, what is Q-Learning and what it is used for, and we
tackled some of the most modified Q-Learning algorithms that use Deep Neural Networks to
approximate the Q-value function such as Deep Q-Network and Double Q-Network. The central
idea in Q-Learning process is the value of the state-action pair, it is defined as the discounted
total reward that the agent can gather from a particular state by doing a particular action.
The agent should then act greedily in terms of the income reward guaranteed at the end of
every episode. The Value Iteration process just obeys the Bellman optimality criterion. After
updating the Q-value function, the policy dictating to the agent how to behave in every state
can be obtained with ease by using the equation π(s) = arg maxaQ(s, a).

There are several reasons why the policy is an interesting topic to explore, at the end of
the day, Reinforcement Learning is all about decision-making, So the policy that guarantees
the best actions to choose that maximises the reward is what we are looking for. Another
reason to go with policies rather than Q-value function is due to complex environments with
lots of discrete or continuous action spaces. To be able to decide on what action to take when
having Q(s, a), we need to solve the optimization problem that finds the optimal action a
that maximizes the quality of being at a particular state, or Q(s, a). In Markovian Decision
processes with relatively small number of discrete actions, this is not a problem, we just need to
approximate the value of all actions and take the action with the largest Q, but when dealing

33



4.3. DYNAMIC PROGRAMMING

with more complex environments with continuous actions such as the speed of a rotating motor,
or the angle at which the cruise pedal should be to have an optimal fuel consumption, this
optimization problem becomes hard as Q is usually represented by a highly non-linear Neural
Network, so finding the argument that maximizes the function’s values can be infeasible. In
such cases, it is better to avoid values and work with the policy directly. Another convenience
of policy learning is when we have stochastic Markovian Decision processes. [12]

In Q-Learning, the Q-values associated to each action were parametrized by a Neural
Network that takes the agent state, then the agent will choose the action with the highest
Q-value [4.3]. If we want our Neural Network to parametrize the actions, we can either return
the index or identifier of the action in Markovian Decision Processes with discrete action space,
or return the probability distribution of our actions. For example, for N mutually exclusive
actions, the return is a number representing the probability of taking a particular action given
a state which the Neural Network will have as an input. This is a much common solution used
in finite, stochastic, partially observed Markovian Decision Processes.

Such representation of actions as probabilities has the benefit of smooth representation,
meaning if we slightly change the weights and biases of the Neural Network, the output will
marginally get changed. In contrast, in discrete action spaces, a small tweak in the Neural
Network parameters, can lead to a jump to a different action. This intrinsic property in
policy iteration makes it suitable for Parameter-based Value Functions (PVFs) whose inputs
include the policy parameters, and the outputs get improved when adjusting the Neural Network
parameters. On of the most popular approaches is Policy Gradient. The figure [4.4] illustrates
the Policy Iteration process.

Figure 4.4: Policy Iteration architecture

Policy Gradient

As we have seen in the first chapter, the objective of a Reinforcement Learning agent is to
maximize the expected reward when following a policy π(s). Like any Machine Learning setup,
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we define a set of parameters θ, and proceed by sampling a stochastic policy and adjusting the
policy parameters in the direction of greater cumulative reward.

We define the policy gradient as ∇J = E[Q(s, a)∇ log π(a|s)]. The scale of the gradient
is proportional to the value of the action taken, which is Q(s, a), and the gradient itself is
equal to the gradient of the log probability of the action taken. This means that we tend to
increase the probability of the actions that have given us good total reward and decrease the
probability of actions with bad outcomes. [12] From a practical point of view, Policy Gradient
method could be implemented by performing optimization of the loss function defined as:
L = −Q(s, a) log π(a|s). The minus sign indicates that during Stochastic Gradient Descent
(SGD), the loss function tends to minimize, however in policy gradient, we want our policy to
maximize.

4.3.3 Actor-Critic

As we saw previously with Value and Policy Iteration, the vast majority of Reinforcement
Learning programming methods try to overcome difficulties with learning procedures, such as
the dimension of the state space, the nature of the action (discrete or continuous), stochasticity
and randomness in Markovian Decision Processes, by combining simulation-based learning and
compact representations of policies and value function. They fall into one of the following two
categories:

• Actor-only method work with a parameterized family of policies. The gradient of the
performance, with respect to the actor parameters is directly estimated by simulation,
and the parameters are updated in a direction of improvement. A possible drawback of
such methods is that the gradient estimators may have a large variance. Furthermore, as
the policy changes, a new gradient is estimated independently of past estimates. Hence,
there is no ”learning” in the sense of accumulation and consolidation of older experiences
and informations.

• Critic-only methods rely exclusively on value function approximation and aim at learning
an approximate solution to the Bellman equation, which will then hopefully prescribe
a near-optimal policy. Such methods are indirect in the sense that they do not try to
optimize directly over a policy space. A method of this type may succeed in constructing
a good approximation of the value function yet lack reliable guarantees in terms of near-
optimality of the resulting policy.
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Figure 4.5: Actor-Critic Block Diagram

So Actor-Critic methods aim at combining the strong points of actor-only and critic-only
methods. The critic uses an approximation architecture and simulation to learn a value func-
tion, which is then used to update the actor’s policy parameters in a direction of performance
improvement. Such methods, as long as they are gradient-based, may have desirable conver-
gence properties, in contrast to critic-only methods for which convergence is guaranteed in
rather limited settings. They also hold the promise of delivering faster convergence due to
variance reduction than actor-only methods. On the other hand, theoretical understanding of
actor-critic methods has been limited to the case of lookup table representations of policies and
value functions.[11]

Below, is the pseudocode for Q-Actor-Critic:

Algorithm 2 Q-Actor-Critic

Initialize parameters s, θ, w and learning rates αθ, αw
sample a ∼ πθ(a|s)
for t=1...N do

Sample reward rt ∼ R(s, a) and next state s′ ∼ P (s′|s, a)
Then sample the next action a′ ∼ πθ(a

′|s′)
Update the policy parameters:

θ ← θ + αθQw(s, a)∇θ log πθ(a|s)
Compute the correction Temporal Difference error for the action-value at time

δt = rt + γQw(s′, a′)−Qw(s, a)
Use the Temporal Difference to update the parameters of Q function

w ← w + αwδt∇wQw(s, a)
Move to a← a′ and s← s′

end for

4.4 Conclusion

In this chapter, we introduced the concept of Reinforcement Learning as a computational
approach to understanding and automating goal-direct learning and decision making. It uses

36



4.4. CONCLUSION

the framework of Markov Decision Processes as a way to enable interaction between a learning
agent and its environment to achieve long-term goals. We also introduced the concept of value
function as the agent’s capability of learning to act optimally by experiencing the consequences
of the actions he takes. In the same context of Q-Learning, we explained the working principle
of the most popular algorithms, Deep Q-Network (DQN), and Double Q-Network (DDQN),
which utilize Artificial Neural Networks as function approximators to predict optimal Q-values
and use them to determine action selections. Later in the chapter, we considered methods
that learn a parameterized policy that enable actions to be taken without consulting action-
value estimates as an alternative to Q-Learning. They learn and update the policy parameters
on each step in the direction of an estimate of the gradient of performance with respect to
policy parameters. Finally, we emphasized the significant potential of Policy-Gradient method
over action-value methods, especially in complex stochastic environment, and continuous set of
states and actions.
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CHAPTER

5

QUADCOPTER CONTROL USING
REINFORCEMENT LEARNING

5.1 Introduction

Over the past decade, there has been an uptrend in the popularity of Unmanned Aerial Ve-
hicles UAVs. In particular, Quadcopters have received significant attention in the research
community, where a significant number of seminal results and applications has been proposed
and experimented. This recent growth is primarily attributed to the drop in cost of on-board
sensors, actuators, and small-scale embedded computing platforms. Despite the significant
progress, flight control is still considered an open research topic. On the one hand, flight con-
trol inherently implies the ability to perform highly time-sensitive sensory data acquisition,
processing, and computation of forces to apply to the flying aircraft actuators. On the other
hand, it is desirable that UAV flight controllers are able to tolerate faults, adapt to changes in
the payload and/or the environment, and optimize flight trajectory [10].

The development of intelligent flight control systems is an active area of research, specifi-
cally through the use of Artificial Neural Network (NN), which are an attractive option given
that they are universal function approximators and resistant to noise [10].

Online learning methods have the advantage of learning the aircraft dynamics in real-time.
The main limitation with online learning is that the flight control system is only knowledgeable
of its past experiences. It follows that its performances are limited when exposed to a new
event. Training models offline using Supervised Learning is problematic, as data is expensive
to obtain and derived from inaccurate representations of the underlying aircraft dynamics,
which can lead to suboptimal control policies. To construct high-performance intelligent flight
control systems, it is necessary to use a hybrid approach. First accurate offline models are used
to construct a baseline controller, whereas online learning provides fine tuning and real-time
adaptation.
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CONTROL

An alternative to supervised Learning for creating offline models is known as Reinforcement
Learning (RL). In Reinforcement Learning, as we have seen in the last former, an agent is given
a reward for every action it takes in an environment, with the objective to maximize the rewards
over time. Using Reinforcement Learning, it is possible to develop optimal control policies for
UAVs without making any assumptions about the aircraft dynamics like Value and Policy
Iterations (see Chapter 4) Recent work has shown Reinforcement Learning to be effective for
UAV autopilot, mentioned in [2] providing adequate path tracking like ArduPilot, OpenPilot
Revolution and PX-4. [10]

Figure 5.1: Quadcopter control using RL

5.2 Open challenges in Reinforcement Learning for atti-

tude control

Reinforcement Learning is currently being applied to a wide range of applications, each with
its own set of challenges. Below, we emphasize several challenges encountered in quadcopter
control using Reinforcement Learning:

• Precision and Accuracy Many Reinforcement Learning tasks can be solved in a variety
of ways. In the case of optimal attitude control, there is small tolerance and flexibility
as to the sequence of control signals that will guarantee the desired attitude of the flying
drone. Even the slightest deviations can lead to instabilities. Therefore, achieving good
level of accuracy and precision is crucial in establishing if Reinforcement Learning is
suitable for attitude flight control.

• Robustness and Adaptation From control system perspective, robustness refers to
the impeccable performance of the controller in the presence of uncertainty and external
noise ad disturbances, whereas adaptiveness refers to the controller’s ability to adapt to
the uncertainties by adjusting its parameters. As it probably known, even in the most
accurate simulation environment, the Reinforcement Learning agent will still struggle
with uncertainties when the model get transferred to physical hardware. However, it
remains unknown in what range of uncertainty the controller can safely operate before
adaptation is necessary.
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• Reward Engineering In Reinforcement Learning, reward shaping is the process of de-
signing a reward system for the agent showing him the return of his actions, whether he
did the right thing or not. In the context of attitude control, the reward must encap-
sulate the agent’s performance in achieving the desired attitude goals. As goals become
more complex and demanding, identifying which performance metrics are most expres-
sive will be necessary to push the performance of intelligent control system trained with
Reinforcement Learning. [10]

In this work, we provide both machine learning and robotics communities with a simple,
compact, open-source OpenAI GYM-style environment for simulating and controlling quad-
copters, and also training single or multi-agent, model-free or model-based Reinforcement
Learning. The code utilized in this project is heavily inspired from the gym-pybullet-drones

Github repository.

5.3 Related Work

Notable work by Diereks and Jagannathan [4] proposes an intelligent flight control system con-
structed with Neural Networks to learn the Quadcopter dynamics, online, to navigate along a
specified path. This method allows the aircraft to adapt in real-time to external disturbances
and unmodeled dynamics. We mention also the outstanding contribution of the Reinforce-
ment Learning pioneers Andrew Ng and Pieter Abbeel [14], [1]. They developed a guidance
system that uses Reinforcement Learning for low-level manipulation of the aircraft actuators
to maintain a desired attitude, and they demonstrated their trained helicopter’s capabilities
in helicopter competitions requiring the aircraft to perform advanced aerobatic manoeuvres.
Furthermore, we mention the noteworthy work of Jacopo Panerati, Hehui Zheng, and Angela
P. Schoellig [15] for providing a compact, open-source and easy to use Gym-style environ-
ment for Quadcopter that supports the definition of multiple learning tasks (multi-agent and
vision-based Reinforcement Learning) on a practical robotic application.

OpenAI GYM

OpenAI GYM is a toolkit for developing and comparing Reinforcement Learning algorithms. It
makes no assumptions about the structure of the agent, and it is compatible with any numerical
computation library such as TensorFlow, PyTorch or Theano. To be able to use the GYM API,
it is recommended to have python 3.5+ installed alongside conda . conda is an open-source
package and environment management system that runs on Windows, macOS and Linux. It
helps with installing, running and updating packages and their dependencies, and it creates and
switches between fully isolated environment in a local development machine. After installing
conda , we begin by creating a python virtual environment named ”gym-pybullet-drones” by
executing the command.

conda create --name gym-pybullet-drones python=3.8.8 in the commandline. When the en-
vironment finishes creating, it should be activated to be used, for that, we execute this com-
mand: source activate gym-pybullet-drones .

Now, we should be able to install Git. Git is a free and open-source distributed software for
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version control system designed to handle small and large project, offering remarkable speed,
efficiency, and data-integrity. It allows software tracking changes in any set of files [5.2]. Git
is usually used for coordinating work among developers and programmers around the world,
collaboratively developing source code. It also supports distributed and non-linear workflows
consisting of thousands of parallel branches running on different systems. To install Git, we
need to type the following command to the commandline:

(gym -pybullet -drones) user@linux :~$ conda install -c anaconda git

Figure 5.2: Git distributed workflow

Now we have Git installed, we can go ahead and clone the Github repository that we
have created for this project, and install all the dependencies needed. To do this, we run the
following commands:

(gym -pybullet -drones) user@linux :~$ git clone https :// github.com/AbdelKariim

/drone_pybullet

(gym -pybullet -drones) user@linux :~$ cd drone_pybullet

(gym -pybullet -drones) user@linux :~/ drone_pybullet$ pip install -e .

An alternative way to get the code is by using Docker Containers. docker is a set of
Platform as a Service (PaaS) product that uses OS-level virtualization to deliver software
in packages called containers. Containers are isolated from one another and bundle their own
software, libraries and configuration files. They can communicate with each other through well-
defined channels. Because all of the containers share the services of a single Operating System
Kernel, they use fewer resources than virtual machines. The figure [5.3] illustrates the working
principle of docker virtualization. To install docker in the same isolated python environment
as Git, we run the command: conda install -c conda-forge/label/cf202003 docker .

After succefully installing docker , we need to pull the Docker image that contains the
source code that we have written. For that, we we have to execute the following commands:

(gym -pybullet -drones) user@linux :~$ docker push abdelkarim16/drone_pybullet:

latest

(gym -pybullet -drones) user@linux :~$ docker run -it --name gym -pybullet -

drones abdelkarim16/drone_pybullet:latest

root@1200adead522 :/ gym_pybullet_drones#

The shell presented to us indicates that we are successfully inside our Docker Container
running as root . In this container, we already have python and pip running. Now, we install
all the dependencies needed to run the project the same thing as we have done when using
git , by using the command:
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Figure 5.3: Docker Virtualization

root@1200adead522 :/ gym_pybullet_drones# pip install -e .

At this step, we have all the ingredients to successfully run our project without any errors.

PyBullet Physics Engine

PyBullet is an easy to use Python module for physics simulation or robotics, games, visual
effects and Machine Learning. PyBullet gives the ability to load articulated bodies from URDF,
SDF, MJCF, and other formats, it also provides forward dynamics simulation, inverse dynamics
computation, forward and inverse kinematics, collision detection and ray intersection queries
[5.4]. Aside from physics simulation, there are binding to rendering, with a CPU renderer such
as TinyRenderer and OpenGL visualisation and support for Virtual Reality (VR) such as HTC
Vive and Oculus Rift. PyBullet also has functionalities to perform collision detection queries like
closest points, overlapping pairs and ray intersection test, and to add debug rendering (debug
lines and text). PyBullet has cross-platform build-in client-server support for shared memory,
UDP and TCP networking. So you can run PyBullet on Linux connecting to a Windows VR
server. Aside from simplicity, PyBullet can be easily used with the most powerful Machine
Learning framework like TensorFlow, PyTorch and OpenAI GYM. [3]

5.4 Simulation

The code downloaded in the last section comes with two GYM compatible environment for
training our Reinforcement Learning agent, TakeOff-Aviary and FlyThruGate Aviary (for this
project we will only use the first environment). These two environments can only work with
single-agent Reinforcement Learning. The agent here is just the software running is Crazyflie
2.0 drone and the environment is everything else including the drone’s dynamics. Each envi-
ronment must implement the GYM interface and also contains all necessary functionalities to

42



5.4. SIMULATION

Figure 5.4: PyBullet Simulator

run the training agent and allow it to learn correctly. The following code illustrates the logic
behind creating the Reinforcement Learning environments used to train the model:

import gym

class DroneEnv(gym.Env):
metadata = {’render.modes’: [’human ’]}

def __init__(self):
# Define action and observation space

# They must be gym.spaces objects

self.action_space = gym.spaces.Dict (0: Box(-1.0, 1.0,

(4,), float32))

self.observation_space = gym.spaces.Dict (0: Dict(

neighbors:MultiBinary (1), state:Box(-inf , inf ,

(20,), float32)))

def step(self , action):

# Execute one time step within the environment

""" Parameters

----------

action : ndarray | dict[..]

The input action for one or more drones ,

translated into motor speed (RPMs)
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Returns

-------

ndarray | dict[..]

The step’s observations or state space """

return state , reward , done , info

def reset(self):
# Reset the state of the environment to an initial

state

state = 0

return state

def render(self , mode=’human ’, close=False):

# Render the environment to the screen

In the class constructor, we begin by defining the type and the shape of the action_space

which will contain all of the possible actions that could be taken by the training agent. The
default action space used here is a dictionary whose keys are the drone indices and the values
corresponding to the four normalized motor speeds in RPM. Similary, the observation_space ,
also called state_space , contains all of the environments data to be observed by the agent at
every timestep.

The reset method will be periodically called to reset the environment to the initial ob-
servation. After that, the environment’s step function after taking an action, will return the
following four values:

• observation (object): the agent’s current state or observation.

• reward (float): amount of reward achieved by the previous action. The goal obviously is
to always increase the total cumulated reward. In TakeOff-Aviary the agent’s goal is to
reach a predetermined altitude and stabilize. The reward function is simply the negation
of the squared Euclidean distance from the set point:

r = −‖[0, 0, 1]− x‖22 (5.1)

• done (boolean): a flag whether to call the reset function. When done == True , it
indicates that the learning episode has terminated

• info (dict): diagnostic information useful for debugging. It can sometimes be useful for
learning. It might contain some raw probabilities behind the environment’s last state
change.

Finally, the render method may be called periodically to render the 3D drone environment.

5.4.1 Training

Writing vanilla Machine Learning models can be quite difficult task, due to insufficient data
that can cause variance increase. High variability in models means that the model will per-
fectly fit the data it was given, but it ceases working as soon as new data is fed into. So
powerful Machine Learning frameworks are then used for creating higher level of abstraction of
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the core components of Reinforcement Learning algorithms, and to make code easier to develop
and maintain. There are a variety of powerful Machine Learning frameworks, geared at differ-
ent purposes. For our purpose, we will use Stable Baselines which is a set of high-quality
implementations of the most popular Reinforcement Learning algorithms such as Advanced
Actor-Critic (A2C), Proximal Policy Optimization (PPO), and Deep Deterministic Policy Gra-
dient (DDPG), with a common interface based on OpenAI Baselines and built upon PyTorch
library. This framework will be automatically installed in our project and ready to use. To be
able to use custom GYM environments with the Stable Baselines3 framework, we need first to
register the environment using the GYM registry API, then create a vectorized instance of the
environment, and finally start the learning process.

from gym.envs.registration import register

register(
id=’takeoff -aviary -v0’,
# full relative path to environment code

entry_point=’gym_pybullet_drones.envs.single_agent_rl:

TakeoffAviary ’,

)

env = gym.make(’takeoff -aviary -v0’)
check_env(env , warn=False , skip_render_check=True)

env = DummyVecEnv([lambda: env])

In this project, we used the default implementations of the Advanced Actor-Critic (A2C)
algorithm provided by the Stable Baselines3 framework. We choose Multi-Layer Perceptron
(MLP) models with ReLU activation function and 4 hidden layer, with 512, 512, 256, and
128 units respectively [15]. It should be noted that, in Reinforcement Learning algorithms,
hyperparameters tuning is an omnipresent problem as it is an integral aspect of obtaining the
state-of-the-art performance for any model. Most often, hyperparameters are optimized just by
training a model on a grid of possible hyperparameters value by taking that one that performs
the best on a grid search [8]. After a long process of trial-and-error and fine tuning the model’s
hyperparameters, we settled for values that gave the best results.

if args.algo == ’a2c’:

model = A2C(ActorCriticPolicy ,
env=env ,

learning_rate =0.0007 ,

gamma =0.99,

gae_lambda =1.0,

ent_coef =0.0,

vf_coef =0.5,

rms_prop_eps =1e-5,

use_rms_prop=True ,

use_sde=False ,

tensorboard_log=tensorboard_log ,

verbose =1

)
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reward_threshold = 0

callback_on_best = StopTrainingOnRewardThreshold(
reward_threshold=reward_threshold ,

verbose =1

)

eval_callback = EvalCallback(env ,
callback_on_new_best=

callback_on_best ,

verbose=1,

best_model_save_path=filename+’/

’,

log_path=filename+’/’,

eval_freq=int (2000) ,
deterministic=True ,

render=False

)

model.learn(total_timesteps =500000 ,
callback=eval_callback ,

log_interval =100,

)

In the code above, we used the Stable Baselines3 callbacks, which are a set of functions that
will be called at given stages of the training procedure. We have primarily used to access internal
state of the Reinforcement Learning model, they also help with monitoring, auto-saving, and
model manipulation.

The StopTrainingOnRewardThreshold , as the name already suggests, is used to stop the train-
ing once a threshold in episodic reward has been reached (i.e when the model is good enough).
In our case, the reward threshold is 0, because we defined the reward as the negation of the
squared Euclidean distance from the set point. EvalCallback on the other hand, evaluates peri-
odically the agent’s performance, and saves the evaluations in a specified folder as numpy archive
(evaluations.npz). We should note that, in the EvalCallback , we used deterministic==True to
apply deterministic actions to the environments. After that, we trained the Reinforcement
Learning agent for 500000 timesteps. Ideally, the number of timesteps should be very big as
the Reinforcement Learning agent needs more timesteps to effectively learn how to fly the drone,
but due to lack of powerful hardware and graphic computing resources, the training process
was mediocre. This will further drastically improve when trained on powerful GPUs that have
support for CUDA cores.

5.4.2 Training Results

After around 2 hours of training, it is time for visualizing the performance of the Reinforcement
Learning agent, for this task, we used TensorBoard which is a visualization toolkit developed by
TensorFlow team, and it is often used by researchers and engineers to visualize and understand
Machine Learning experiments, share their research to help fine tuning models. Integrating
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TensorBoard in our project helped us monitor hyperparameter and track our experiment met-
rics. The learning curves of our Reinforcement Learning model are presented below:

Figure 5.5: Timesteps mean reward

Figure 5.6: Policy Loss

Figure 5.7: Value Loss
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Figure 5.8: Entropy Loss

Figure 5.9: Standard deviation

Figure 5.10: Explained Variance

The immediate observation that we can notice, is that 500000 timesteps was not sufficient
for the agent. In the beginning of the learning process, the Entropy loss [5.8] was high as well
as the standard deviation [5.9], which indicates that agent is having hard time choosing what
actions to take, and it also indicated that there exist some randomness in the learning procedure.
Moreover, the model’s prediction of the Q-values estimate of each state is mediocre and it
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correlates with the high mean magnitude of the policy loss function, [5.6], [5.7]. Consequently,
the total cumulative reward gained by the agent is pretty low. After about 150000 time steps,
the agent starts to show some remarkable improvement as the mean reward settled around -200
[5.5] still far from the threshold but acceptable, the Entropy loss increases to zero, the standard
deviation becomes much smaller than before, and the explained variance decreases to zero, and
the overall performance shows some significant improvement resulting in a successful fly.

5.4.3 Testing Results

After the Reinforcement Learning agent finished training, it was time for testing. For this, we
loaded the saved pre-trained model and tested it on the CrazyFlie drone. Despite the relatively
low mean reward gained by the training agent and the limited hardware resources, the agent
successfully took-off the drone and hover it 1m above the ground exactly as what he was trained
for [5.14]. From figures 5.11, 5.12, 5.13, we notice that the quadcopter was steady and stable
at maintaining the altitude despite some tiny x and y deviations. The roll and pitch angles
changed a bit before reaching the desired altitude due to the coupling between the translation
and rotation dynamics of the quadcopter 5.12. The motors speed 5.13 was high at around
20000 revolution per minute (rpm) when taking-off, but quickly droped to 15000 rpm in steady
state. Without any knowledge about the quadcopter dynamics, the Reinforcement Learning
agent showed some robustness and a certain adaptation for the environment to accomplish its
objective. The good aspect of our code is it re-usability. You can train the same Reinforcement
Learning agent for different task that he has never seen before by just shaping the reward
signal, train it on a good hardware to achieve best results, and then test it in different dynamic
environment to see if the training process was effective or not. This rather simple application
opens new perspectives to quadcopter attitude control that would be very interesting to test
such as trajectory planning, obstacle avoidance and autonomous navigation.

Figure 5.11: Drone position
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Figure 5.12: Drone orientation

Figure 5.13: Motors speed
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Figure 5.14: Quadcopter Simulation in PyBullet

5.5 Future Work and Conclusion

In this chapter, we presented the Reinforcement Learning training environment built upon the
PyBullet physics engine, and the OpenAI GYM API and Stable Baselines framework to evalu-
ate performance of state-of-the-art Advanced Actor-Critic algorithm to synthesize and develop
intelligent and robust attitude controller for drones. The results we obtained highlight that
our Reinforcement Learning agent was unexpectedly good at trajectory tracking when used
in single-agent testing, and it performed exceptionally well also in continuous tasks without
retraining. Despite this remarkable success, we rather consider this project results as a first
milestone and a good motivation to further inspect the boundaries of Reinforcement Learning
for intelligent control, and help demystify the difficulties found when developing software so-
lutions for robotics [10] . We plan to develop a new reward engineering to harness the true
power of Reinforcement Learning ability to adapt and learn in more complex and dynamic en-
vironments (ground effect, drag effect, and downwash), emphasise on digital twinning concept
to allow easy transferability to real hardware [10] .
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CONCLUSION

Unmanned Aerial Vehicle navigation and control have been a developing topic due to its vast
range of applications. UAVs are employed for a variety of purposes, including civilian tasks,
military missions, object tracking, and search and rescue operations. Each of these applications
requires accurate navigation in order to avoid collisions while taking the most efficient path to
the destination.

We began our thesis by introducing the concept of Reinforcement Learning as a computa-
tional approach to understanding and automating decision making and direct goal learning. We
provided a clear and simple account of the key ideas and algorithms of Reinforcement Learn-
ing, and its simplest aspects and main distinguishing features. We covered also the connections
between Reinforcement Learning and Optimal Control from control theory perspective. Later
on, we introduced the framework of Markov Decision Processes as a way to enable interaction
between the learning agent and its environment to achieve better goals. Also, we developed the
concept of value function defined as an agent’s ability of learning to act optimally by observ-
ing the consequences of his actions. We also examined an alternative to value iteration which
is policy iteration. Policy iteration helps the agent learn a parameterized policy that allows
actions to be conducted without checking action-value estimations.

In the last chapter, we trained a Reinforcement Learning agent in a training environment
build upon PyBullet and OpenAI library. The Advanced Actor Critic A2C algorithm showed
promising results in continuous tasks effectively maintaining the drone at a fixed altitude with-
out any prior knowledge of the quadcopter dynamics. The training results were limited by the
computational constraints of the hardware in which we ran the simulation. To obtain better
results, it is recommended to use online cloud computing services such as Google Cloud, Ama-
zon AWS or Linod, which can provide cutting edge hardware resources for Machine Learning
and Artifitical Intelligence.
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CHAPTER

6

ANNEXE

6.1 Nonlinear Stability

A system is called asymptotically stable around it’s equilibrium point if it satisfies the following
two conditions:

• ∀ε > 0, ∃δ1 > 0 such that if ‖x(t0)‖ < δ1 ⇒ ‖x(t)‖ < ε

• ∃δ2 such that if ‖x(t0)‖ < δ2 then, lim
t→+∞

x(t) = 0

6.1.1 Lyapunov Direct Method

Let’s consider the following unforced continuous-time system ẋ = f(x(t)) with x̄ = 0 an
equilibrium point, the idea behind Lyapunov direct method is to establish propreties of the
equilibrium point by studying how certain carefully selected scalar functions (V) of the state
behaves as the system state evolves. Let V be a continuous map from RN ⇒ R, we call V(x)
locally positive definite (lpd) around x = 0 if:

• V(0) = 0

• V(x) > 0 for 0 < ‖x‖ < r for some r

We shall consider V(x) that have continuous first partial derivative i.e: V ∈ C1 and let V̇(x)
be the time derivative of V(x), then:

V̇(x) =
dV(x)

dt
= 〈∇V(x), ẋ〉

=
dV(x)

dt
.ẋ =

dV(x)

dt
.f(x(t))
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for V to be a Lyapunov function we must have V̇ locally negative semi-definite.

6.1.2 Lyapunov theorem for local stability

If there exist a Lyapunov function of a system described by the equation ẋ = f(x(t)) then x̄ = 0
is a stable equilibrium point in the sense of Lyapunov. In addition V̇(x) < 0 for 0 < ‖x‖ < r
then x̄ = 0 is an asymptotically stable equilibrium point.

6.1.3 Lyapunov theorem for global asymptotic stability

if V(x) is positive definite on the entire state space and |V(x)| → ∞ as ‖x(t)‖ → ∞ and it’s
derivative V̇ is negative definite on the entire state space, then the equilibrium point is glabally
asymptotically stable.

6.1.4 The indirect method of Lyapunov

The indirect method of Lyapunov uses the linearization of a system to determine the local
stability of the original system. Let’s Consider ẋ = f(x(t), t) with f(0, t) = 0 ∀t then:

A(t) =
∂f(x, t)

∂x

∣∣∣
x=0

(6.1)

for an uniform linearization of the system, we require the strong condition such that:

lim
x→0

sup
t≥0

‖f(x, t)‖
‖x‖

= 0 (6.2)

For a linear system described by the equation ż = A(t)z to be asymptotically stable we need
the eigenvalues of A to be in the open left half plan (LHP) i.e Re(λi) < 0
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6.2 BackStepping Control Strategy

Let’s consider the following nonlinear system:

ẋ1 = f1(x1) + g1(x1)x2

ẋ2 = f2(x1, x2) + g2(x1, x2)x3
...

ẋn−1 = fn−1(x1, x2, ..., xn−1) + gn−1(x1, x2, ..., xn−1)xn

ẋn = fn(x1, x2, ..., xn) + gn(x1, x2, ..., xn)u

(6.3)

and u is the control input
Let’s assume we have: {

η̇ = f(η) + g(η)σ

σ̇ = u
(6.4)

[η σ]T is the state vector ∈ R3 and u is the control input, suppose that σ is a virtual control
input such that

σ = φ(η) (6.5)

substituting (2) in (1) we obtain:

η̇ = f(η) + g(η)φ(η) (6.6)

to demonstrate the asymptotic stability of the origin of (3), we have to had a scalar function
V such that:

• V(η) is positive definite and V(0) = 0

• V̇ is semi-negative definite:

V̇(η) =
dV(η)

dt

=
dV(η)

dη

dη

dt
=
dV(η)

dη
η̇

=
dV(η)

dη
[f(η) + g(η)φ(η)] ≤ −W(η)

So starting from η̇ = f(η) + g(η)σ adding and subtracting g(η)φ(η) we obtain:

η̇ = f(η) + g(η)σ − g(η)φ(η) + g(η)φ(η)

= f(η) + g(η)φ(η) + g(η)(σ − φ(η))

with: σ = u from (38).
Let denote by eσ = σ − φ(η) as the error between the state and the virtual input, or goal here
to force σ to be equal to φ(η). Writing the state equations in terms of eσ:{

η̇ = f(η) + g(η)φ(η) + g(η)eσ

ėσ = u− ˙φ(η)
(6.7)
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where:

˙φ(η) =
dφ(η)

dt
=
dφ(η)

dη
η̇

=
dφ(η)

dη
[f(η)− g(η)σ]

Setting u = v + ˙φ(η): {
η̇ = f(η) + g(η)φ(η) + g(η)eσ

ėσ = v
(6.8)

Similar to (48), the Lyapunov condidate function can be taken:

Vc(η, σ) = V +
1

2
e2σ (6.9)

so:

V̇c(η, σ) =
∂V(η)

∂η
[f(η) + g(η)φ(η)] +

∂V(η)

∂η
g(η)eσ + eσėσ

V̇c(η, σ) ≤ −W(η) +
∂V(η)

∂η
g(η)eσ + eσv (from (51))

We take: v = −∂V(η)

∂η
g(η)− keσ for k > 0, substituting v in the above equation, we obtain:

V̇c ≤ −W(η)− ke2σ (6.10)

Which shows that the origin (σ = 0 and η = 0) is asymptotically stable. The control input to
the original system u is:

u = −∂V(η)

∂η
g(η)− keσ +

dφ(η)

dη
[f(η)− g(η)σ]

=
dφ(η)

dη
[f(η)− g(η)σ]− ∂V(η)

∂η
g(η)− k[σ − φ(η)]
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Abstract

In this work, we provided an introduction to Reinforcement Learning concepts and paradigms
and their growing importance in the robotics research community. We proposed an open-
source OpenAI GYM-like environment for training a Reinforcement Learning agent to fly a
quadcopter based on the PyBullet physics engine. This type of environment coupled with a
problem specification of a reward function is important to standardize the development and the
benchmarking of learning algorithms and help combine the advantages of using Control Theory
alongside Machine Learning.

Résumé

Dans ce travail, nous avons présenté les concepts et paradigmes de l’apprentissage par ren-
forcement et leur importance croissante dans la communauté de recherche en robotique. Nous
avons proposé un environnement open-source de type OpenAI GYM pour entrâıner un agent
d’apprentissage par renforcement à piloter un quadcoptère basé sur le moteur physique Py-
Bullet. Ce type d’environnement, associé à la spécification d’une fonction de récompense, est
important pour normaliser le développement et l’évaluation des algorithmes d’apprentissage et
pour aider à combiner les avantages de l’utilisation de la théorie du contrôle et de l’apprentissage
automatique.

Key Words

Reinforcement Learning, Machine Learning, PyBullet, Stable BaseLines, OpenAI GYM, Quad-
copter, Attitude Control.


